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TRAPEZOID CENTRAL CONFIGURATIONS

M. CORBERA, J.M. CORS, J. LLIBRE, AND E. PÉREZ-CHAVELA

Abstract. We classify all planar four–body central configura-
tions where two pairs of the bodies are on parallel lines. Using
cartesian coordinates, we show that the set of four–body trapezoid
central configurations with positive masses forms a two–dimensional
surface where two symmetric families, the rhombus and isosceles
trapezoid, are on its boundary. We also prove that, for a given po-
sition of the bodies, in some cases an specific order of the masses
determine the geometry of the configuration, namely acute or ob-
tuse trapezoid central configuration. We also prove the existence
on non–symmetric trapezoid central configuration with two pairs
of equal masses.

1. Introduction

Central configurations are particular positions of the masses in the
Newtonian n–body problem, where the position and acceleration vec-
tors with respect to the center of masses are proportional, with the
same constant of proportionality for all masses. They play an impor-
tant role in celestial mechanics because, among other properties, they
generate the unique known explicit solutions in the n–body problem
for n ≥ 3. For general information about central configurations see for
instance Albouy and Chenciner [4], Hagihara [22], Moeckel [33], Saari
[38, 39], Schmidt [41], Smale [43, 44] and Wintner [47].

More precisely we consider the planar n–body problem

mk q̈k = −
n∑

j = 1
j 6= k

Gmkmj
qk − qj

|qk − qj|3
,

k = 1, . . . , n, being qk ∈ R2 the position vector of the punctual mass
mk in an inertial coordinate system, and G is the gravitational constant
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that we can take equal to one by choosing conveniently the unit of time.
The configuration space of the planar n–body problem is

E = {(q1, . . . ,qn) ∈ R2n : qk 6= qj, for k 6= j}.

A configuration of the n bodies (q1, . . . ,qn) ∈ E is central if there is
a positive constant λ such that

(1) q̈k = −λ (qk − c) ,

for k = 1, . . . , n, being c the position vector of the center of mass of
the system, which is defined by c =

∑n
k=1mkqk/

∑n
k=1mk.

Two planar central configurations are equivalent if there is a homoth-
ecy of R2 and a rotation of SO(2) with respect to the center of mass
which send one into the other. Since this relation is of equivalency,
in what follows we shall consider the classes of equivalency of central
configurations.

The complete set of planar central configurations of the n–body prob-
lem is only known for n = 2, 3. For n = 2 there is only one class of
central configurations. For each choice of three positive masses there
are five classes of central configurations of the three–body problem,
the three collinear central configurations found in 1767 by Euler [18],
and the two equilateral triangle central configurations found in 1772
by Lagrange [25].

When n > 3 there are many partial results for the number of classes
of central configurations of the n–body problem. In 1910 Moulton [34]
showed that there exists exactly n!/2 classes of collinear central config-
urations for any given set of positive masses, one for each ordering of
the masses on the straight line modulo a rotation of π radians. A lower
bound of the number of planar non–collinear central configurations was
obtained by Palmore in [35].

Although the set of all planar central configurations of the four–body
problem is not completely known, we can find in the literature several
papers that provide the existence and classification of central configura-
tions of the four–body problem in some particular cases. For instance,
a complete numerical study for the number of classes of central con-
figurations for n = 4 and arbitrary masses was done by Simó in [42].
A computer assisted proof of the finiteness of the number of central
configurations for n = 4 and any choice of the masses was given by
Hampton and Moeckel [23]. Later on Albouy and Kaloshin [7] proved
this result analytically, and extend it for for n = 5, except for a zero
measure set in the masses space .
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Assuming that every central configuration of the four–body problem
with equal masses has an axis of symmetry Llibre in [27] obtained all
the planar central configurations of the four–body problem with equal
masses by studying the intersection points of two planar curves. Later
on Albouy in [1, 2] gave a complete analytic proof of this result.

When one of the four masses is sufficiently small Pedersen [36], Gan-
naway [20] and Arenstorf [10] numerically and analytically obtained
the number of its classes of central configurations. These studies were
completed later on by Barros and Leandro in [11] and [12].

A central configuration is called kite if it has an axis of symme-
try passing through two non–adjacent bodies. The kite non–collinear
classes of central configurations having some symmetry for the four–
body problem with three equal masses where characterized by Bernat
et al. in [13], see also Leandro [26]. The characterization of the convex
central configurations with an axis of symmetry and the concave cen-
tral configurations of the four–body problem when the masses satisfy
that m1 = m2 6= m3 = m4 was done by Álvarez and Llibre in [9].

A planar configuration of the four–body problem can be classified
as either convex or concave. A configuration is convex if none of the
bodies is located in the interior of the triangle formed by the others.
A configuration is concave if one of the bodies is in the interior of the
triangle formed by the others.

In [31] MacMillan and Bartky shown that for any assigned order of
any four positive masses there is a convex planar central configuration
of the four–body problem with that order. Later on, Xia [49] provided
a simpler proof of this result. The following convex conjecture stated
by Albouy and Fu in [5] (see also [31, 37]) is well known between the
community working in central configurations: For the planar four–body
problem there is a unique convex central configuration of the four–body
problem for each ordering of the masses in the boundary of its convex
hull.

Already, MacMillan and Bartky in [31] proved that there exists a
unique isosceles trapezoid central configuration of the four–body when
two pairs of equal masses are located at adjacent vertices. Later on
Xie in [50] reproved this result.

