
 1 

Direction curves of tangent indicatrix of a curve 
 

Burak Şahiner 

 
Manisa Celal Bayar University, Faculty of Arts and Sciences, Department of Mathematics, 

45140 Manisa, Turkey.  
E-mail: burak.sahiner@cbu.edu.tr 

 
 

Abstract 
In this paper, we define some new associated curves as integral curves of a vector field 
generated by Frenet vectors of tangent indicatrix of a curve in Euclidean 3-space. We give some 
relationships between curvatures of these curves. By using these associated curves, we give 
some methods to construct helices and slant helices from some special spherical curves such as 
circles on unit sphere, spherical helices, and spherical slant helices. Finally, we give some 
related examples.  
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1. Introduction 
 
The study of curves has wide range applications in many areas. While helix curves arise in 
DNA double, nanosprings, and carbon nanotubes, Bezier curves are used in computer aided 
geometric design. The computation of curves on manifolds also finds applications in some other 
fields (for details, see (Eisenhart 1940; Do Carmo, 1976; Struik, 1988; Allasia et al., 2018)). 
One of the interesting topics in the theory of curves is associated curves. Two or more curves 
are called associated curves if there is some mathematical relationship between them. Despite 
being studied for many years, the topic of associated curves is still one of the most interesting 
research areas in the theory of curves. Some important characterizations and some intrinsic 
properties such as Frenet vectors and curvatures of a curve can be found by using its associated 
curve. Involute-evolute curve couples, Bertrand curves, and Mannheim partner curves are some 
well-known associated curves.  
 Recently, Choi and Kim (2012) defined a new type of associated curves called direction 
curve as an integral curve of a vector field generated by Frenet vectors of a given curve. Then, 
they found some relations between curvatures of these associated curves. Moreover, they gave 
a canonical method to construct general helices and slant helices by using these curves. After 
the paper of Choi and Kim (2012), many authors have taken interest in the study of this new 
type of associated curve. Choi et al. (2012), and Qian and Kim (2015) studied direction curves 
in Minkowski space 3

1E . Körpınar et al. (2013) studied direction curves by using Bishop frame 
instead of Frenet frame in their work. Macit and Düldül (2014) defined W -direction curve by 
using unit Darboux vector field W  of a given curve and introduced V -direction curve of a 
given curve on a surface by using Darboux frame. They also examined direction curve of a 
given curve in four-dimensional Euclidean space. Kızıltuğ and Önder (2015) gave general 
definition of direction curves in a three-dimensional compact Lie group.  
 In this paper, we first define X -direction curve as an integral curve of unit vector field X  
generated by Frenet vectors of tangent indicatrix of a given curve. By using this definition, we 
define evolute-direction curves, Bertrand-direction curves, and Mannheim-direction curves of 
tangent indicatrix of the given curve. For each one of all these direction curves, we find some 
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relations between Frenet vectors and curvatures. Moreover, we give some methods to construct 
helices and slant helices from some special spherical curves which are circles on unit sphere, 
spherical helices, and spherical slant helices. Finally, we give some examples of these 
associated curves. 
 
2. Preliminaries 
 
In this section, we give some basic concepts of a curve in Euclidean 3-space, tangent indicatrix, 
general helix, slant helix, and some associated curves. 
  Let 3: I IR IRα ⊂ →  be a unit speed curve in Euclidean 3-space. Three orthonormal 
vectors of Frenet frame { , , }T N B  along the curve α  can be defined as follows 

  dT
ds
α

= , (1/ )N Tκ ′= , B T N= × ,  

where T  is unit tangent vector field, N  is unit principal normal vector field, B  is unit binormal 
vector field, Tκ ′=  is called curvature which measures the amount of deviation of the curve 
from the tangent line, s  is the arc-length parameter of α . The Frenet derivative formulas can 
also be given in matrix form as 

