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1. Introduction 

 The Heun confluent equation [1-3] is a second order linear differential equation 

widely encountered in contemporary physics research ranging from hydrodynamics, polymer 

and chemical physics to atomic and particle physics, theory of black holes, general relativity 

and cosmology, etc. (see, e.g., [4-22] and references therein). This equation has two regular 

singularities conventionally located at points 0z   and 1z   of complex z -plane, and an 

irregular singularity of rank 1 at z   . Due to such a specific structure of singularities, the 

Heun confluent equation presents a generalization of both the Gauss ordinary and the 

Kummer confluent hypergeometric equations widely applied in physics during the past 

century. We adopt here the following canonical form of the Heun confluent equation [3]: 
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from which both hypergeometric equations are obtained by simple choices of the parameters. 

Another prominent equation that presents a particular case of this equation is the algebraic 

form of the Mathieu equation which is obtained if 0   and 1/ 2    [1-3]. 

 Despite the considerable research devoted to the mathematical properties of equation 

(1), it is still much less studied than its hypergeometric predecessors or the Mathieu equation, 

and the solutions in terms of simpler functions, including the special functions of the 
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hypergeometric class, are rare. In this brief communication we introduce infinitely many 

solutions in terms of generalized hypergeometric functions [23,24]. The result is that for the 

general case 0   there exist infinitely many solutions in terms of a single generalized 

hypergeometric function p pF , while for the reduced case 0   there are infinitely many 

solutions in terms of a single function 1p pF  . In both cases of non-zero or zero   the 

solutions exist if a characteristic exponent of a regular singularity of the Heun confluent 

equation is a non-zero integer and the accessory parameter q  obeys a polynomial equation. 

 

2. Solutions for non-zero   

 Let 0  . The characteristic exponents of the singularity 1z   are 1,2 0, 1   . Let 

the exponent 2 1    is a non-zero integer. A basic observation is that for any negative 

integer N   , 1, 2,3,...N   (the case of a positive integer   is discussed afterwards) the 

Heun confluent equation admits a solution given as 

  1 1 1 1(1 ,...,1 , / ; ,..., , ; )N N N Nu F e e e e z        . (2) 

This solution applies for certain particular choices of the accessory parameter q  defined by a 

polynomial equation of the degree 1N  . We note that for 0   the Heun confluent equation 

admits a solution in terms of the Kummer confluent hypergeometric function: 

   1 1 / ; ;u F z     , (3)  

achieved for  0q   . (4) 

 The solution for 1N   reads 

  2 2 1 1( / ,1 ; , ; )u F e e z      ,   1   , (5) 

      2 02 1q q             , (6) 

where the parameter 1e  is given as 1 / ( )e q   . This solution was noticed by Letessier 

[25,26] and studied by Letessier, Valent and Wimp [27]. We note that the parameter 1e  

parameterizes the root of equation (6) as 
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 The solution for 2N   is 

  3 3 1 2 1 2( / ,1 ,1 ; , , ; )u F e e e e z       ,   2   , (8) 

                 22 2 1 2 2 0q q q q                           , (9) 
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where the parameters 1,2e  are defined by the equations 
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and the solution for 3N   reads 

  4 4 1 2 3 1 2 3( / ,1 ,1 ,1 ; , , , ; )u F e e e e e e z        ,   3   , (11) 
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where the parameters 1,2,3e  obey the equations 
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and   
3
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n

n
q e n  


     . (14) 

(One should be careful that not all solutions of equations (13),(14) give the correct values of 

1,2,3e ; for the unique determination of 1,2,3e  see below.)  

