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Abstract

In this paper, we consider inverse problems of finding the time-dependent source function for
the population model with population density nonlocal boundary conditions and an integral
over-determination measurement. These problems arise in mathematical biology and have
never been investigated in the literature in the forms proposed, although related studies do
exist. The unique solvability of the inverse problems are rigorously proved using generalized
Fourier series and the theory of Volterra integral equations. Continuous dependence on
smooth input data also holds but, as in reality noisy errors are random and non-smooth, the
inverse problems are still practically ill-posed. The degree of ill-posedness is characterised
by the numerical differentiation of a noisy function. In the numerical process, the boundary
element method together with either a smoothing spline regularization or the first-order
Tikhonov regularization are employed with various choices of regularization parameter. One
is based on the discrepancy principle and another one is the generalized cross-validation
criterion. Numerical results for some benchmark test examples are presented and discussed
in order to illustrate the accuracy and stability of the numerical inversion.

Keywords and phrases. Inverse source problem, Population age model, Nonlocal boundary con-
ditions, Generalized Fourier method, Boundary element method, Regularization.

1 Introduction

Time-dependent coefficient identification problems for parabolic equations have been the point
of interest for many studies, including the excellent monograph [11] and the book [16]. The time-
dependent coefficient can be a free term, as in a linear inverse source problem, [4], or multiplying
the dependent variable, as in a quasi-linear perfusion coefficient identification problem, [18].
The boundary conditions are usually of Dirichlet, Neumann or Robin type but, more recently,
nonlocal boundary conditions arising in population age models have also been considered, [5,
6, 7]. Also, additional measurements which are sufficient to render a unique solution have
been of various types, e.g. internal pointwise, boundary, integral or boundary integral, [16]. In
comparison with previous related studies, [4, 6, 7, 9, 10, 12], in the current investigation, the
birth rate in the population age model [15] is an arbitrary constant and the boundary conditions
and the additional observation are both nonlocal and integral, respectively. One interesting point
to remark is that in the case of arbitrary birth rate, the algebraic multiplicity of the auxiliary
spectral problem is, in general, equal to 2 and this leads to a different treatment of generalized
Fourier series analysis.

In Section 2, we formulate two new inverse time-dependent coefficient identification problems
for the heat equation with nonlocal boundary conditions and integral observation. Based on
rigorous proofs, their unique solvability are established in Section 3 and furthermore, continuous
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dependences on smooth input data are derived. In order to add significance to our study, we
allow for random errors to be considered in order to model the inherent noise present in any
practical measurement. The price to pay is that the problem becomes ill-posed in the sense that
any such small error in the measurement lead to highly oscillatory and unbounded errors in the
output source. In order to deal with such instability regularization needs to be imposed. The
boundary element method (BEM) for the numerical discretization is introduced in Section 4.
Numerical results are presented and discussed in Section 5 and finally, conclusions are highlighted
in Section 6.

2 Mathematical formulation

Given T > 0 an arbitrary fixed time of interest, consider the one-dimensional time-dependent
parabolic heat equation

ut(x, t) = uxx(x, t) + F (x, t, u), (x, t) ∈ ΩT = (0, 1) × (0, T ], (2.1)

subject to the initial condition

u(x, 0) = ϕ(x), x ∈ [0, 1], (2.2)

and the nonlocal boundary conditions

u(0, t) + bu(1, t) = 0, t ∈ [0, T ], (2.3)

ux(0, t) + ux(1, t) = 0, t ∈ [0, T ], (2.4)

where ϕ is a given function and b is a given number with b 6= ±1. Such boundary conditions
arise in population age models of [15] with b representing the birth rate. More general boundary
conditions of the type (2.3) and (2.4) have been considered in [6, 10]. Our goal is to determine
the source term F in two cases, together with u(x, t) under the additional integral measurement:

∫ 1

0
u(x, t) dx = E(t), t ∈ [0, T ], (2.5)

which represents the density of population between the ages from 0 to 1 at the moment of time
t. In other diffusion applications, condition (2.5) refers to the specification of mass [2]. Related
inverse problems with b = −1 and (2.4) replaced by the convection boundary condition

ux(0, t) + αu(0, t) = 0, t ∈ [0, T ], (2.6)

where α is a Robin convection coefficient, have been considered elsewhere, [4, 7, 9, 12].
When the function F is given, the problem of finding u(x, t) from the initial boundary

value problem (2.1)–(2.4) is called the direct problem. The inverse problem (2.1)–(2.5) is
formulated when the function F is unknown. The following two inverse problems will be studied.

The first inverse problem (IP1)

If we take the unknown function F to be F (x, t, u) = P (t)u(x, t) + f(x, t), the inverse problem
is formulated as the problem of finding the pair (P (t), u(x, t)). Then, equation (2.1) becomes

ut(x, t) = uxx(x, t) + P (t)u(x, t) + f(x, t), (2.7)

where f(x, t) is a given function and P (t) is an unknown function. Consider the following
transformation [1]:

v(x, t) = r(t)u(x, t), r(t) = exp

(

−
∫ t

0
P (τ) dτ

)

. (2.8)
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Then, the inverse problem (2.2)–(2.7) transforms as

vt = vxx + r(t)f(x, t), (x, t) ∈ ΩT , (2.9)

v(x, 0) = ϕ(x), x ∈ [0, t], (2.10)

v(0, t) + bv(1, t) = 0, t ∈ [0, T ], (2.11)

vx(0, t) + vx(1, t) = 0, t ∈ [0, T ], (2.12)
∫ 1

0
v(x, t)dx = E(t)r(t), t ∈ [0, T ], (2.13)

where r(0) = 1, r(t) > 0 for t ∈ [0, T ]. Solving the inverse problem (2.9)–(2.13) for the solution
pair (r(t), v(x, t)) yields afterwards the original solution (P (t), u(x, t)) for the inverse problem
(2.2)–(2.7) from

P (t) = −r′(t)

r(t)
and u(x, t) =

v(x, t)

r(t)
. (2.14)

The second inverse problem (IP2)

If we take the unknown function F to be F (x, t, u) = R(t)f(x, t), the inverse problem is formu-
lated as the problem of finding the pair (R(t), u(x, t)) satisfying (2.2)–(2.5) and

ut(x, t) = uxx(x, t) + R(t)f(x, t), (2.15)

where f(x, t) is a given function and R(t) is an unknown function. One can observe that the
difference between IP1 given by (2.9)–(2.13) and IP2 given by (2.2)–(2.5) and (2.15), is in the
different form of (2.5) compared to (2.13).