0 0
0

0 0

T T
d N N
ds

B B

κ
κ τ

τ

     
     = −     
     −     

,                              

where ,B Nτ ′= −  is called torsion which measures the amount of deviation of the curve from 
the osculating plane spanned by the vectors T  and N  (Do Carmo, 1976; O’Neill, 2006).  
 A curve α  is called helix or general helix if its unit tangent vector field ( )T s  makes a 
constant angle with a fixed straight line. α  is a general helix if and only if  

  ( ) ( )f s sτ
κ

=             (2.1) 

is a constant function (Struik, 1988).  
 Similarly, a curve α  is called slant helix if its unit principal normal vector field ( )N s  makes 
a constant angle with a fixed straight line. α  is a slant helix if and only if  

  
2

2 2 3 2( ) ( )
( )

s sκ τσ
κ τ κ

′ =  +  
          (2.2) 

is a constant function (Izumiya and Takeuchi, 2002). 
 Let 3: I IR IRα ⊂ →  and 3: I IR IRβ ⊂ →  be two curves in Euclidean 3-space with Frenet 
frames { , , }T N Bα α α  and { , , }T N Bβ β β , respectively. β  is called evolute (resp., Bertrand mate, 
Mannheim partner) curve of α  if and only if N Tβ α=  (resp., N Nβ α= , N Bβ α= ) (Eisenhart, 
1940; Wang and Liu, 2007). 
 Let 3: I IR IRα ⊂ →  be unit speed curve in Euclidean 3-space with Frenet frame apparatus 
{ , , , , }T N B κ τ . The unit tangent vectors along the curve ( )sα  generate a curve T Tα =  on the 
unit sphere about the origin. The curve Tα  is called tangent indicatrix of the curve α . If the 
Frenet frame apparatus of Tα  is { , , , , }T T T T TT N B κ τ , then the Frenet derivative formulas of Tα  
can be given as follows 



 3 

  
0 0

0
0 0

T T T

T T T T
T

T T T

T T
d N N

ds
B B

κ
κ τ

τ

     
     = −     
     −     

,         (2.3) 

where 

  
2 2

, ,
1 1

T T T
T f B fT BT N N B

f f
− + +

= = =
+ +

,  

and 
  2 2( ) , 1 , 1T T Ts s ds f fκ κ τ σ= = + = +∫ , 

where Ts  is natural representation of the tangent indicatrix Tα  of the curve α , f  and σ  are 
functions given by equations (2.1) and (2.2), respectively (Ali, 2012). 
 
3. Direction curves of tangent indicatrix 
 
Let 3: I IR Eα ⊂ →  be a curve in Euclidean 3-space with Frenet apparatus { , , , , }T N B κ τ  and 

Tα  be tangent indicatrix of α  with Frenet apparatus { , , , , }T T T T TT N B κ τ . Consider a vector 
field X  expressed by 

( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T T T T T T TX s x s T s y s N s z s B s= + + ,                                  (3.1) 
where x , y  and z  are real functions of Ts  which is natural representation of the tangent 
indicatrix of the curve α . If we assume that the vector field X  is unit, we get  

2 2 2( ) ( ) ( ) 1T T Tx s y s z s+ + = .                                                                          (3.2) 
By differentiating equation (3.2), we have 

( ) ( ) ( ) ( ) ( ) ( ) 0T T T T T Tx s x s y s y s z s z s′ ′ ′+ + = .         (3.3) 
Now we can give the definition of X -direction curve of tangent indicatrix of a curve as follows. 
 
Definition 3.1. Let α  be a curve in Euclidean 3-space, Tα  be tangent indicatrix of the curve 
α , and X  be a unit vector field satisfying the equations (3.1) and (3.2). The integral curve 

3: I IR IRβ ⊂ →  of X  is called X -direction curve of Tα  or X -direction curve of tangent 
indicatrix of α . Tα  is also called X -donor curve of β . 
 