 In the general case N    the accessory parameter q  and the parameters 1,2,...,Ne  

involved in solution (2) are determined from a system of 1N   algebraic equations. These 

equations are constructed by equating to zero the coefficients of the following polynomial 

( )n  in an auxiliary variable n : 

                
1 1 1

( 1) 1 ( 2 21)
N N N

k k k
k k k

n e n e n n e nQ n  
  

            , (15) 

where   ( 1) 2Q q n n            . (16) 

An important point is that the polynomial ( )n  is of degree N , not 2N  , as it may be 

supposed at first glance. This is because the two possible highest-degree terms proportional to 

1Nn   and 2Nn   actually vanish. We thus have 1N   equations, of which N  equations serve 

for determination of the parameters 1,2,...,Ne  and the remaining one, after elimination of 

1,2,...,Ne , imposes a restriction on the parameters of the Heun confluent equation. This 

restriction is checked to be a polynomial equation of the degree 1N   for the accessory 

parameter q . Examples of this equation for 0,1,2,3N   are those given by equations (4), 

(6),(9), and (12).  A concluding remark is that the system of the algebraic equations at hand 

leads to the following generalization of equations (13),(14): 
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The derivation of the presented results is discussed in the next section. 

 

3. Derivations for the case 0   

 Consider the Frobenius series solution of the Heun confluent equation (1) for the 

vicinity of the singularity 0z  : 

  
0

n
n

n
u z c z
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The coefficients of this expansion obey a three-term recurrence relation:  

  1 1 2 2 0n n n n n nR c Q c P c      . (19) 

For the exponent 0   the coefficients of this relation read 

   1n nR n   , (20) 

   1n nQ q n       , (21) 

   nP n    . (22) 

The idea is to look for the cases when the Frobenius expansion (18) is reduced to a confluent 

generalized hypergeometric series. To examine this possibility, we note that the generalized 

hypergeometric function p pF  of a scaled argument 0s z  is defined through the power series 

[23,24] 
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the coefficients of which obey the two-term recurrence relation 
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Having in the mind the function (2), we put 1p N   and 

  1 1 1,...., , 1 ,...,1 ,N N Na a a e e a    , (25) 

  1 1 1,...., , ,..., ,N N Nb b b e e b  . (26) 

The recurrence relation (24) is then rewritten as 
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Substituting this into equation (19), we have 



 5

  
 
 

 
 

0

1 1
1

0
2

1 2 ( 1)
0

2

1 1 2 1n n

N N
k k

k kk k
n

n
R

n
Q P

n

a n s b ne n e

b n e n a n s e n 
 

     
     








  . (28) 

nR  cancels the factor  1b n n   of the denominator of the first term of this equation if we 

choose b  . Similarly, 2nP   cancels the factor  2a n   of the denominator of the last 

term if /a   . Hence, we put b  , /a   . Then, cancelling the common denominator, 

equation (28) is rewritten as 
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This is a polynomial equation in n  of the degree 2N  . The coefficient of the highest-degree 

term 2~ Nn   is  01 / s  . Hence, for 0s    this term vanishes and equation (29) takes 

the form 
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Now, equating to zero the coefficients mA  warrants the satisfaction of the recurrence relation 

(19) for all n . We thus have 2N   equations 0mA  , 0,1,.., 1,m N   of which N  

equations serve for determination of the parameters 1,2,...,Ne  and the remaining two impose 

restrictions on the parameters of the Heun confluent equation (1). 

 One of these restrictions is readily derived by calculating the coefficient 1NA   of the 

term proportional to 1Nn  , which is shown to be N  . Hence, 

  N   . (31) 

The second restriction is derived by elimination of 1,2,...,Ne . For 0,1,2,3N   these restrictions 

are those given by equations (4),(6),(9), and (12), respectively. For higher N  the equations 

are cumbersome; we omit those. We note, however, that this restriction can alternatively be 

derived via termination of the series solution of the Heun confluent equation in terms of the 

Kummer confluent hypergeometric functions [28]. This assertion is deduced if we recall that 

the generalized hypergeometric function (2), with N  numerator parameters exceeding the 

denominator ones by unity, can be written as a linear combination with constant coefficients 

of a finite number of the confluent hypergeometric functions. This linear combination can 

conveniently be derived by the termination of the expansions of the solutions of the Heun 

confluent equation in terms of the Kummer functions [28-31]. The termination condition for 

N    is a polynomial equation of degree 1N   for the accessory parameter q . 
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 As regards equations (17), the first one is derived from equation (29) by putting 1n  , 

the third equation comes from the coefficient of the term proportional to Nn , and the second 

equation is a result of numerical simulations that we have carried out for N  up to 20. Though 

we have checked the validity of this equation analytically for 7N  , we have not a proof for 

arbitrary N . However, this equation is just an additional observation. It is not necessary for 

construction of the solution of the Heun confluent equation. The 1N   equations 0mA   

suffice. This fulfils the development. A complementary remark is that the solution of the 

system 0mA   is unique up to the transposition of the parameters 1,2,...,Ne . 