3 Mathematical analysis

In this section the eigenvalues, eigenfunctions and associated functions of the auxiliary spectral
problem and some of their properties are introduced. The existence and uniqueness of the
solution of inverse problem (2.2)–(2.5), (2.7) (IP1) and inverse problem (2.2)–(2.5), (2.15) (IP2)
are proved. The continuous dependence upon the data of the solutions of IP1 and IP2 are also
shown.

3.1 The auxiliary spectral problem

Consider the differential operator Lb generated by the differential expression l(y) = −y′′ and
boundary conditions

y(0) + by(1) = 0, y′(0) + y′(1) = 0, (3.1)

where b is arbitrary fixed real number.
In the case b = −1, the boundary conditions (3.1) are not regular whilst in the case b 6= −1,

they are regular but not strongly regular [14]. Also, in the case b = 1 these boundary conditions
are anti-periodic (self-adjoint). In what follows, we consider the boundary conditions (3.1) with
b 6= ±1.

It is well-known that each eigenvalue of operator Lb with b 6= ±1 is of algebraic multiplicity
two with one eigenfunction and one associated function corresponding to each eigenvalue.

Let the eigenvalue of operator Lb with b 6= ±1 be denoted by λn, n = 1, 2, . . . and the
corresponding eigenfunctions and associated functions be denoted by y2n−1 and y2n, respectively.
It is easy to show that

λn = ((2n − 1)π)2, y2n−1(x) = sin(
√

λnx), y2n(x) =
b − (b − 1)x

2
√

λn(b − 1)
cos(

√

λnx), (3.2)

3



for n = 1, 2, . . . , such that Lb(y2n−1) = λny2n−1 and Lb(y2n) − λny2n = y2n−1.
The adjoint differential operator L∗

b is generated by the differential expression l∗(z) = −z′′

and boundary conditions

z(0) + z(1) = 0, bz′(0) + z′(1) = 0. (3.3)

The bi-orthogonal system {zn(x)}∞n=1 to the system {yn(x)}∞n=1 in the space L2[0, 1] is the
system of eigenfunctions {z2n(x)}∞n=1 and associated functions {z2n−1(x)}∞n=1 of operator L∗

b

given by

z2n(x) =
8
√

λn(b − 1)

b + 1
cos(

√

λnx), z2n−1(x) =
4(1 + (b − 1)x)

b + 1
sin(

√

λnx), (3.4)

for n = 1, 2, . . . .
Because Lb and L∗

b are differential operators with regular boundary conditions, each of the
systems {yn(x)}∞n=1 and {zn(x)}∞n=1 is complete in the space L2[0, 1], [17]. Besides, it is easy to
establish that for every n ∈ N

∗ the inequality ‖yn‖L2[0,1] · ‖zn‖L2[0,1] ≤ const. is satisfied. From
this inequality and the main result of [8], it is obtained that each of the systems {yn(x)}∞n=1 and
{zn(x)}∞n=1 is an unconditional basis of the space L2[0, 1].

The following lemma is obtained with the help of integration by parts and the Cauchy-
Schwarz and classical Bessel inequalities.

Lemma 1. If ϕ(x) ∈ C4[0, 1] satisfies the conditions ϕ(0) = ϕ′′(0) = ϕ(1) = ϕ′′(1) = 0,
ϕ′(0) + ϕ′(1) = ϕ′′′(0) + ϕ′′′(1) = 0, then

∞
∑

n=1

λn|ϕ2n| ≤ c1‖ϕ‖C4[0,1],

∞
∑

n=1

λn|ϕ2n−1| ≤ c2‖ϕ‖C4[0,1], (3.5)

for some positive constants c1 and c2, where ϕn =
∫ 1
0 ϕ(x)zn(x) dx, n = 1, 2, . . . .

Proof. From the assumptions on ϕ, the equality

ϕ2n =

∫ 1

0
ϕ(x)z2n(x) dx =

8
√

λn(b − 1)

b + 1

∫ 1

0
ϕ(x) cos(

√

λnx) dx

=
8(b − 1)

λn

√
λn(b + 1)

∫ 1

0
ϕ(4)(x) cos(

√

λnx) dx,

holds by four times integrating by parts. Analogously, by three times integrating by parts we
obtain

ϕ2n−1 =

∫ 1

0
ϕ(x)z2n−1(x) dx = 4

∫ 1

0
ϕ(x)

(

1

b + 1
+

b − 1

b + 1
x

)

sin(
√

λnx) dx

=
1

λn

√
λn

∫ 1

0
h(x) cos(

√

λnx) dx,

where h(x) = −12(b−1)
b+1 ϕ′′(x) − 4

(

1
b+1 + b−1

b+1x
)

ϕ′′′(x).

By using the Cauchy-Schwarz and classical Bessel inequalities, we obtain

∞
∑

n=1

λn|ϕ2n| ≤ 8

∣

∣

∣

∣

b − 1

b + 1

∣

∣

∣

∣

[

∞
∑

n=1

1

λn

]

1
2

[

∞
∑

n=1

(
∫ 1

0
ϕ(4)(x) cos(

√

λnx) dx

)2
]

1
2

≤ c1‖ϕ(4)‖L2[0,1] ≤ c1‖ϕ‖C4[0,1]
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and

∞
∑

n=1

λn|ϕ2n−1| ≤
[

∞
∑

n=1

1

λn

]

1
2

[

∞
∑

n=1

(
∫ 1

0
h(x) cos(

√

λnx) dx

)2
]

1
2

≤ c‖h‖L2[0,1] ≤ c2‖ϕ‖C4[0,1]

for some constants c, c1 and c2.

3.2 The first inverse problem (IP1)

The pair (P (t), u(x, t)) from the class C[0, T ] ×
(

C2,1(ΩT ) ∩ C1,0(ΩT )
)

for which conditions
(2.2)–(2.5), (2.7) are satisfied, is called a classical solution of the IP1.

