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Abstract In this paper we focus on two sources of enhancement in accuracy
and computational demanding in approximating a function and its derivatives
by means of the Smoothed Particle Hydrodynamics method. The approximating
power of the standard method is perceived to be poor and improvements can
be gained making use of the Taylor expansion of the kernel approximation of the
function and its derivatives. The modified formulation is appealing providing more
accurate results of the function and its derivatives simultaneously without chang-
ing the kernel function adopted in the computation. The scheme received attention
from practitioners, but many fundamental issues are still widely open. In this pa-
per we highlight numerical insights of the scheme: studies on the accuracy, the
convergence rate and the computational e↵orts with various data sites are pro-
vided. Accuracy of arbitrary order can be reached by employing the derivatives
of the kernel with order up to the desired accuracy in approximating the function
and with higher order for its derivatives. An infinitely di↵erentiable kernel func-
tion, smooth even for high order derivatives, such as the Gaussian, is a suitable
choice to successfully provide any order of accuracy for the function approximation
or its derivatives. However, the improved formulation requires many summations
on the kernel function and its derivatives, strongly limiting the feasibility of the
method. Motivated to speed up the computation and to make large scale problems
tractable we adopt fast summation approach. Namely, the improved fast Gaussian
transform has been opportunely adapted to assembly the corrective linear system
for each evaluation point picking up the computational cost at an acceptable level
preserving the accuracy. Numerical experiments with various bivariate functions
and sets of data are reported to give evidence of the accuracy, convergency and
computational demanding.
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1 Introduction

In recent years, meshless methods have gained growing interest in many di↵erent
areas of science [2,4,8,9,19,21,40]. The basic idea of these methods is to provide
numerical solutions without using any mesh in the problem domain. Methods with-
out a predefinite connections are easily adapted to domains with complex and/or
time evolving geometries without the di�culties that would be required to handle
those features with topological data structures. They can be useful in non-linear
problems involving viscous fluids, heat and mass transfer, linear and non-linear
elastic or plastic deformations, etc. In the Lagrangian approach the points, de-
scribing the problem domain, move with the medium, and points may be added
or deleted in order to maintain a prescribed sampling density. In the Eulerian
approach the points are fixed in space, but new points may be added where there
is need for increased accuracy. So, in both approaches the nearest neighbors of
a point are not set. Numerical simulations usually need the values of a function
and its derivatives at certain point and in this paper we focus on their approxi-
mation by means of the Smoothed Particle Hydrodynamics (SPH) method. This
method was originally developed for solving astrophysical problems [15,16,29,31]
and subsequently it has been also used in other areas of science and engineering
[1,22–24,26,12,13,34,37,38,42,43]. The method results very attractive but it suf-
fers from several drawbacks due to inaccurate approximation at boundaries and at
irregular interior regions. This often confines its utility to limited scenarios. Many
techniques have been devised to alleviate these problems and some of these have
been documented in [5,25,27,28] and in the references therein. In this paper we
discuss on sources of enhancement in accuracy of the standard SPH method via
Taylor expansion of the kernel approximation of a function and its derivatives [27].
In this way, accurate estimates of the function and its derivatives are simultane-
ously provided and no lower order derivatives are inherent in approximating the
higher order derivatives. Therefore, the possible numerical errors in a lower order
derivative will not be brought to the higher order ones. Moreover, high order of
accuracy can be obtained without changes on the kernel function avoiding to lead
unphysical results such as negative density or negative energy that can lead to
breakdown of the entire computation in simulating some problems [23]. Accuracy
of arbitrary order can be reached for a function and its derivatives by employing
the derivatives of the kernel function with order up to the accuracy order in ap-
proximating the function or higher when accurate results for the derivatives of the
function are requested. So an infinitely di↵erentiable and adequately smooth func-
tion even for higher order derivatives, such as the Gaussian, is a suitable choice
to restore any order of accuracy. In our study we propose numerical investigations
on the standard and improved method dealing with the Gaussian kernel function.
Many experiments are conducted with the aim to address numerical features of
the method accomplished with various data sets locations, gridded and scattered
in a unit square domain, referring to bivariate test functions [36,41]. The modified
approach is very interesting for the applications, but the computational demand-
ing is a bottleneck as data locations get finer and for an high number of evaluation
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points. Increasing the accuracy demanding the computational e↵ort increases and
it is essentially due to the summations of kernel and its derivatives in assembling
the matrix of the solving system for each evaluation point. Motivated to speed
up the computation and to make large scale problems tractable we focus on e�-
cient processings of this fundamental task. Dealing with the infinitely di↵erentiable
Gaussian function as kernel one, the derivatives involve sums of products of the
polynomials and Gaussian one. This allows us to take advantage in the computa-
tion and to make use of fast algorithms [18] for all the summations set out for the
proposed strategy. Namely, we consider the improved fast Gaussian transform [35]
picking up the computational cost at an acceptable level preserving the accuracy
of the computation. Furthermore, the matrix and the known vector assembly is
generated by taking into account the Gaussian function as common element in the
fundamental tasks. The overall computational work performs to linear for a fixed
level of accuracy. We present the computations with the direct and the improved
fast summation algorithm showing satisfactory results referring to a bivariate case
study. The remainder of the paper is as follows. In section 2 we present a review
of the standard formulation. In section 3 we describe the improved method sup-
ported by numerical simulations for some test functions in a unit square domain.
In this section some discussions on the errors versus the number of data are re-
ported referring to di↵erent orders of accuracy and with di↵erent data sets. The
section 4 is devoted to computational topics presenting the direct and the fast sum
computation via Improved Fast Transform Gaussian adapted for our purposes. In
section 5 the results presented in the paper are shortly summarized.