 Let β  be X -direction curve of the tangent indicatrix Tα  of the curve α  with Frenet frame 

{ , , }T N Bβ β β  and curvatures { , }β βκ τ . Since the vector field X  is unit and d T X
ds β

β

β
= = , the 

arc-length parameter sβ  of β  equals to Ts c+ , where c  is a constant real number. Without 
loss of generality, we assume that Ts sβ = . By differentiating equation (3.1) and using the Frenet 
formulae in Equation (2.3), we have 
  ( ) ( ) ( )T T T T T T TN x y T y x z N z y Bβ βκ κ κ τ τ′ ′ ′= − + + − + + .     (3.4) 
By using equality (3.4), we can give definitions of evolute-direction, Bertrand-direction, and 
Mannheim-direction curves of the tangent indicatrix Tα , and study some properties of these 
curves. 
 
4. Evolute-direction curves of tangent indicatrix 
 In this section, we define evolute-direction curves of tangent indicatrix of a curve and obtain 
some relations between these curves. 
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Definition 4.1. Let α  be a curve in Euclidean 3-space, Tα  be tangent indicatrix of α , and β  
be X -direction curve of Tα . If β  is an evolute of Tα , then β  is called evolute-direction curve 
of Tα . Tα  is also called involute-donor curve of β . 
 
Proposition 4.2. Let α  be a curve in Euclidean 3-space and Tα  be tangent indicatrix of α . β  
is evolute-direction curve of Tα  if and only if the functions in (3.1) are as follows 

( ) 0Tx s = ,  ( )( ) sin ( )T T T Ty s s dsτ= ∫ , ( )( ) cos ( )T T T Tz s s dsτ= ∫ .                                         

Proof. From the definition of evolute curves, we know that TN Tβ = . By using equality (3.4), 
we have the following system of differential equations 

  0
0

T

T T

T

x y
y x z
z y

βκ κ

κ τ
τ

′ − = 
′ + − = 
′ + = 

              (4.1) 

Multiplying the first, second and third equations in (4.1) with x , y  and z , respectively, adding 
the results, and using equation (3.3), we obtain 0x = . By substituting 0x =  into system (4.1), 
the solution is found as follows 

( ) ( ){ }( ) 0 ( ) sin (,  ) ( ) c, os ( )T T T T T T T T Tx s y s s ds z s s dsτ τ= = =∫ ∫ .  

 
From Proposition 4.2, we have a method to construct a unit speed evolute curve from a unit 
spherical curve. This construction can be achieved just by using the Frenet vectors ,T TN B  and 
the torsion Tτ  of a unit spherical curve Tα  which is tangent indicatrix of a curve α .  
 Now we can give the following relationships between curvatures of the tangent indicatrix 

Tα  of the curve α  and its evolute-direction curve β .  
 
Theorem 4.3. Let α  be a curve in Euclidean 3-space, Tα  be tangent indicatrix of α , and β  
be evolute-direction curve of Tα . The relations between curvatures of the curves Tα  and β  
can be given as follows  
  ( )sin ( )T T T Ts dsβκ κ τ= − ∫  ,  ( )cos ( )T T T Ts dsβτ κ τ= ∫        

and 

  2 2
T β βκ κ τ= +  , 

2

2 2T
β β

β β β

κ τ
τ

κ τ κ

′ 
=   +  

.      

 
Proof. From the first equation of system (4.1), we can see that ( )sin ( )T T T Ts dsβκ κ τ= − ∫ . From 

Proposition (4.2), we find ( ) ( )sin ( ) cos ( )T T T T T T T TX T s ds N s ds Bβ τ τ= = +∫ ∫ , and from the 

definition of evolute curves, we have TN Tβ = . The unit binormal vector Bβ  of the evolute-

direction curve β  can be found as ( ) ( )cos ( ) sin ( )T T T T T T T TB T N s ds N s ds Bβ β β τ τ= × = −∫ ∫ . 