We consider the following assumptions on ϕ, E and f :

(A1) (A1)1 ϕ(x) ∈ C4[0, 1]; ϕ(0) = ϕ′′(0) = ϕ(1) = ϕ′′(1) = 0, ϕ′(0) + ϕ′(1) = ϕ′′′(0) + ϕ′′′(1) =
0;
(A1)2 ϕ1 > 0, ϕn ≥ 0, n = 2, 3, . . . ,

(A2) (A2)1 E(t) ∈ C1[0, T ]; E(0) =
∫ 1
0 ϕ(x) dx;

(A2)2 E(t) > 0, ∀t ∈ [0, T ],

(A3) (A3)1 f(x, t) ∈ C(ΩT ); f(·, t) ∈ C4[0, 1], f(0, t) = ∂2f
∂x2 (0, t) = f(1, t) = ∂2f

∂x2 (1, t) = 0,
∂f
∂x(0, t) + ∂f

∂x(1, t) = ∂3f
∂x3 (0, t) + ∂3f

∂x3 (1, t) = 0, ∀t ∈ [0, T ];

(A3)2 fn(t) ≥ 0, n = 1, 2, . . . , where fn(t) =
∫ 1
0 f(x, t)zn(x) dx, n = 1, 2, . . . .

The main result of unique solvability is presented as follows.

Theorem 1. (Existence and uniqueness of IP1)
Let (A1)–(A3) be satisfied. Then the inverse problem (2.2)–(2.5), (2.7) has a unique classical
solution pair (P (t), u(x, t)). Moreover, u(x, t) ∈ C2,1(ΩT ).

Proof. For arbitrary P (t) ∈ C[0, T ], we construct the formal solution of (2.2)–(2.4), (2.7) by
using the generalized Fourier method. In accordance with this method, the unknown function
u(x, t) is sought as a Fourier series in terms of the eigenfunctions and associated functions
{yn(x)}∞n=1 of the auxiliary spectral problem (3.1), as follows:

u(x, t) =
∞
∑

n=1

[u2n−1(t)y2n−1(x) + u2n(t)y2n(x)] , (3.6)

where the system {un(t)}∞n=1 satisfies

u′
2n(t) = −λnu2n(t) + P (t)u2n(t) + f2n(t), u2n(0) = ϕ2n,

u′
2n−1(t) = −λnu2n−1(t) + P (t)u2n−1(t) + u2n(t) + f2n−1(t), u2n−1(0) = ϕ2n−1.

(3.7)

Solving these problems, we obtain

u2n(t) = ϕ2ne−λnt+
R t

0
P (s) ds +

∫ t

0
f2n(τ)e−λn(t−τ)+

R t

τ
P (s) ds dτ,

u2n−1(t) = ϕ2n−1e
−λnt+

R t

0
P (s) ds +

∫ t

0
[f2n−1(τ) + u2n(τ)] e−λn(t−τ)+

R t

τ
P (s) ds dτ

= (ϕ2n−1 + tϕ2n) e−λnt+
R t

0
P (s)ds

+

∫ t

0
[f2n−1(τ) + (t − τ)f2n(τ)] e−λn(t−τ)+

R t

τ
P (s) ds dτ.

(3.8)
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Under conditions (A1)1 and (A3)1, the series (3.6), its t-partial derivative and the xx-second
order partial derivative series are uniformly convergent in ΩT since their majorizing sums are
absolutely convergent by using Lemma 1. Therefore, their sums expressing u(x, t), ut(x, t) and
uxx(x, t) are continuous in ΩT . Thus, u(x, t) ∈ C2,1(ΩT ) and satisfies the conditions (2.2)–(2.4),
(2.7) for arbitrary P (t) ∈ C[0, T ]. Besides, the series (3.6) can be integrated term by term, and
its uniqueness follows from the property of the system {yn(x)}∞n=1 being a basis of L2[0, 1].

Applying the over-determination condition (2.5), we obtain the following Volterra integral
equation of the second kind for r(t):

r(t) = F (t) +

∫ t

0
K(t, τ)r(τ) dτ, t ∈ [0, T ], (3.9)

where

F (t) =
1

E(t)

∞
∑

n=1

[

2√
λn

ϕ2n−1 +
1

λn

√
λn

ϕ2n +
2t√
λn

ϕ2n

]

e−λnt,

K(t, τ) =
1

E(t)

∞
∑

n=1

[

2√
λn

f2n−1(τ) +
1

λn

√
λn

f2n(τ) +
2(t − τ)√

λn
f2n(τ)

]

e−λn(t−τ),

(3.10)

where we have used that
∫ 1

0
y2n(x) dx =

1

λn

√
λn

,

∫ 1

0
y2n−1(x) dx =

2√
λn

. (3.11)

In the case of existence of a positive solution of (3.9) in class C1[0, T ] satisfying r(0) = 1,
the function P (t) can be determined from (2.14).

By using Lemma 1, under assumptions (A1)1, (A2)1 and (A3)1, the right-hand side F (t) and
the kernel K(t, τ) are continuously differentiable functions in [0, T ] and [0, T ]×[0, T ], respectively.
In addition, according to assumptions (A1)2, (A2)2 and (A3)2, conditions F (t) > 0 and K(t, τ) ≥
0 are satisfied in [0, T ] and [0, T ] × [0, T ], respectively.

From the theory of Volterra integral equations of the second kind we obtain that (3.9) has a
unique positive solution r(t), continuously differentiable in [0, T ], satisfying

r(0) = F (0) =
1

E(0)

∞
∑

n=1

1√
λn

[

2ϕ2n−1 +
1

λn
ϕ2n

]

= 1, (3.12)

where, in deriving (3.12), we have used (3.6) at t = 0 integrated with respect to x from 0 to 1
and (A2)1.

Remark 1. To see that assumptions (A1) − (A3) can indeed be satisfied, we give a simple
example, as follows. Let T and b be arbitrary positive numbers and take the input data

ϕ(x) = sin(πx), f(x, t) = π2 sin(πx)eχ(t), E(t) = 2eχ(t)/π,

where χ ∈ C1[0, T ] is an arbitrary function. It can easily be checked that this data satisfy
(A1) − (A3). Then, according to Theorem 1 it follows that the IP1 given by (2.2)-(2.5), (2.7)
has a unique solution, which can be verified to be

P (t) = χ′(t), u(x, t) = sin(πx)eχ(t). (3.13)

Also, as performed in Section 2, the transformation (2.8) yields the problem (2.9)-(2.13), which
has the unique solution

r(t) = eχ(0)−χ(t), v(x, t) = sin(πx)eχ(0). (3.14)

The following result on the continuous dependence on the data of the solution of IP1 holds.
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Theorem 2. (Continuous dependence upon the data for IP1)
Let T be the class of triples in the form of {f, ϕ,E} which satisfy the assumptions (A1)–(A3)
and

‖f‖C4,0(ΩT ) ≤ N0, ‖ϕ‖C4[0,1] ≤ N1, ‖E‖C1[0,T ] ≤ N2, 0 < N3 ≤ min
t∈[0,T ]

|E(t)|, (3.15)

for some given positive constants Ni, i = 0, 1, 2, 3. Then the solution pair (P, u) of the inverse
problem (2.2)–(2.5), (2.7) depends continuously upon the data in T.