2 Ab initio formulation

To make the paper self-contained we briefly review the SPH standard formalism
from first principles. The method makes use of a kernel approximation using ideas
from distribution theory for approximating a function with a delta distribution
representation [14].

Definizione 1. Let f(x) 2 R, x = (x(1), ..., x(d)) and ⇠ = (⇠(1), ..., ⇠(d)) 2 Rd, the
kernel approximation is defined as

fh(x) :=

Z

⌦

f(⇠)K(x, ⇠;h)d⌦. (1)

The function K(x, ⇠; h) is named kernel function and h is the smoothing length.
The parameter h localizes the influence of the kernel function which approximates
a Dirac �-function in the limit h ! 0 and usually is normalized to unity. It is
further required the kernel to be symmetric and su�ciently smooth. Under these
assumptions the error of the kernel approximation can be estimated as second order
of accuracy, or of first order of consistency [15,16,23]. Any function K(x, ⇠; h) with
the above properties can be employed as smoothing kernel function. A common
choice is the Gaussian function

K(x, ⇠; h) =
1

h

d
p
⇡d

e�
k⇠�xk22

h2 . (2)
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The kernel clearly decays when x moves away from ⇠ and the dimensional constant
↵d = 1/hd

p
⇡d is to satisfy the unity requirements [23]. Moreover, it is infinitely

di↵erentiable, radial and strictly positive definite function on Rd for any d [7,10,
11,44] . This function will be taken into consideration as kernel from now on.
When the entire domain is represented by a finite number of data sites we proceed
in the approximation as follows

Definizione 2. Given a set of data sites ⌅ = (⇠j)
N
j=1 and the corresponding

measurements (yj = f(⇠j))
N
j=1 the particle approximation of the function is defined

as

fh(x) :=
NX

j=1

f(⇠j)K(x, ⇠j ;h)d⌦j , (3)

where d⌦j is the measure of the subdomain ⌦j associated to each data site ⇠j .

The triple (K,⌅, h) essentially characterizes the approximation.

2.1 Some numerical behaviors of the standard SPH

In the following we discuss on the method by proposing various numerical ex-
periments referring to the bivariate functions (4), depicted in Figure 1, originally
proposed in the ACM Transaction Software Packages [36,41]

f(x(1), x(2)) =16x(1)x(2)(1� x(1))(1� x(2)), (4a)

f(x(1), x(2)) =
1

9
tanh(9(x(2) � x(1)) + 1), (4b)

f(x(1), x(2)) =
1.25 + cos(5.4x(2))

6 + 6(3x(1) � 1)2
. (4c)