By differentiating unit binormal vector Bβ  and using the third equality of (2.3), we get 

( )cos ( )T T T Ts dsβτ κ τ= ∫ . 
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 On the other hand, by differentiating the equality TN Tβ =  and using (2.3), we get 

2 2
T β βκ κ τ= + . By using the curvatures of the curve β , we have ( )cot T Tdsβ

β

τ
τ

κ
= − ∫ , and 

so arccotT Tds β

β

τ
τ

κ
 

= −   
 

∫ . By differentiating the last equality, we get 
2

2 2T
β β

β β β

κ τ
τ

κ τ κ

′ 
=   +  

. 

   
 
From Theorem 4.3, we have the following corollary. 
 
Corollary 4.4. Let α  be a curve in Euclidean 3-space, Tα  be tangent indicatrix of α , and β  
be evolute-direction curve of Tα . The following relations between curvatures of the curves Tα  
and β  are satisfied 

  ( )cot T Tdsβ

β

τ
τ

κ
= ∫   and  

( )
2

3/22 2

T

T

β β

ββ β

κ ττ
κ κκ τ

′ 
=   +  

. 

 
From Corollary 4.4, we can give the following theorem without any proof.  
 
Theorem 4.5. Let α  be a curve in Euclidean 3-space, Tα  be tangent indicatrix of α , and β  
be evolute-direction curve of Tα . Then 
i) Tα  is a circle or a part of circle on unit sphere if and only if β  is a helix. 
ii) Tα  is a spherical helix if and only if β  is a slant helix. 
 
 Theorem 4.5 gives a method to construct a helix and a slant helix from a circle or a part of 
circle on unit sphere and a spherical helix, respectively.  
 Now, by using relations between curvatures of the curve α  and its tangent indicatrix Tα , 
we can give the following relations between curvatures of the curve α  and evolute-direction 
curve β  of Tα . 
 
Corollary 4.6. Let α  be a curve in Euclidean 3-space with nonzero curvature, Tα  be tangent 
indicatrix of α , and β  be evolute-direction curve of Tα . The following relations between 
curvatures of the curves α  and β  are satisfied 

   
( )

23

3/22 2
cot 1 dsβ

β

τ κ τ τ
κ κ κκ τ

 ′    = +       + 
∫    and   

( ) ( )
2 2

3/2 3/22 2 2 2

β β

ββ β

κ τ κ τ
κ κκ τ κ τ

′ ′   =      + + 
. 

 
From Corollary 4.6, we can give the following theorem without any proof.  
 
Theorem 4.7. Let α  be a curve in Euclidean 3-space nonzero curvature, Tα  be tangent 
indicatrix of α , and β  be evolute-direction curve of Tα . Then 
i) α  is a helix if and only if β  is a helix. 
ii) α  is a slant helix if and only if β  is a slant helix. 
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5. Bertrand-direction curves of tangent indicatrix 
 In this section, we define Bertrand-direction curves of tangent indicatrix and obtain some 
relations between these curves. 
 
Definition 5.1. Let α  be a curve in Euclidean 3-space, Tα  be tangent indicatrix of α , and β  
be X -direction curve of Tα . If β  is a Bertrand curve of Tα , then β  is called Bertrand-
direction curve of Tα . Tα  is also called Bertrand-donor curve of β . 
 
Proposition 5.2. Let α  be a curve in Euclidean 3-space and Tα  be tangent indicatrix of α . β  
is Bertrand-direction curve of Tα  if and only if the functions in (3.1) are as follows 

( ) cosTx s θ= ,  ( ) 0Ty s = , ( ) sinTz s θ= , 
where θ  is a constant angle.                
Proof. From the definition of Bertrand curves, we know that TN Nβ = .  By using equality (3.4), 
we have the following system of differential equations 

  
0

0

T

T T

T

x y
y x z
z y

β

κ
κ τ κ

τ

′ − =
′ + − = 
′ + = 

              (5.1) 

Multiplying the first, second and third equations in (5.1) with x , y  and z , respectively, adding 
the results, and using equation (3.3), we find 0y = . By substituting 0y =  into system (5.1), we 
get 1x c=  and 2z c= , where 1c  and 2c  are constant real numbers. Since X  is unit, we can give 
the solution of system (5.1) as follows 

{ }( ) cos , ( ) 0, ( ) sinT T Tx s y s z sθ θ= = = , 
where θ  is the constant angle between unit tangent vectors of the curves Tα  and β .    
 