 

4. Positive integer 1   or arbitrary integer 1   

 Let   is now a positive integer: N  , 1, 2,3,...N  . Solutions for this case are 

constructed by applying the elementary power change 1( 1)u z w   which transforms the 

Heun confluent equation into another Heun confluent equation with the altered parameter 

1 2   . For 2   we get a Heun confluent equation with a zero or negative integer 1 . 

As a result, we derive the solution 

  1
1 1 1 1( 1) 1 , 1,..., 1; , ,..., ;N N N Nu z F e e e e z    




 
        
 

    . (32) 

Thus, the only exception is the case 1   for which both characteristic exponents 

1,2 0,1    are zero. We do not know a p pF  solution for this exceptional case. 

 Solutions in terms of the generalized confluent hypergeometric functions of similar 

structure can also be constructed for any integer N   , 1N  . These solutions are 

derived by employing the Frobenius expansion in the vicinity of the singular point 1z  . The 

solution for a negative integer N    is of the form 

  1 1 1 1, 1,..., 1; ,..., , ; ( 1)N N N Nu F e e e e z
  
 

      
 

, (33) 

and for a positive integer 1   the solution is given as 

  1
1 1 1 11 , 1,..., 1; ,..., , ; ( 1)N N N Nu z F e e e e z    




 
        
 

. (34) 

We note that here instead of   we have   as a denominator parameter. It is worth 

mentioning that for any choice of parameters the generalized hypergeometric series involved 

in all presented solutions converge everywhere in the complex z -plane (with the proviso that 

none of the denominator parameters is zero or a negative integer) [23,24]. 
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5. Reduced case 0   

 The case 0   is special since the nature of the singularity at z    is changed to 

have an asymptote inferred from the subnormal Thomé solutions (for non-zero   the 

asymptote is given by the normal Thomé solutions) [32].  We note that this reduced case 

(which can be viewed as the Whittaker-Ince limit of the generalized spheroidal wave 

equation [33]) degenerates to the Gauss hypergeometric equation if 0   and presents the 

algebraic form of the Mathieu equation if 0  , 1/ 2   . 

 The confluent generalized hypergeometric solutions of the Heun confluent equation in 

this case are as follows. Let   is a non-positive integer. A simple case is the Bessel-function 

solution for 0  : 

       
1

2 1 0 1 ;2 ;u F zz J z


  


   , (35)  

valid for  0q   . (36) 

A basic result is now that for any N   , 1, 2,3,...N    (as for the previous case 0  , the 

case of a positive integer   is treated separately) the Heun confluent equation admits a 

solution given as 

  1 1 1(1 ,...,1 ; ,..., , ; )N N N Nu F e e e e z     . (37) 

This solution is deduced from solution (2) by a limiting procedure or by a slight modification 

of the derivation lines described in the previous section.   

 The solution for 1N   reads 

  1 2 1 1(1 ; , ; )u F e e z    ,   1   , (38) 

      2 02 1q q         , (39) 

where the parameter 1e  is given as 1 / ( )e q   . 