The proof of this theorem is omitted since it is very similar to that of Theorem 4 of [13].

3.3 The second inverse problem (IP2)

The pair (R(t), u(x, t)) from the class C[0, T ]×
(

C2,1(ΩT ) ∩ C1,0(Ω)
)

for which conditions (2.2)–
(2.5), (2.15) are satisfied, is called a classical solution of the IP2.

The main result of unique solvability is presented as follows.

Theorem 3. (Existence and uniqueness of IP2)
Let (A1)1, (A2)1 and (A3)1 be satisfied. Assume also that

∫ 1
0 f(x, t) dx 6= 0, ∀t ∈ [0, T ]. Then the

inverse problem (2.2)–(2.5), (2.15) has a unique classical solution pair (R(t), u(x, t)). Moreover,
u(x, t) ∈ C2,1(ΩT ).

Proof. By applying the standard procedure of the Fourier method, we obtain the following
representation for the solution of (2.2)–(2.4), (2.15) for arbitrary R(t) ∈ C[0, T ]:

u(x, t) =
∞

∑

n=1

[v2n−1(t)y2n−1(x) + v2n(t)y2n(x)] , (3.16)

where

v2n(t) = ϕ2ne−λnt +

∫ t

0
R(τ)f2n(τ)e−λn(t−τ) dτ,

v2n−1(t) = ϕ2n−1e
−λnt + tϕ2ne−λnt +

∫ t

0
R(τ) [f2n−1(τ) + (t − τ)f2n(τ)] e−λn(t−τ) dτ.

(3.17)

Under assumptions (A1)1 and (A3)1, the series (3.16), its t-partial and the xx-partial deriva-
tives are uniformly convergent in ΩT since their majorizing sums are absolutely convergent by
using Lemma 1. Therefore, their sums expressing u(x, t), ut(x, t) and uxx(x, t) are continuous in
ΩT . Thus, u(x, t) ∈ C2,1(ΩT ) and satisfies the conditions (2.2)–(2.4) and (2.15) for an arbitrary
R(t) ∈ C[0, T ]. Besides, the series (3.16) can be integrated term by term, and its uniqueness
follows from the property of the system {yn(x)}∞n=1 being a basis of L2[0, 1].

Equations (2.5) and (3.16) yield the following Volterra integral equation of the first kind
with respect to R(t):

∫ t

0
K̃(t, τ)R(τ) dτ + F̃ (t) = E(t), t ∈ [0, T ], (3.18)

where
F̃ (t) = F (t)E(t), K̃(t, τ) = K(t, τ)E(t). (3.19)

By using Lemma 1, under the assumptions of Theorem 3, the term F̃ (t) and the kernel
K̃(t, τ) are continuously differentiable functions in [0, T ] and [0, T ] × [0, T ], respectively. It is
easy to show that

K̃(t, t) =

∞
∑

n=1

[

2√
λn

f2n−1(t) +
1

λn

√
λn

f2n(t)

]

=

∫ 1

0
f(x, t) dx,
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since

f(x, t) =

∞
∑

n=1

[f2n−1(t)y2n−1(x) + f2n(t)y2n(x)] .

Further, under assumption (A2)1, equation (3.18) yields the following Volterra integral equa-
tion of the second kind:

K̃(t, t)R(t) +

∫ t

0
K̃t(t, τ)R(τ) dτ + F̃ ′(t) = E′(t), t ∈ [0, T ]. (3.20)

Note that function K̃(t, t) is never equal to zero because of the assumption
∫ 1
0 f(x, t) dx 6= 0,

∀t ∈ [0, T ]. In addition, the functions F̃ ′(t), E′(t) and the kernel K̃t(t, τ) are continuous functions
in [0, T ] and [0, T ] × [0, T ], respectively. As in the previous section, from the theory of Volterra
integral equations of the second kind, we obtain a unique function R(t), continuous on [0, T ],
which, together with (3.16), form the unique solution of IP2.

The following result on continuously dependence on the data of the solution of the IP2 holds.

Theorem 4. (Continuous dependence upon the data for IP2)
Let F be the class of triples in the form of {f, ϕ,E} which satisfy assumptions (A1)1, (A2)1 and
(A3)1, and

‖f‖C4,0(ΩT ) ≤ M0, ‖ϕ‖C4[0,1] ≤ M1, ‖E‖C1[0,T ] ≤ M2, 0 < M3 ≤
∣

∣

∣

∣

∫ 1

0
f(x, t) dx

∣

∣

∣

∣

, (3.21)

for some given positive constants Mi, i = 0, 1, 2, 3. Then the solution pair (R,u) of the inverse
problem (2.2)–(2.5), (2.15) depends continuously upon the data in F.

The proof of this theorem is omitted since it is similar to that of Theorem 2 of [5].

Theorems 1 and 2 in fact establish that the IP1 under investigation given by equations
(2.2)–(2.5), (2.7) is well-posed in appropriate spaces of regular functions. The same situation is
also true from Theorems 3 and 4 which establish that the IP2 given by equations (2.2)–(2.5),
(2.15) is well-posed. However, in practice the input data, especially the measured one, such as
the density/energy/mass (2.5), is non-smooth and hence, the solution of the inverse problem
becomes unstable under unregularised noisy differentiation (see also expression (2.14)).

The next section describes the discretization of the inverse problem using the boundary
element method (BEM), whilst Section 5 will present and discuss the numerical results.

4 Boundary Element Method (BEM)

In this section, we present the BEM based on using the fundamental solution for the heat
equation, to discretise the two inverse problems (2.9)–(2.13) and (2.2)–(2.5), (2.15) for IP1
and IP2, respectively. In addition to the well-known advantages over full domain discretisation
methods, such as the finite-difference or the finite element methods, the BEM employed in this
section does not require any time marching procedure and thus, the imposition of the additional
condition (2.5) can be performed globally on the full time interval [0, T ].