From Proposition 5.2, we have a method to construct a unit speed Bertrand curve from a unit 
spherical curve. Moreover, this construction can be achieved just by using Frenet vectors ,T TT B  
of tangent indicatrix curve Tα  of a given curve α , and a constant angle θ  which is the angle 
between unit tangent vectors of the curves Tα  and β .  
 Now we can give the following relationships between curvatures of the curve Tα  and its 
Bertrand-direction curve β .  
 
Theorem 5.3. Let α  be a curve in Euclidean 3-space, Tα  be tangent indicatrix of α , and β  
be Bertrand-direction curve of Tα . The relations between curvatures of the tangent indicatrix 
curve Tα  and its Bertrand-direction curve β  can be given as follows  
  cos sinT Tβκ κ θ τ θ= −  ,  sin cosT Tβτ κ θ τ θ= +            
and 
  cos sinT β βκ κ θ τ θ= +  ,  sin cosT β βτ κ θ τ θ= − + . 
Proof. From the second equation of system (5.1), we can see that cos sinT Tβκ κ θ τ θ= − . From 
Proposition (5.2), we find cos sinT TX T T Bβ θ θ= = + , and from the definition of Bertrand 
curves, we have TN Nβ = . Thus, the unit binormal vector Bβ  of β  can be found as 
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sin cosT TB T N T Bβ β β θ θ= × = − + . By differentiating unit binormal vector and using the third 
equality of (2.3), we find the torsion of β  as sin cosT Tβτ κ θ τ θ= + . 
 On the other hand, the curvatures of the tangent indicatrix curve Tα  can easily be found by 
using the curvatures of the Bertrand-direction curve β .    
 
From Theorem 5.3, we have the following corollary. 
 
Corollary 5.4. Let α  be a curve in Euclidean 3-space, Tα  be tangent indicatrix of α , and β  
be Bertrand-direction curve of Tα . Then, the following relations between curvatures of the 
curves Tα  and β  are satisfied 

i) 
sin cos

cos sin

T

T

β

β

β

β

τ
θ θ

κτ
τκ θ θ
κ

− +
=

+
, 

ii) 
( ) ( )

22

3/2 3/22 2 2 2

T T

TT T

β β

ββ β

κ τκ τ
κ κκ τ κ τ

′′   
=      + +  

. 

 
From Corollary 5.4, we can give the following theorem without any proof. 
 
Theorem 5.5. Let α  be a curve in Euclidean 3-space, Tα  be tangent indicatrix of α , and β  
be Bertrand-direction curve of Tα . Then 
i) Tα  is a spherical helix if and only if β  is a helix. 
ii) Tα  is a spherical slant helix if and only if β  is a slant helix. 
 
 Theorem 5.5 gives a method to construct a helix and a slant helix from a spherical helix and 
a spherical slant helix, respectively. 
 Now, by using relations between curvatures of the curve α  and its tangent indicatrix Tα , 
we can give relations between curvatures of the curve α  and Bertrand-direction curve β  of 
tangent indicatrix Tα . 
 
Corollary 5.6. Let α  be a curve in Euclidean 3-space with nonzero curvature, Tα  be tangent 
indicatrix of α , and β  be Bertrand-direction curve of Tα . The following relation between 
curvatures of the curves α  and β  is satisfied 

  
( )
( ) ( )

2

3/22 2

cos sin

sin cos
β β

β β

θ τ κ θ κ τ
κθ τ κ θ κ τ

′+  =  − +  +
. 