We consider the Gaussian kernel and di↵erent data sets as centers of the ker-
nel, taken in number as the progressions (2n + 1)2. Gridded, Halton, Sobol and
random points are taken as data sequences and we will refer to these sets as
⌅G,⌅H ,⌅S ,⌅R. The second and third ones are available in MATLAB@ Statistics
and Machine Learning Toolbox as haltonset and sobolset, respectively. The former
was introduced by J.H. Halton [20] and the latter by I.M. Sobol [39]. The random
points are generated by means of the random function of MATLAB@. The evalu-
ation points {x1, ...,xM} are on a regular mesh layed out over the computational
domain and for all the simulations M=1600. In Figure 2 we show N=289 data sites
for the four data sequences ⌅G,⌅H ,⌅S ,⌅R.
The following formulas are adopted to estimate the accuracy of the solution

MAE := max
1iM

|fh(xi)� f(xi)|, (5)

RMSE :=

vuuuut

MX

i=1

|fh(xi)� f(xi)|2

M
, (6)
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MEAN :=

MX

i=1

|fh(xi)� f(xi)|

M
, (7)

and the errors are plotted in a loglog scale throughout the paper. In this section
the discussion focuses on the function test (4a). First of all we give evidence of the
influence of h on the approximation. To this aim we perform a series of experiments
with varying smoothing length h⌅ for the data sets of Figure 2 and in Figure 3
we plot the MAE by fixing the number of data to N = 1089. In Table 1 we report
the values of h⌅ and the MAE, RMSE, MEAN error for the function test (4a) by
considering ⌅G,⌅H ,⌅S ,⌅R with N=1089. The standard method usually does not
yield to satisfactory results and by increasing the data density in ⌦ the accuracy
slightly improves for the first few increased values as we observe in Figure 4.

Table 1 MAE, RMSE, MEAN error with h⌅ - N=1089 - Function test (4a)

MAE RMSE MEAN h⌅
gridded data 0.0302 0.0104 0.0072 0.0214
Halton data 0.0753 0.0214 0.0162 0.0680
Sobol data 0.0624 0.0184 0.0124 0.0560
random data 0.2157 0.0353 0.0226 0.0570

The approximation of the derivatives via standard SPH is also not good enough.
We test the approximation on a uniform grid with increasing data density in the
unit square domain and the results are displayed in Figure 5. Analogous con-
clusions are reached with the data sets ⌅H ,⌅S ,⌅R and by approximating the
derivatives along the x(2) direction.
The numerical simulations assess that the approximation with the standard for-
mulation is poor and that it is not according with the second order of accuracy
claimed in the kernel approximation. This is mainly due to the discrepancy be-
tween the kernel and particle approximation especially on the boundary and with
non uniform data locations. With the goal to improve the approximation of the
function and its derivatives, we consider series expansion of the function, project-
ing with the kernel function and its derivatives and integrating over the problem
domain [27] . This approach improves the accuracy without changes on the kernel
function. Moreover, the function and its derivatives are simultaneously computed,
for each evaluation point, with the desired order of accuracy. Hence, high order of
derivatives are generated independently on the lower one. In the next section we
discuss on the basic idea of the improved approach coupled with some validation
results.

3 Enhancing particle approximation

To ensure the 1-st order of accuracy (or the 0-th order of consistency) we consider
the Taylor expansion of f(⇠), retaining only the first term, multiplying for the
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(a) Test1 (b) Test1 - Dx(1)f

(c) Test2 (d) Test2 - Dx(1)f

(e) Test3 (f) Test3 - Dx(1)f

Fig. 1 Test functions (left) and their first derivatives (right) used in the numerical experi-
ments.

kernel function and integrating over ⌦

Z

⌦

f(⇠)K(x, ⇠; h)d⌦ =

Z

⌦

f(x)K(x, ⇠; h)d⌦ +

Z

⌦

O(h)K(x, ⇠; h)d⌦, (8)

f(x) =

R
⌦
f(⇠)K(x, ⇠; h)d⌦R
⌦
K(x, ⇠; h)d⌦

+O(h). (9)
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(a) gridded data (b) Halton data

(c) Sobol data (d) random data

Fig. 2 The blue circles as the set of N = 289 data sites ⇠j ; the red crosses as the set of
M=1600 evaluation points xi.