4.1 BEM for IP1

We first consider the case of IP1 consisting of finding the pair solution (r(t), v(x, t)) which,
via expression (2.8), leads to the original solution pair (P (t), u(x, t)). Let us introduce the
fundamental solution G of the one-dimensional parabolic heat equation defined as

G(x, t; y, τ) =
H(t − τ)

√

4π(t − τ)
exp

(

−(x − y)2

4(t − τ)

)

,

8



where H is the Heaviside step function. Using this fundamental solution and the Green’s formula,
equation (2.9) can be written in the following boundary integral form, see e.g. [3]:

η(x)v(x, t)

=

∫ t

0

(

G(x, t; ξ, τ)
∂v

∂n(ξ)
(ξ, τ) − v(ξ, τ)

∂G

∂n(ξ)
(x, t; ξ, τ)

)

∣

∣

∣

∣

∣

ξ∈{0,1}

dτ +

∫ 1

0
G(x, t; y, 0)v(y, 0) dy

+

∫ 1

0

∫ T

0
G(x, t, y, τ)r(τ)f(y, τ) dτdy, (x, t) ∈ [0, 1] × (0, T ], (4.1)

where η(0) = η(1) = 0.5, η(x) = 1 for x ∈ (0, 1), and n is the outward unit normal to the space
boundary {0, 1}. For discretising (4.1), we divide the boundaries {0} × [0, T ] and {L} × [0, T ]
into N small time-intervals [tj−1, tj], j = 1, N , with tj = jT

N , j = 0, N , whilst the initial domain

[0, L] × {0} is divided into N0 small cells [xk−1, xk], k = 1, N0 with xk = k
N0

, k = 0, N0. Over

each boundary element, the transformed solutions v and ∂v
∂n are assumed to be constant and

take their values at the midpoint t̃j =
tj−1 + tj

2
, i.e.

v(0, t) = v(0, t̃j) =: h0j , v(1, t) = v(1, t̃j) =: h1j ,

∂v

∂n
(0, t) =

∂v

∂n
(0, t̃j) =: q0j,

∂v

∂n
(1, t) =

∂v

∂n
(1, t̃j) =: q1j ,

for t ∈ (tj−1, tj ]. Similarly, in each cell, the initial population v(x, 0) is assumed to be constant

and takes its value at the midpoint x̃k =
xk−1 + xk

2
, i.e.

v(x, 0) = ϕ(x) = ϕ(x̃k) =: ϕk for x ∈ [xk−1, xk).

For the source term, the functions f(x, t) and r(t) are approximated to be the piecewise constant
functions

f(x, t) = f(x, t̃j), r(t) = r(t̃j) =: rj, for t ∈ (tj−1, tj ].

Applying the boundary conditions (2.11) and (2.12), with the above piecewise constant BEM
approximations, the boundary integral equation (4.1) becomes

η(x)v(x, t) =
N

∑

j=1

(−A0j(x, t)q1j + A1j(x, t)q1j + bB0j(x, t)h1j − B1j(x, t)h1j)

+

N0
∑

k=1

Ck(x, t)ϕk +

N
∑

j=1

Dj(x, t)rj , (4.2)

where the coefficients are given by

Aξj(x, t) =

∫ tj

tj−1

G(x, t; ξ, τ)dτ, Bξj(x, t) =

∫ tj

tj−1

∂G

∂n
(x, t; ξ, τ)dτ, ξ ∈ [0, 1],

Ck(x, t) =

∫ xk

xk−1

G(x, t; y, 0) dy, Dj(x, t) =

∫ 1

0
f(y, t̃j)Ayi(x, t) dy,

for j = 1, N , k = 1, N0. The integrals Aξj(x, t), Bξj(x, t) and Ck(x, t) can be evaluated analyti-
cally, [3, 4], whilst Simpson’s rule is used as a numerical integration for calculating the integral

9



Dj(x, t). Applying (4.2) at the boundary nodes (0, t̃i) and (1, t̃i) for i = 1, N yields the system
of 2N linear equations

−A0q
¯1

+ A1q
¯1

+ bB0h
¯1 − B1h

¯1 + Cϕ
¯

+ Dr
¯

= 0
¯
, (4.3)

where

A0 =

[

A0j(0, t̃i)
A0j(1, t̃i)

]

2N×N

, A1 =

[

A1j(0, t̃i)
A1j(1, t̃i)

]

2N×N

,

B0 =

[

B0j(0, t̃i) + 1
2δij

B0j(1, t̃i)

]

2N×N

, B1 =

[

B1j(0, t̃i)
B1j(1, t̃i) + 1

2δij

]

2N×N

,

C =

[

Ck(0, t̃i)
Ck(1, t̃i)

]

2N×N0

, D =

[

Dj(0, t̃i)
Dj(1, t̃i)

]

2N×N

,

q
¯1

=
[

q1j

]

N
, h

¯1 =
[

h1j

]

N
, ϕ

¯
=

[

ϕk

]

N0

, r
¯

=
[

rj

]

N
,

and δij is the Kronecker delta symbol. The system of equations (4.3) can be rewritten as

[

q
¯1
h
¯1

]

=
[

(A0 − A1)
∣

∣

∣
(−bB0 + B1)

]−1
[

Cϕ
¯

+ Dr
¯

]

, (4.4)

where
[

(A0 − A1)
∣

∣

∣
(−bB0 + B1)

]

is a 2N × 2N matrix formed with the 2N × N block matrices

(A0 − A1) and (−bB0 + B1) separated by the vertical line.
Next, we collocate the additional condition (2.13) by using the midpoint numerical integra-

tion approximation at the discrete time t̃i for i = 1, N , as

eiri := E(t̃i)r(t̃i) =

∫ 1

0
v(x, t̃i) dx =

1

N0

N0
∑

k=1

v(x̃k, t̃i), i = 1, N. (4.5)

Then, expression (4.5), via (4.2) applied at (x̃k, t̃i), yields

1

N0

N0
∑

k=1

(

−A
(1)
0,kq

¯1
+ A

(1)
1,kq

¯1
+ bB

(1)
0,kh¯1 − B

(1)
1,kh¯1 + C

(1)
k ϕ

¯
+ D

(1)
k r

¯

)

= Er
¯
, (4.6)

where

A
(1)
0,k =

[

A0j(x̃k, t̃i)
]

N×N
, A

(1)
1,k =

[

A1j(x̃k, t̃i)
]

N×N
,

B
(1)
0,k =

[

B0j(x̃k, t̃i)
]

N×N
, B

(1)
1,k =

[

B1j(x̃k, t̃i)
]

N×N
,

C
(1)
k =

[

Cl(x̃k, t̃i)
]

N×N0

, D
(1)
k =

[

Dj(x̃k, t̃i)
]

N×N
,

E = diag(e1, . . . , eN ), k, l = 1, N0, i, j = 1, N.