 
From Corollary 5.6, we can give the following theorem without any proof.  
 
Theorem 5.7. Let α  be a curve in Euclidean 3-space with nonzero curvature, Tα  be tangent 
indicatrix of α , and β  be Bertrand-direction curve of Tα . Then α  is a slant helix if and only 
if β  is a helix. 
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6. Mannheim-direction curves of tangent indicatrix 
 In this section, we define Mannheim-direction curves of tangent indicatrix of a curve and 
obtain some relations between these curves. 
 
Definition 6.1. Let α  be a curve in Euclidean 3-space, Tα  be tangent indicatrix of α , and β  
be X -direction curve of Tα . If β  is a Mannheim curve of Tα , then β  is called Mannheim-
direction curve of Tα . Tα  is also called Mannheim-donor curve of β . 
 
Proposition 6.2. Let α  be a curve in Euclidean 3-space and Tα  be tangent indicatrix of α . β  
is Mannheim-direction curve of Tα  if and only if the functions in (3.1) are as follows 

( )( ) sinT T Tx s dsκ= ∫ ,  ( )( ) cosT T Ty s dsκ= ∫ , ( ) 0Tz s = .                                         

Proof. From the definition of Mannheim curves, we know that TN Bβ = .  By using equality 
(3.4), we have the following system of differential equations 

  
0

0
T

T T

T

x y
y x z
z y β

κ
κ τ
τ κ

′ − =
′ + − = 
′ + = 

              (6.1) 

Multiplying the first, second and third equations in (6.1) with x , y  and z , respectively, adding 
the results, and using equation (3.3), we find 0z = . By substituting 0z =  into system (6.1), the 
solution can be obtained as follows 

( ) ( ){ }( ) sin , ( ) cos , ( ) 0T T T T T T Tx s ds y s ds z sκ κ= = =∫ ∫ .    

 
From Proposition 6.2, we have a method to construct a unit speed Mannheim curve from a unit 
spherical curve. Moreover, this construction can be achieved just by using unit Frenet vectors 

TT  and TN , and curvature Tκ  of tangent indicatrix curve Tα  of a given curve α .  
 Now we can give the following relationships between curvatures of the curve Tα  and its 
Mannheim-direction curve β .  
 
Theorem 6.3. Let α  be a curve in Euclidean 3-space, Tα  be tangent indicatrix of α , and β  
be Mannheim-direction curve of Tα . The relations between curvatures of the tangent indicatrix 
curve Tα  and its Mannheim-direction curve β  can be given as follows 

  ( )cosT T Tdsβκ τ κ= ∫  ,  ( )sinT T Tdsβτ τ κ= ∫             

and 

  
2

2 2T
β β

β β β

κ τ
κ

κ τ κ

′ 
=   +  

,  2 2
T β βτ κ τ= + . 

Proof. From the third equation of system (6.1), we can easily see that ( )cosT T Tdsβκ τ κ= ∫ . 

From Proposition (6.2), we find ( ) ( )sin cosT T T T T TX T ds T ds Nβ κ κ= = +∫ ∫ , and from the 

definition of Mannheim curves, we have TN Bβ = . The unit binormal vector Bβ  of the curve 

β  can be found as ( ) ( )cos sinT T T T T TB T N ds T ds Nβ β β κ κ= × = −∫ ∫ . By differentiating unit 

binormal vector and using the third equality of (2.3), we get ( )sinT T Tdsβτ τ κ= ∫ . 
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 On the other hand, by a simple computation with curvatures in Theorem 6.3, we can see the 
torsion of Mannheim-donor curve Tα  as 2 2

T β βτ κ τ= + . Moreover, from Theorem 6.3, we 

have ( )tan T Tdsβ

β

τ
κ

κ
= ∫ , and so arctanT Tds β

β

τ
κ

κ
 

=   
 

∫ . By differentiating the last equality, we 

get 
2

2 2T
β β

β β β

κ τ
κ

κ τ κ

′ 
=   +  

.    