Fig. 3 Maximum absolute error vs. h for N=1089 data sites in ⌅G,⌅H ,⌅S ,⌅R.

The corresponding discrete formulation is

f(x) =

NX

j=1

f(⇠j)K(x, ⇠j ; h)d⌦j

NX

j=1

K(x, ⇠j ; h)d⌦j

+O(h). (10)
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(a) Gridded data (b) Halton data

(c) Sobol data (d) Random data

Fig. 4 Error versus the number of data in ⌅G,⌅H ,⌅S ,⌅R. Function test (4a).

Fig. 5 Error versus the number of data in ⌅G for Dx(1)f . Function test (4a).

We proceed in the approximation of the function test (4a), for the data sets
⌅G,⌅H ,⌅S ,⌅R and by increasing the density of the data in the unit square do-
main. The simulations are summarized in Figure 6.
The comparison between the plots in Figure 4 and in Figure 6 gives evidence of
the improvements in the approximation. In Tables 2 and 3, the errors, the rate
of convergence and the values of h⌅ for the first order of accuracy (k=0) with
gridded and random data sets are reported. The results confirm the theoretical
assumptions making evidence of a less accurate approximation for data in ⌅R. In
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Figure 7 we summarize the maximum absolute error for the test functions (4b)
and (4c) for the di↵erent data sequences ⌅G,⌅H ,⌅S ,⌅R.

(a) k=0 Gridded data (b) k=0 Halton data

(c) k=0 Sobol data (d) k=0 Random data

Fig. 6 k=0. Error versus the number of data in ⌅G,⌅H ,⌅S ,⌅R. Function test (4a).

Table 2 k=0. MAE, RMSE, MEAN error for data in ⌅G. Function test (4a). Data used in
the Figure 6(a).

N f h⌅
MAE rate RMSE rate MEAN rate

9 0.5097 – 0.2178 – 0.1848 – 0.2357
25 0.3556 0.7046 0.1202 1.1627 0.0922 1.3603 0.1414
81 0.2136 0.8672 0.0592 1.2047 0.0367 1.5642 0.0786
289 0.1175 0.9402 0.0282 1.1629 0.0136 1.5640 0.0415
1089 0.0613 0.9723 0.0141 1.0435 0.0052 1.4407 0.0214
4225 0.0315 0.9865 0.0072 0.9898 0.0025 1.0399 0.0109
9801 0.0207 0.9926 0.0047 0.9946 0.0016 1.0460 0.0071
16641 0.0160 0.9951 0.0037 0.9950 0.0013 0.9931 0.0050
66049 0.0080 0.9968 0.0018 0.9971 6.40e-04 1.0046 0.0028

3.1 Higher order of accuracy

Now we extend the idea presented in the previous section to generate methods
with higher approximation order taking into consideration the Taylor expansion
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Table 3 k=0. MAE, RMSE, MEAN error for data in ⌅R. Function test (4a). Data used in
the Figure 6(d).

N f h⌅
MAE rate RMSE rate MEAN rate

9 0.5480 – 0.2768 – 0.2381 – 0.4679
25 0.5169 0.6975 0.2539 0.2430 0.2213 0.2061 0.3277
81 0.4739 0.3440 0.1284 1.2918 0.1046 1.4182 0.1932
289 0.2500 0.5643 0.0743 0.9011 0.0543 1.0825 0.1055
1089 0.1008 0.7928 0.0208 1.2497 0.0201 1.5628 0.0780
4225 0.0859 1.0513 0.0337 1.1413 0.0084 1.5239 0.0314
9801 0.0616 0.6447 0.0101 0.9963 0.0041 1.2860 0.0182
16641 0.0479 2.3055 0.0085 1.4690 0.0033 1.9937 0.0162
66049 0.0212 0.8653 0.0037 0.8997 0.0015 0.8487 0.0063

(a) (b)

Fig. 7 k=0. MAE versus number of data in ⌅G,⌅H ,⌅S ,⌅R. (a) Function test (4b) and (b)
function test (4c).

of the function f(⇠) up to the order k

f(⇠) =
X

|↵|k

1

↵!
(⇠ � x)↵D↵f(x) +O(hk+1), (11)

where ↵ = (↵1,↵2, ...,↵d) 2 Nd is a multi-index with |↵| =
dX

i=1

↵i and the di↵er-

ential operator is defined as

D↵ :=
�|↵|

(�x(1))↵1 ...(�x(d))↵d
.