Expression (4.6) can be also rewritten as

1

N0

N0
∑

k=1

(

[

(−A
(1)
0,k + A

(1)
1,k)

∣

∣

∣
(bB

(1)
0,k − B

(1)
1,k)

]

[

q
¯1
h
¯1

]

+ C
(1)
k ϕ

¯
+ D

(1)
k r

¯

)

= Er
¯
. (4.7)

Eliminating q
¯1

and h
¯1 by substituting (4.4) into (4.7), the unknown function r

¯
can be found by

solving the N × N linear system of equations

X1r
¯

= y
¯1

, (4.8)
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where

X1 = E − 1

N0

N0
∑

k=1

(

[

(−A
(1)
0,k + A

(1)
1,k)

∣

∣

∣
(bB

(1)
0,k − B

(1)
1,k)

] [

(A0 − A1)
∣

∣

∣
(−bB0 + B1)

]−1
D + D

(1)
k

)

,

y
¯1

=
1

N0

N0
∑

k=1

(

[

(−A
(1)
0,k + A

(1)
1,k)

∣

∣

∣
(bB

(1)
0,k − B

(1)
1,k)

] [

(A0 − A1)
∣

∣

∣
(−bB0 + B1)

]−1
C + C

(1)
k

)

ϕ
¯
.

4.2 BEM for IP2

In this subsection, we consider the BEM for solving the inverse problem (2.2)–(2.5), (2.15). As
before, we obtain (as in (4.3))

−A0q
¯1

+ A1q
¯1

+ bB0h
¯1 − B1h

¯1 + Cϕ
¯

+ DR
¯

= 0
¯
. (4.9)

For the integral over-determination condition (2.5), the midpoint numerical integration is utilized
to obtain

ei := E(t̃i) =

∫ 1

0
u(x, t̃i) dx =

1

N0

N0
∑

k=1

u(x̃k, t̃i), i = 1, N. (4.10)

By the BEM procedure that we have described earlier, applying the above integral approximation
condition yields

1

N0

N0
∑

k=1

(

[

(−A
(1)
0,k + A

(1)
1,k)

∣

∣

∣
(bB

(1)
0,k − B

(1)
1,k)

]

[

q
¯1
h
¯1

]

+ C
(1)
k ϕ

¯
+ D

(1)
k R

¯

)

= e
¯
, (4.11)

where e
¯

=
[

ei

]

N
. Eliminating h

¯1j and q
¯1j

between (4.9) and (4.11), we obtain the system of

N × N linear equations
X2R

¯
= y

¯2
, (4.12)

where

X2 =
1

N0

N0
∑

k=1

(

[

(−A
(1)
0,k + A

(1)
1,k)

∣

∣

∣
(bB

(1)
0,k − B

(1)
1,k)

] [

(A0 − A1)
∣

∣

∣
(−bB0 + B1)

]−1
D + D

(1)
k

)

,

y
¯2

= e
¯
− 1

N0

N0
∑

k=1

(

[

(−A
(1)
0,k + A

(1)
1,k)

∣

∣

∣
(bB

(1)
0,k − B

(1)
1,k)

] [

(A0 − A1)
∣

∣

∣
(−bB0 + B1)

]−1
C + C

(1)
k

)

ϕ
¯
.

5 Numerical results and discussion

This section presents two typical test examples for the identification of time-dependent smooth
and non-smooth continuous source functions in order to test the accuracy of the BEM numerical
procedure introduced earlier in Section 4. The following root mean square error (RMSE) is used
to evaluate the accuracy of the numerical results:

RMSE =

√

√

√

√

T

N

N
∑

i=1

(

Exact(t̃i) − Approximate(t̃i)
)2

. (5.1)
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5.1 Example 1 (IP1)

In this example, we consider the inverse problem IP1 given by (2.2)–(2.5), (2.7) which, via (2.8),
can be transformed into the inverse problem (2.9)–(2.13). This example is considered for the
identification of the time-dependent coefficient P (t) and the population u(x, t) given by

P (t) = 1 + t, u(x, t) = x4(1 − x)3et+t2/2, (5.2)

whilst the analytical solution for the transformed problem (2.9)–(2.13) is

r(t) = e−(t+t2/2), v(x, t) = x4(1 − x)3.

The input data is

ϕ(x) = x4(1 − x)3, f(x, t) = 6x2(x − 1)(7x2 − 8x + 2)et+t2/2, E(t) =
1

280
et+t2/2,

and we take T = 1 and b = 2. This input data satisfy almost all the assumptions of Theorem
1, except for some of the (A1)2. Nevertheless, the solution (5.2) does exist, and although its
uniqueness cannot strictly be inferred from Theorem 1, the computations below indicate that
this is indeed the case.

As we have mentioned before, the original solution pair (P (t), u(x, t)) can be calculated from
(r(t), v(x, t)) using (2.14).

We start by considering the linear BEM system of equations (4.8). The normalized singular
values of matrix X1 in (4.8) for N = N0 ∈ {20, 40, 80} are shown in Figure 1 with the corre-
sponding condition numbers 4.173, 4.322 and 4.399, respectively. The singular values and the
condition number of the matrix X1 have been calculated using the Matlab commands svd(X1)
and cond(X1), respectively. From these condition numbers it can be seen that the linear system
of equations (4.8) is well-conditioned, indicating that the inverse problem (2.9)–(2.13) for finding
the solution pair (r(t), u(x, t)) is well-posed.

Next, we consider the numerical test with N = N0 = 40 as these numbers of boundary
elements and cells were found to be sufficiently large to ensure that any further increase in this
discretization did not significantly affect the accuracy of the numerical solutions.

For exact data, Figure 2 shows an excellent agreement between the exact solution and the
numerical solution obtained directly using the inversion of (4.8), i.e. r

¯
= X−1

1 y
¯1

, based on a
Gaussian elimination method implemented in Matlab using the command gaussElim(X1, y

¯1
).