 
From Theorem 6.3, we have the following corollary. 
 
Corollary 6.4. Let α  be a curve in Euclidean 3-space, Tα  be tangent indicatrix of α , and β  
be Mannheim-direction curve of Tα . Then the following relation between curvatures of the 
curves Tα  and β  is satisfied 

  

( )
2

3/22 2

1T

T
β β

ββ β

τ
κ κ τ

κκ τ

=
′ 

  +  

  . 

 
From Theorem 6.3 and Corollary 6.4, we can give the following theorem without any proof. 
 
Theorem 6.5 Let α  be a curve in Euclidean 3-space, Tα  be tangent indicatrix of α , and β  be 
Mannheim-direction curve of Tα . Then 
i) Tα  is a spherical helix if and only if β  is a slant helix. 
ii) Tα  is a circle or a part of circle on unit sphere if and only if β  is a straight line. 
 
 Theorem 6.5 (i) gives a method to construct a slant helix from a spherical helix. 
  Now, by using relations between curvatures of the curve α  and its tangent indicatrix Tα , 
we can give the following relations between curvatures of the curve α  and Mannheim-direction 
curve β  of the tangent indicatrix Tα  of α . 
 
Corollary 6.6. Let α  be a curve in Euclidean 3-space, Tα  be tangent indicatrix of α , and β  
be Mannheim-direction curve of Tα . The following relations between curvatures of the curves 
α  and β  are satisfied 

  ( )2 2tan dsβ

β

τ
κ τ

κ
= +∫   and  

( )
( )

2

3/22 2 2

3/22 2

1β β

ββ β

κ τ
κκ τ κ τ

κκ τ

′ 
=   ′+    

 
 +

 . 

 
From Corollary 6.6, we can give the following theorem without any proof.  
 
Theorem 6.7. Let α  be a curve in Euclidean 3-space, Tα  be tangent indicatrix of α , and β  
be Mannheim-direction curve of Tα . Then 
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i) α  is a straight line if and only if β  is a helix. 
ii) α  is a slant helix if and only if β  is a slant helix. 
 
7. Examples 
In this section, we give two examples of direction curves of tangent indicatrices. In both 
examples, we find evolute-direction, Bertrand-direction, and Mannheim-direction curves of 
tangent indicatrix of a given curve and illustrate these curves by using the program Wolfram 
Mathematica 9.0. 
 
Example 7.1. Let consider a space curve given by the parametrization 

( ) cos , sin ,
2 2 2

s s ssα  =  
 

, where s  is the arc-length parameter of α . The tangent 

indicatrix of the curve α  can be found as ( ) ( )1 1 1( ) sin 2 , cos 2 ,
2 2 2T T T Ts s sα  = − 

 
, 

where Ts  is the arc-length parameter of the tangent indicatrix curve Tα . The evolute-direction, 
Bertrand-direction, and Mannheim-direction curves of the tangent indicatrix curve Tα  are 
obtained, respectively, as follows 

( ) ( )1 1 1 2 1 3
1 1( ) sin cos 2 , sin sin 2 , cos
2 2E T T T Ts s c s c s cβ θ θ θ = − + − + + 

 
 , 

( ) ( )4 5 6
1 1( ) cos sin 2 , cos cos 2 , sin
2 2B T T Ts s c s c s cβ θ θ θ = − + + + 

 
, 

( )2 7 2 8 9( ) sin , cos ,M T Ts s c s c cβ θ θ= − + − + , 
where 1 2, , , ( 1,...,9)ic iθ θ =  are real integration constants and θ  is a real constant angle. By 
taking 1 2 4θ θ π= = , 0, ( 1,...,9)ic i= =  and 3θ π= , we can illustrate the curve α , the 
tangent indicatrix curve Tα , and evolute-direction, Bertrand direction, and Mannheim-direction 
curves of the curve Tα  in Figures 1, 2, 3, 4, 5, respectively.  
 