Hence, the (11) is multiplied for the kernel function and its derivatives up to the
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order k and integrated over ⌦
Z

⌦

f(⇠)K(x, ⇠; h)d⌦ =
X

|↵|k

1

↵!

Z

⌦

(⇠ � x)↵D↵f(x)K(x, ⇠; h)d⌦+

+

Z

⌦

O(hk+1)K(x, ⇠; h)d⌦

...
Z

⌦

f(⇠)Dk
⇠(d)K(x, ⇠; h)d⌦ =

X

|↵|k

1

↵!

Z

⌦

(⇠ � x)↵D↵f(x)Dk
⇠(d)K(x, ⇠; h)d⌦+

+

Z

⌦

O(hk+1)Dk
⇠(d)K(x, ⇠; h)d⌦.

Neglecting the error, in linear algebra notation the improved formulation cor-
responds to find the solution of the pointwise linear systems

A

(k)
c

(k) = b

(k) (12)

where

A

(k) =

0

B@

R
⌦
K(x, ⇠; h)d⌦ . . . 1

k!

R
⌦
K(x, ⇠; h)(⇠(d) � x(d))kd⌦

... . . .
...R

⌦
Dk

⇠(d)K(x, ⇠; h)d⌦ . . . 1
k!

R
⌦
Dk

⇠(d)K(x, ⇠; h)(⇠(d) � x(d))kd⌦

1

CA

c

(k) =

0

B@
f(x)
...

Dk
x(d)f(x)

1

CA

b

(k) =

0

B@

R
⌦
f(⇠)K(x, ⇠; h)d⌦

...R
⌦
f(⇠)Dk

⇠(d)K(x, ⇠; h)d⌦

1

CA .

We are now ready to propose the discrete formulation for the function and its
derivatives estimate up to order k at the evaluation point x

A

(k) =

0

BBBBBBBB@

NX

j=1

K(x, ⇠j ; h)d⌦j . . . 1
k!

NX

j=1

K(x, ⇠j ; h)(⇠
(d)
j � x(d))kd⌦j

... . . .
...

NX

j=1

Dk
⇠(d)K(x, ⇠j ; h)d⌦j . . . 1

k!

NX

j=1

Dk
⇠(d)K(x, ⇠j ; h)(⇠j

(d) � x(d))kd⌦j

1

CCCCCCCCA
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c

(k) =

0

B@
f(x)
...

Dk
x(d)f(x)

1

CA

b

(k) =

0

BBBBBBBB@

NX

j=1

f(⇠j)K(x, ⇠j ; h)d⌦j

...
NX

j=1

f(⇠j)Dk
⇠(d)K(x, ⇠j ; h)d⌦j

1

CCCCCCCCA

.

The described process gives more accurate values for the function and its deriva-
tives [27]: it is accurate of order k+1 for the function f and of order (k+1)-p for
the derivatives of order p. In the following we report some results for the function
test (4a) in approximating the function and its derivatives with k=1 and k=2. In
Tables 4 and 5 the results are with k=1 whilst in Tables 6 and 7 we report the
results with k =2. These illustrate the approximation does converge well, almost
reaching the results predicted by the theory.
In Figure 8, by fixing N=1089, we focus on the MAE comparing SPH and the
improved method with k=0, k=1 and k=2. We observe that the error is reduced
inside the domain and it is always present on the boundaries but a significant de-
crease is with k=1,2. We conclude this section presenting the MAE for finer data
locations concerning the three functions (4a), (4b), (4c) with the standard SPH
formulation and with the modified one by varying k=0,1,2. In Figures 9, 10 and
11 we show the maximum absolute error versus the number of data in ⌅G, ⌅H ,
⌅S , ⌅R.
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Table 4 k=1. MAE, RMSE for data in ⌅G. Function test (4a).