As the corresponding curves are virtually undistinguishable, for more clarity, we report the
RMSE values (5.1) given by RMSE(r) = 4.9E-5, RMSE(r′) = 7.3E-3, RMSE(P ) = 1.9E-2 and
RMSE(u(0, ·)) = 3.9E-6. To obtain P (t) and u(0, t), we use (2.14) with the derivative r′(t)
calculated using the finite-difference formulae,

r′(t̃1) =
r(t̃1) − 1

T/(2N)
, r′(t̃i) =

r(t̃i) − r(t̃i−1)

T/N
, i = 2, N. (5.3)

In practice, the contamination of measured data by unplanned error is unavoidable. Thus
we add noise to the input data E(t) in (2.5) in order to test the stability of the solution. The
input data E

¯
ǫ is perturbed by random Gaussian additive noise as

E
¯

ǫ = E
¯

+ ǫ
¯
, (5.4)

where ǫ
¯

= random(′Normal′, 0, σ,N, 1) is a set of N variables generated randomly by the MAT-
LAB command for a normal distribution with the zero mean and standard deviation σ given by

σ = p × max
t∈[0,T ]

|E(t)|, (5.5)
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and p is the percentage of noise. For Example 1, the maximum value of the input data E(t) is
max

t∈[0,T ]
|E(t)| = e/3, so that the standard deviation is σ = ep/3. This perturbation implies that

the matrix X1 in (4.8) is contaminated with noise and is denoted by Xǫ
1. Then, when noise is

present, instead of solving (4.8), we have to solve the noisy system of linear equations Xǫ
1r¯

= y
¯1

.
Figure 2 displays in dash-dot line (−·−) the numerical results with p = 1% noisy input for r(t),
r′(t), P (t) and u(0, t), obtained by using the straightforward inversion of the perturbed BEM
linear system,

r
¯
ǫ = (Xǫ

1)
−1y

¯1
. (5.6)

From this figure, it can be seen clearly that the numerical results for r(t) and u(0, t) are relatively
accurate but the numerical results for r′(t) and P (t) are highly oscillatory and unbounded
because the numerical differentiation of a noisy function is an unstable procedure.

In order to overcome this instability, we employ the smoothing spline technique introduced
in [20] which is a regularization method for differentiating a noisy function. In this method, we
approximate the noisy data (r(t̃j))j=1,N by the smoothed function r̂ ∈ C1(R) with r̂′′ ∈ L2(R),
which minimizes the second-order Tikhonov regularization function, [7, 20]

IΛ(r̂) :=
T

N

N
∑

j=1

(r̂(t̃j) − rǫ
j)

2 + Λ‖r̂′′‖2
L2(R), (5.7)

where Λ ≥ 0 is a regularization parameter to be prescribed and rǫ
j is the noisy approximate

solution (5.6) obtained by direct inversion without regularization. This smoothed function r̂
can be approximated by the cubic spline

r̂(t) = d1 + d2t +
N

∑

j=1

cj |t − t̃j |3, (5.8)

where {cj}j=1,N and {dj}j=1,2 are unknown constant coefficients to be determined by inserting
(5.8) into (5.7) and minimizing the resulting expression with respect to these coefficients. This
yields the following system of N + 2 equations with N + 2 unknowns, [20],

r̂Λ(t̃j) +
12ΛNcj

T
= rǫ

j, j = 1, N, (5.9)

N
∑

j=1

cj =

N
∑

j=1

cj t̃j = 0, (5.10)

where r̂Λ denotes the numerical solution obtained using the regularization parameter Λ. By
solving the system of linear equations (5.9) and (5.10) we obtain the coefficients {cj}i=1,N and
{dj}j=1,2 and therefore the smooth function r̂. By differentiating this function with respect to
t, we obtain the first-order derivative r′(t) given by

r̂′(t) = d2 + 3

N
∑

j=1

cj(t − t̃j)
2sign(t − t̃j), (5.11)

where sign(·) is the signum function. From (5.9), one can observe that if Λ = 0 then r̂
¯0 = r

¯
ǫ.

Therefore, in the case of exact data actually one can take Λ = 0, as the numerical results
obtained using the straightforward inversion are stable and accurate, as illustrated in Figure 2.
But for noisy data, taking Λ = 0 produces highly unbounded and oscillatory solutions for r′(t)
and P (t), as shown in Figure 2 by the dash-dot line (− · −). Wei and Li [20] suggested two
choices for the regularization parameter Λ. One is the a priori choice defined by

Λ =
T

N
‖r
¯
− r

¯
ǫ‖2 =: κ, (5.12)
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where r
¯

is the exact solution. The other one is the discrepancy principle based on the a posteriori
choice of Λ satisfying

T

N
‖r̂
¯Λ − r

¯
ǫ‖2 ≈ κ. (5.13)

For p = 1% noise, the a priori and a a posteriori choices (5.12) and (5.13) yield Λκ = 3.2E − 4
and Λdis = 1.4E − 4, respectively.

Figure 3 displays the numerical results for r′(t) and P (t) obtained by using the BEM together
with the smoothing spline regularization with Λκ and Λdis. It is clear to see that the numerical
results obtained by both the a priori and a posteriori choices of regularization parameters are
stable and more accurate than the results without the regularization (Figure 2). Also, the a
posteriori choice (5.13) is slightly more accurate then the a priori choice (5.12).

5.2 Example 2 (IP2)

In the previous example, we have considered the inverse problem of finding the time-dependent
coefficient P (t) in the IP1 by using the BEM together with the smoothing spline regularization
technique. In this example, we are considering the time-dependent source identification function
R(t) in IP2 by using the BEM together with the Tikhonov regularization. We consider a severe
test example of finding a discontinuous source function given by [21],

R(t) =























−1, t ∈ [0, 0.2),

1, t ∈ [0.25, 0.5),

−1, t ∈ [0.5, 0.75),

1, t ∈ [0.75, 1],

(5.14)

with the input data T = 1, b = 2, ϕ(x) = 0 and f(x, t) = 1. In this case, as there is no analytical
solution available for the direct problem, the data E(t) is not available either. However, we can
simulate the data (2.5) numerically by solving first the direct problem (2.2)–(2.4), (2.15), with R
known and given by (5.14). The numerical results for u(0, t), ux(0, t) and E(t) obtained by using
the BEM with various numbers of elements and cells N = N0 ∈ {20, 40, 80} are shown in Figure
4. From this figure it can be seen that the numerical solution is convergent as the number of
boundary elements increases, in addition there is little difference between the numerical results
obtained with the various mesh sizes showing that the independence of the mesh has been
achieved.

We start by considering the linear BEM system of equations (4.12). The normalized singular
values of matrix X2 for N = N0 ∈ {20, 40, 80} are shown in Figure 1 with the corresponding
condition numbers 290.6, 905.9 and 2736.7, respectively. In contrast with the singular values
and low condition numbers of the matrix X1 for IP1, the low singular values and large con-
dition numbers of the matrix X2 for IP2 indicate that the linear system of equations (4.12)
is ill-conditioned, hence the inverse problem (2.2)-(2.5), (2.15) for finding the solution pair
(R(t), u(x, t)) is ill-posed.