 
 

Figure 1 Given curve α  
 

 
 

Figure 2 Tangent indicatrix of the curveα  
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Figure 3 Evolute-direction curve of the tangent  
Indicatrix 

 
 

Figure 4 Bertrand-direction curve of the tangent 
indicatrix 

 
 

Figure 5 Mannheim-direction curve of the tangent indicatrix 
 
Example 7.2. Let consider a space curve given by the parametrization 

( ) ( ) ( ) ( )3 3 1( ) sin 2 cos 2sin cos 2 , cos 2 cos 2sin sin 2 , cos
2 2 2

t t t t t t t t t tα  = − + − 
 

. 

The tangent indicatrix of the curve α  can be found as  

( ) ( ) ( ) ( )1 1 1( ) cos 2 cos sin 2 sin , sin 2 cos cos 2 sin , sin
2 2 2

t t t t t t t t t tα  = + − + 
 

. 

The evolute-direction, Bertrand-direction, and Mannheim-direction curves of the tangent 
indicatrix curve Tα  can be found as 
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( ) ( ) ( ) ( )(
( ) ( )( ) ( ) ( )( ))

( ) ( ) ( ) ( )(
( ) ( )( ) ( ) ( )( ))

( ) ( )( )

1 1

1 1 1

1 1

1 1 2

1 1 3

1( ) 1 2 cos 2 1 2 cos 2
8

3 2 2 cos 2 2 3 2 2 cos 2 2 ,

1 1 2 sin 2 1 2 sin 2
8

3 2 2 sin 2 2 3 2 2 sin 2 2 ,

1 2 cos sin 2 ,
4 2

E t t t

t t c

t t

t t c

t t c

β θ θ

θ θ

θ θ

θ θ

θ θ

= − − + − + + +


− + + − + + − + − + +

− − + − − + +

+ + + − + + − + − + +

− + − + 


  

( ) ( )( )( )

( ) ( )( )( )

( )

4

5

6

1( ) 2cos cos 2 2 sin sin 2 cos sin ,
2
1 2 cos 2 sin 2cos sin 2 cos sin ,
2
1 sin cos sin ,
2

B t t t t t c

t t t t c

t c

β θ θ

θ θ

θ θ

= + + +


− + +

− + 


  

( ) ( ) ( ) ( )(
( ) ( )( ) ( ) ( )( ))

( ) ( ) ( ) ( )(
( ) ( )( ) ( ) ( )( ))

( ) ( )( )

2 2

2 2 7

2 2

2 2 8

2 2 9

1( ) 1 2 sin 2 1 2 sin 2
8

3 2 2 sin 2 2 3 2 2 sin 2 2 ,

1 1 2 cos 2 1 2 cos 2
8

3 2 2 cos 2 2 3 2 2 cos 2 2 ,

1 cos 2 2 sin ,
4 2

M t t t

t t c

t t

t t c

t t c

β θ θ

θ θ

θ θ

θ θ

θ θ

= + − − − + +


− + + − + − + + + +

− + − − − + +

+ + + − + − + + + +

− + − + 


 

respectively, where , ( 1,...,9)ic i =  and 1 2,θ θ  are real integration constants and θ  is a real 
constant angle. By taking 0, ( 1,...,9)ic i= = , / 3θ π= , 1 / 3θ π= , 2 0θ = , we can illustrate the 
curve α , the tangent indicatrix curve Tα  of α , and its evolute-direction, Bertrand direction, 
and Mannheim-direction curves in Figures 6, 7, 8, 9, 10, respectively. 
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Figure 6 Given curve α  
 

 
 

Figure 7 Tangent indicatrix of the curve α  
 

 

 
 

Figure 8 Evolute-direction curve of the tangent 
indicatrix 

 
 

Figure 9 Bertrand-direction curve of the tangent 
indicatrix
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Figure 10 Mannheim-direction curve of the tangent indicatrix 
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