N f Dx(1)f h⌅

MAE rate RMSE rate MAE rate RMSE rate

9 0.3016 – 0.1424 – 2.7931 – 1.0237 – 0.2357
25 0.1158 1.8745 0.0563 0.1818 1.6832 0.9914 0.5379 1.2598 0.1414
81 0.0366 1.9596 0.0183 1.9120 0.9237 1.0207 0.2512 1.2949 0.0786
289 0.0114 1.8258 0.0052 1.9690 0.4825 1.0211 0.1131 1.2540 0.0415
1089 0.0035 1.8001 0.0014 1.9784 0.2461 1.0145 0.0530 1.1431 0.0214
4225 0.0009 1.9052 0.0003 1.9909 0.1240 1.0111 0.0267 1.0089 0.0109
9801 0.0004 1.9476 0.0001 1.9987 0.0815 0.9965 0.0175 1.0064 0.0071
16641 0.0002 1.9635 9.27e-05 1.9996 0.0629 0.9769 0.0134 1.0002 0.0050
66049 6.39e-05 1.9771 2.33e-05 1.9994 0.0319 0.9855 0.0067 0.9999 0.0028
96721 4.38e-05 1.9857 1.57e-05 2.0526 0.0264 0.9909 0.0056 0.9264 0.0023

Table 5 k=1. MAE, RMSE for data in ⌅R. Function test (4a).

N f Dx(1)f h⌅

MAE rate RMSE rate MAE rate RMSE rate

9 0.6282 – 0.3162 – 3.7270 – 1.5004 – 0.4358
25 0.4973 0.4679 0.1643 1.3109 2.7106 0.7505 1.0782 0.7787 0.2666
81 0.1304 1.8281 0.0560 1.4704 1.7442 1.2256 0.6148 1.5616 0.1271
289 0.0678 1.1989 0.0199 1.8844 0.9268 0.9186 0.2709 1.1906 0.0721
1089 0.1086 5.2991 0.0230 1.6080 0.6175 0.8948 0.1496 1.3079 0.0343
4225 0.0821 3.2346 0.0156 1.1541 0.3152 0.6976 0.0476 1.1869 0.0219
9801 0.0065 2.6831 0.0029 1.9517 0.2762 0.6840 0.0377 1.2107 0.0219
16641 0.0082 -0.9494 0.0018 1.9809 0.1579 1.4026 0.0248 1.0440 0.0189
66049 0.0029 1.8465 0.0006 1.9994 0.0676 1.1567 0.0119 1.0013 0.0103
96721 0.0003 2.5147 0.0001 1.9563 0.0794 1.5995 0.0129 0.7976 0.0044

Table 6 k=2. MAE for data in ⌅G. Function test (4a).

N f Dx(1)f D2
x(1)f h⌅

MAE rate MAE rate MAE rate
9 0.2646 – 1.9476 — 4.5083 – 0.2357
25 0.0741 2.4920 0.0878 1.5591 2.9490 0.8308 0.1414
81 0.0146 2.7587 0.3074 1.7855 1.7287 0.9086 0.0786
289 0.0023 2.8822 0.0921 1.8941 0.9433 0.9523 0.0415
1089 3.32e-04 2.9417 0.0253 1.9473 0.4938 0.9756 0.0214
4225 4.44e-05 2.9710 0.0066 1.9737 0.2528 0.9876 0.0109
9801 1.26e-05 2.9837 0.0028 1.9852 0.1664 0.9930 0.0071
16641 5.73e-06 2.9885 0.0017 1.9895 0.1279 0.9950 0.0055
66049 7.29e-07 2.9954 4.30e-04 1.9934 0.0643 0.9532 0.0028
96721 4.11e-07 2.9954 2.94e-04 1.9959 0.0532 0.9673 0.0023
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Table 7 k=2. MAE for data in ⌅R. Function test (4a).