We then take the numerical result for E(t) in Figure 4 simulated from the direct problem
with N = N0 = 40, as the input data in (2.5) in the inverse problem (2.2)-(2.5), (2.15). In order
to avoid committing an inverse crime, the number of boundary elements is kept to be the same
N = 40, but the number of cells is taken as N0 = 30 to be different from 40 which was used in
the direct problem.

For exact data, the numerical results for r(t), u(0, t) and ux(0, t) obtained by solving the
inverse problem (2.2)–(2.5), (2.15) with the BEM for N = 40, N0 = 30 are illustrated in Figure
5. These results have been obtained using the straightforward inversion of the linear system
of equations (4.12), i.e. R

¯
= X−1

2 y
¯2

. The very good agreement between the analytical and
numerical results is observed, with no Gibbs corner phenomenon manifested.
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Next, the input data (2.5) is perturbed by p = 1% random Gaussian additive noise calculated
by (5.4) with the standard deviation given by (5.5). The numerical solutions shown in Figure 5 by
a dash-dot line (− ·−) have been obtained with no regularization, i.e. using the straightforward
inversion of the noisy linear system, namely,

R
¯

ǫ = X−1
2 y

¯

ǫ
2
. (5.15)

From this figure it can be seen that the numerical solution for R(t) is unstable, however, the
results for u(0, t) and ux(0, t) seem to remain stable. This is somewhat to be expected since the
triplet solution (R(t), u(0, t), ux(0, t)) of IP2 is stable in the components of u(0, t) and ux(0, t),
but unstable in the source function R(t).

In order to overcome this instability, we employ the first-order Tikhonov regularization given
by

r
¯λ =

(

XT
2 X2 + λR

)−1
XT

2 y
¯

ǫ
2
, (5.16)

where λ > 0 is a regularization parameter to be prescribed and R is corresponding to the
first-order differential regularization matrix given by [19],

R =









1 −1 0 0 .
−1 2 −1 0 .
0 −1 2 −1 .
. . . . .









. (5.17)

Note that the case of using the straightforward inversion (5.15) is equivalent to the case of no
regularization, i.e. λ = 0, and of the use of Gaussian elimination technique. For choosing the
regularization parameter, we use the generalised cross-validation (GCV) criterion. This method
is a popular choice of the regularization parameter which is based on minimising the GCV
function, [21],

GCV (λ) =
‖X2

(

XT
2 X2 + λR

)−1
XT

2 y
¯

ǫ
2
− y

¯
ǫ
2
‖2

[

trace(I − X2(XT
2 X2 + λR)−1XT

2 )
]2 . (5.18)

The numerically obtained results presented in Figure 6 and Table 1 illustrate that stable and
accurate solutions have been obtained.

6 Conclusions

Two new inverse problems of finding the time-dependent source term in a parabolic equation,
with nonlocal boundary conditions and an integral observation, have been investigated. The
first inverse problem has been transformed to an inverse source problem with an unknown
term existing in the integral over-determination condition. The existence, uniqueness, and
continuous dependence upon the data of the classical solution of the inverse problems have been
rigorously established. The significance of the study has been enhanced by inverting overspecified
data contaminated with noise in order to model the errors which are always present in any
practical measurement. The numerical discretization was based on the BEM combined with
either the smoothing spline regularization for IP1, or the first-order Tikhonov regularization
for IP2. In the case of the transformed problem IP1, a priori and a posteriori choices of
regularization parameters have been investigated, whilst the GCV criterion has been employed
for IP2. The numerical results have been found accurate and stable. Future work will concern
multi-dimensional extensions of the current mathematical and numerical analyses.
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Table 1: The values of λGCV and RMSEs for r(t), u(0, t) and ux(0, t) obtained using the BEM
together with the first-order Tikhonov regularization and p ∈ {0, 1, 3, 5}% noise, for N = 40,
N0 = 30, for Example 2.

p λ r(t) u(0, t) ux(0, t)

p = 0% λ = 0 1.420E-3 7.663E-5 2.554E-4
p = 1% λ = 0 7.361E-1 8.526E-3 6.138E-2
p = 1% λGCV =1.4E-5 1.760E-1 7.088E-3 4.017E-2
p = 3% λGCV =1.8E-4 2.268E-1 1.376E-2 6.518E-2
p = 5% λGCV =1.0E-3 3.048E-1 2.478E-2 1.139E-1
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Figure 1: The normalized singular values of matrix X1 for Example 1 and of matrix X2 for
Example 2, for N = N0 ∈ {20 (− · −), 40 (· · · ), 80 (− −−)}.
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Figure 2: The analytical (—) and numerical results of r(t), r′(t), P (t) and u(0, t) for exact data
(◦ ◦ ◦), i.e. p = 0, and p = 1% (− · −) noisy data, with no regularization, for Example 1.
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Figure 3: The analytical (—–) and numerical results of r′(t) and P (t) obtained using the
smoothing spline regularization with Λκ = 3.2E−4 (· · · ) and Λdis = 1.4E−4 (−·−) for p = 1%
noisy data, for Example 1.

21



t
0 0.2 0.4 0.6 0.8 1

u
(0
,
t)

-1

-0.8

-0.6

-0.4

-0.2

0

t
0 0.2 0.4 0.6 0.8 1

u
x
(0
,
t)

-2

-1.5

-1

-0.5

0

0.5

t
0 0.2 0.4 0.6 0.8 1

E
(t
)

-0.25

-0.2

-0.15

-0.1

-0.05

0

Figure 4: The numerical results of u(0, t), ux(0, t) and E(t) obtained by solving the direct
problem (2.2)–(2.4), (2.15) using the BEM with N = N0 = {20 (− · −), 40 (· · · ), 80 (− − −)},
for Example 2.
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Figure 5: The analytical (—) and numerical results of r(t), u(0, t) and ux(0, t) for exact data
(◦ ◦ ◦) and p = 1% noise (− · −), with no regularization (λ = 0), for Example 2.
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Figure 6: The analytical (—) and numerical results of r(t), u(0, t) and ux(0, t) obtained using
the first-order Tikhonov regularization for p ∈ {1(− · −), 3(· · · ), 5(− − −)}% noisy data with
the regularization parameter λGCV ∈ {1.4E-5, 1.8E-4, 1.0E-3}, respectively, for Example 2.
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