 For 2N   we have 

  2 3 1 2 1 2(1 ,1 ; , , ; )u F e e e e z     ,   2   , (40) 

          22 2 2 2 2 0q q q q                   , (41) 

where the parameters 1,2e  are defined by the equations 
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and the solution for 3N   is 

  3 4 1 2 3 1 2 3(1 ,1 ,1 ; , , , ; )u F e e e e e e z      ,   3   , (43) 



 8

  
       

          
2

2

3 2 3 3 1

4 2 2 2 3 0

q q q

q q q q

       

        

         

         
 (44) 

where the parameters 1,2,3e  obey the equations 

  
3

1

1 k

k k

e
q

e





  ,   

 
 

3

1

1
1 k k

k

e e


 



 ,    

3

1
n

n
q e n 


    . (45) 

 In the general case N    the accessory parameter q  and the parameters 1,2,...,Ne  are 

determined from a system of 1N   algebraic equations. These equations are again derived by 

equating to zero the coefficients of the auxiliary polynomial ( )n  given by equations 

(15),(16), where one should put 0  . 

 We would like to conclude by noting that the solution for a positive integer 1   as 

well as the solution for an integer (negative or positive) 1   are constructed exactly in the 

same manner as described above for the case of non-zero   (we recall that the latter solution 

is constructed by employing the Frobenius expansion near the regular singularity 1z  ). 

 

6. Discussion 

 Thus, we have presented infinitely many solutions of the Heun confluent equation, 

each written in terms of a single generalized confluent hypergeometric function. This is the 

extension to the confluent case of our recent results for the Heun general equation [34]. The 

existence of the latter solutions (applicable for the Fuchsian differential equations which have 

only regular singularities) has been conjectured (and proved for the first five lower-order 

cases) by Takemura [35] based on the earlier results by Letessier et al. [27]. 

 As it was mentioned in the introduction, the Heun confluent equation has a wide 

coverage in contemporary physics and mathematics, so that one may expect many 

applications of these solutions. Here is an example from quantum few-state non-adiabatic 

dynamics [36-38]. 

 The semi-classical time-dependent two-state problem is written as a system of 

coupled first-order differential equations for probability amplitudes )(1 ta  and )(2 ta  of two 

states of a quantum system driven by a quasi-resonant external field with amplitude 

modulation ( )U t  and phase modulation )(t  [36]: 

  2
1 aUe
td

ad
i i ,   1

2 aUe
td

ad
i i . (46) 

This system is equivalent to the second-order ordinary differential equation 
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where the over-dots denote differentiation with respect to time. 

 Consider the excitation by optical laser radiation with the field-configuration given as 

  0U U ,   1
/

0
0

1 )( tt
W e 
 

  


 


, (48) 

where 0U , 0 1,   are arbitrary constants and W  is the Lambert-W function [39,40]. This is a 

constant-amplitude field-configuration describing asymmetric crossing of the resonance at a 

time point  1 0 1 0l // / nt      . This field configuration is a member of the confluent 

Heun two-state models presented in [10] (class 1,2 ( 1, 1)k    , Eq. (49) of [10]). It has been 

shown that the two-state problem (47) for this model is reduced, by applying the 

transformation 01 ( )zuz e z  , / )( tz W e   , to the Heun confluent equation with 1   . 

It can further be checked that the parameters of the latter equation are such that they satisfy 

equation (6) for the accessory parameter q . With this, using equation (5), we obtain a 

fundamental solution of the two-state problem in terms of the Goursat generalized 

hypergeometric function 2 2F  [41] explicitly written as 

   01 /
2 2 2 ,1 , ); ; (z ta F a e e W ez e      , (49) 

where  1 11 2 i     ,   0 02 i    , 

  
2

0 1 0
2

4 1

22 /

U
a

  
 
 

  ,   1 1 0 0e i i       , (50) 
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1 1 1 04

2

i
U

     ,   2 2
0 0 0 04

2

i
U

     . (51) 

Here any combination of signs of the roots involved in 1  and 0  is applicable. This can be 

used to construct the general solution of the problem.  

 We conclude by a complementary observation that equation (47) can readily be 

changed into the Schrödinger form with missing first-derivative term. As a result, one then 

arrives at a generalized confluent hypergeometric representation of the solution of the 

Schrödinger problem for the Lambert-W step potential for which the solution was initially 

written as a linear combination of two Kummer confluent hypergeometric functions [42]. 

Many more such representations can immediately be constructed if other wave equations 

(both relativistic and non-relativistic) as well as other solvable few-state models are applied. 
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