N f Dx(1)f D2
x(1)f h⌅

MAE rate MAE rate MAE rate

9 53.055 – 2.2001 — 3.1221 — 0.5868
25 32.312 0.7001 0.9378 1.2038 0.9374 1.6073 0.2890
81 3.0333 4.7134 0.0998 4.4629 0.2017 1.4525 0.1749
289 0.4713 3.9067 0.0180 3.5927 0.0733 1.4026 0.1086
1089 0.0158 4.7237 8.06e-04 4.3248 0.0567 1.4021 0.0529
4225 0.2694 14.696 0.0067 -11.009 0.0348 1.4116 0.0436
9801 0.0010 6.9243 3.68e-05 6.5451 0.0041 1.4069 0.0197
16641 9.76e-04 0.2729 2.91e-05 0.5896 5.36e-04 1.4075 0.0132
66049 3.01e-04 2.6961 7.79e-06 3.0239 5.66e-04 1.3876 0.0085
96721 4.28e-05 4.3213 1.24e-06 4.0639 4.76e-05 1.3564 0.0054

Fig. 8 MAE for (a) SPH standard; (b) Improved method with k=0, (c) k=1, (d) k=2. N=1089
data in ⌅G. Function test (4a).

4 Computational skills

The computational strategy proposed is more expensive than the standard one.
As detailed in the previous section, fixed k, the linear system (12) have to be
generated and solved for each evaluation point x. The size of the linear system
(12) depends on the domain dimension d and on k, i.e. sk,d=

(d+k)!
d!k! and the overall
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(a) (b)

(c) (d)

Fig. 9 Function test (4a). Comparison of MAE on the function with the standard SPH for-
mulation and the improved ones k=0,1,2. (a) Gridded data; (b) Halton data; (c) Sobol; (d)
Random data.

computational e↵ort is

Ck,d ⇡ MNsk,d

✓
sk,d + 3

2

◆
. (13)

We notice that the matrix A

(k) is partially composed by the entries of the matrices
A

(j),with j = 0, ..., k � 1, as shown in Figure 12 and d
2k sk�1,d[

(d+2k)
k sk�1,d + 1]

more elements need to end up the matrix A

(k) starting from the matrix A

(k�1).
This computational extra e↵ort is required to generate the system matrix if we
desire the (k +1)-th order of accuracy only on the boundary or on subdomains
where the data are less regularly distributed.
The matrices K(k),V,P(k)

K

(k) =

0

B@

K(x, ⇠1; h) K(x, ⇠2; h) . . . K(x, ⇠N ; h)
...

... . . .
...

Dk
⇠(d)K(x, ⇠1; h) Dk

⇠(d)K(x, ⇠2; h) . . . Dk
⇠(d)K(x, ⇠N ; h)

1

CA (14)

V =

0

BBB@

d⌦1

d⌦2

. . .

d⌦N

1

CCCA
(15)
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(a) (b)

(c) (d)

Fig. 10 Function test (4b). Comparison of MAE on the function with the standard SPH
formulation and the improved ones k=0,1,2. (a) Gridded data; (b) Halton data; (c) Sobol; (d)
Random data.

P

(k) =

0

BBBB@

1 (⇠
(1)
1 � x(1)) . . . 1

k! (⇠
(d)
1 � x(d))k

1 (⇠
(1)
2 � x(1)) . . . 1

k! (⇠
(d)
2 � x(d))k

...
... . . .

...

1 (⇠
(1)
N � x(1)) . . . 1

k! (⇠
(d)
N � x(d))k

1

CCCCA
(16)

allow us to rewrite the system as

(K(k)
VP

(k))c(k) = K

(k)
Vf (17)

where f collects the function values.
The result of this formulation is no di↵erent than finding each entry individually
by means of inner-vector products (BLAS level 1) but, from a performance point
of view, computing the system matrix as in (17) should be likely more e�cient by
taking advantages from matrix-matrix products (BLAS level 3) [17].
Anyway, in order to improve the computation in the next section we introduce a
fast summation technique for the system matrix assembly.
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(a) (b)

(c) (d)

Fig. 11 Function test (4c). Comparison of MAE on the function with the standard SPH
formulation and the improved ones k=0,1,2. (a) Gridded data; (b) Halton data; (c) Sobol; (d)
Random data.

0

BBBBBBB@

A

(0)

A

(1)

. . .

A

(k)

1

CCCCCCCA

.

Fig. 12 Skeleton of the matrix associated to the (k +1)-th order of accuracy.

4.1 Fast computation via IFGT

The experiments presented in the previous section illustrate the approximation
of large data sets with the Gaussian kernel function. This function is infinitely
di↵erentiable with high order derivatives su�ciently smooth employing itself as
common element of all derivatives. The gained results are perceptible but a con-
troversial aspect concerns the computational e↵ort for the system matrix assem-
bly which makes the procedure rather expensive and not easily approachable in
the applications. The computation of summation appears as a bottleneck but a
fast technique for M simultaneously evaluation sums of N Gaussian kernel func-
tions allows to reduce the computational complexity from the standard O(MN) to
the O(M+N). To this aim the Improved Fast Gaussian Transform (IFGT) o↵ers
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advantages, for uniform and non uniform data sites locations, allowing to tune
the desidered accuracy. By opportunely combining the proposed approach with
the IFGT we considerably speed up the method at a large number of evaluation
points. A full description of the IFGT is beyond the scope of this paper and the
interested reader is directed to [35] for an expository treatment of this tool. Each
entry of the matrix A

(k) and of the known vector b(k) need a summation and can
be computed taking advantages by the IFGT with di↵erent weights depending on
the derivatives of the kernel interested. The required algebra is somewhat tedious
but straightforward and some computations can be re-used due to the Gaussian
kernel employed in the formulation of the derivatives.
In the following we provide some computational details referring - for the sake of
simplicity - to k=1 and d =2. In this case we need the six fundamental IFGTs

1IFGT :=

NX

j=1

d⌦jK(x, ⇠j ; h)

2IFGT :=

NX

j=1

(d⌦j⇠
(1)
j )K(x, ⇠j ; h)

3IFGT :=
NX

j=1

(d⌦j⇠
(2)
j )K(x, ⇠j ; h)

4IFGT :=

NX

j=1

(d⌦j⇠
(1)
j ⇠

(1)
j )K(x, ⇠j ; h)

5IFGT :=
NX

j=1

(d⌦j⇠
(1)
j ⇠

(2)
j )K(x, ⇠j ; h)

6IFGT :=

NX

j=1

(d⌦j⇠
(2)
j ⇠

(2)
j )K(x, ⇠j ; h)

these are coupled with di↵erent weights giving rise to the corrective matrix A

(1)

A
(1)
11 = 1IFGT

A
(1)
12 = 2IFGT � x

(1)
i 1IFGT

A
(1)
13 = 3IFGT � x

(2)
i 1IFGT

A
(1)
21 = 2

h2A
(1)
12

A
(1)
22 = 2

h2 [4IFGT + (x
(1)
i )

2
1IFGT + 2x

(1)
i 2IFGT ]

A
(1)
23 = 2

h2 [5IFGT � x
(2)
i f2IFGT � x

(1)
i 3IFGT � x

(1)
i x

(2)
i 1IFGT ]

A
(1)
31 = 2

h2A
(1)
13
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A
(1)
32 = 2

h2A
(1)
23

A
(1)
33 = 2

h2 [6IFGT + (x
(2)
i )

2
1IFGT � 2x

(2)
i 3IFGT ].

The Figure 13 compares the cost of direct summation versus IFGT summation and
shows the e�ciency greatly improved by making use of the IFGT. We compare
the CPU times which need to generate and to solve the linear system (12) with
or without the IFGT for k=1 with the same approximation error referring to the
test function (4a). The simulations are conducted on a computer equipped with a
processor Intel(R) Core (TM) i7-3537U CPU 2.00GHz.

Fig. 13 CPU times (s) versus N. k=1: (a) Gridded data; (b) Random data.

5 Conclusions

In this paper we present numerical investigations of an improved SPH method
based on Taylor series expansion. Dealing with the infinitely di↵erentiable and
smooth Gaussian kernel function any order of accuracy can be provided in ap-
proximating a function and its derivatives. We give evidence of the accuracy, con-
vergency and computational demanding. Many experiments are conducted with
the aim to address the basic features of the method accomplished with various data
sets referring to bivariate test functions. By combining the proposed approach with
the improved fast gaussian transform to assembly the system matrices we consid-
erably speed up the method at a large number of evaluation points. Satisfactory
results and computational advantages with uniform and non uniform large data
sets encourage to proceed in the approximation of any accuracy order of a function
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and its derivatives with the combined methodology.
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