The following subconjecture of the convex conjecture is also well
known: For the planar four–body problem there exists a unique convex
central configuration having two pairs of equal masses located at the
adjacent vertices of the configuration and it is an isosceles trapezoid.
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In [29] Long and Sun shown that any convex central configuration
with masses m1 = m2 < m3 = m4 located at the opposite vertices
of a quadrilateral and such that the diagonal corresponding to the
mass m1 is not shorter than the one corresponding to the mass m3,
has a symmetry and the quadrilateral is a rhombus. This result was
extended by Pérez–Chavela [37] and Santoprete to the case where two
of the masses are equal and at most, only one of the remaining mass is
larger than the equal masses. Moreover, they proved that there is only
one convex central configuration when the opposite masses are equal
and it is a rhombus. Later on Albouy et. al. in [8] shown that in the
four–body problem a convex central configuration is symmetric with
respect to one diagonal if and only if the masses of the two particles
on the other diagonal are equal. If these two masses are unequal, then
the less massive one is closer to the former diagonal.

Using the results on the symmetries mentioned in the previous para-
graph Corbera and Llibre [14] gave a complete description of the fam-
ilies of central configurations of the four–body problem with two pairs
of equals masses and two equal masses sufficiently small, proving for
these masses the convex conjecture and the subconjecture. More re-
cently, the subconjecture was proved for arbitrary masses by Fernandes
et al. in [19].

The co-circular classes of central configurations of the four–body
problem, i.e. when the four masses are on a circle have been studied
by Cors and Roberts in [15].

A trapezoid is a convex quadrilateral with at least one pair of par-
allel sides. The parallel sides are called the bases of the trapezoid and
the other two sides are called the lateral sides. See Figure 1 for the
classification of the nine trapezoids, namely:

• An acute trapezoid has two adjacent acute angles on its longer
base edge.
• An obtuse trapezoid has one acute and one obtuse angle on

each base.
• A right trapezoid has two adjacent right angles.
• An isosceles trapezoid is an acute trapezoid if its lateral sides

have the same length, and the base angles have the same mea-
sure.
• A 3–sides equal trapezoid is an isosceles trapezoid with three

sides of the same length.
• A parallelogram is an obtuse trapezoid with two pairs of parallel

sides.
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Obtuse trapezoid

Parallelogram

Rhombus

Right trapezoid

Rectangle

Square

Acute trapezoid

Isosceles trapezoid

Isosceles trapezoid
with 3 equal sides

Figure 1. Classification of Trapezoids

• A rhombus is a parallelogram with the four sides with the same
length.
• A rectangle is a parallelogram with four right angles.
• A square is a rectangle with the four sides with the same length.

In this paper we are interested in studying trapezoid central config-
urations. See [40] for a really fresh work in the same topic. In section
3 we derive the equations for the trapezoid central configurations in
terms of the mutual distances. In section 4 we prove that not all the
trapezoid configurations are realizable. In section 5 we characterize,
using cartesian coordinates, the set of positions that yield to trapezoid
central configurations with positive masses. In section 6 we prove that
there exist a one–parameter family of right trapezoid central configu-
rations. Finally, in section 7 we study the set of positive masses which
yields to a trapezoid central configurations. We prove, in contrast to
the co–circular case, that two pair of equal masses do not imply that
the central configuration has some symmetry.

2. Preliminaries

The central configurations (in what follows simply CC by short)
can be described in terms of Lagrange multipliers. We denote by q =
(q1,q2,q3,q4) ∈ (R2)4 the position of four positive massesm1,m2,m3,m4

on the plane and by rij = ||qi − qj|| the mutual distances between the
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i–th and the j–th bodies. The vector q is a CC of the 4–body problem
if it satisfies the following algebraic equation for some value of λ (the
Lagrange multiplier)

(2) ∇U(q) + λ∇I(q) = 0,

where U is the Newtonian potential

(3) U(q) =
n∑

i<j

mimj

rij
,

I(q) is the moment of inertia, which represents the size of the system,

(4) I(q) =
1

2

n∑

i=1

mi||qi − c||2 =
1

2M

∑

1≤i<j≤n
mimjr

2
ij,

c is the center of mass of the system, and M = m1 + · · · + mn is the
total mass (see [32] for more details).

We observe that generically six mutual distances describe a tetrahe-
dron in R3, since in this work we are interested in planar CC, when
we write equation (2) in terms of mutual distances, we must add a
constraint to maintain the particles on a plane. This constraint arises
setting the volume of the tetrahedron equals to zero. Denoting as
r = (r12, r13, r14, r23, r24, r34) ∈ R+6

the vector of mutual distances, it is
well know in the literature (see for instance [39, 41]), that the volume
V of a tetrahedron is given by the Cayley-Menger determinant

V 2 =
1

288

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 r212 r213 r214
1 r212 0 r223 r224
1 r213 r223 0 r234
1 r214 r224 r234 0

∣∣∣∣∣∣∣∣∣∣

.

From now on we will assume that V = 0. Also in order to avoid
collinear configurations we impose that all triples of mutual distances
satisfy strictly the triangle inequality (see [15] for more details).

Let Ai be the oriented area of the triangle formed by the configu-
ration q where the point qi is deleted, and let ∆i = (−1)i+1Ai. Since
Ai > 0 when the vertices are ordered sequentially counterclockwise, for
a convex quadrilateral ordered sequentially counterclockwise we obtain
∆1,∆3 > 0 and ∆2,∆4 < 0, satisfying the equation

∆1 + ∆2 + ∆3 + ∆4 = 0.
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In 1900 Dziobeck [17] proved for planar CC that

∂V

∂r2ij
= −32 ∆i∆j .

From this equality we obtain

∂V

∂rij
=
∂V

∂r2ij
· d(r2ij)

drij
= −64rij ∆i∆j.

Fixing the moment of inertia I = I0 and applying Lagrange multi-
pliers, we have that the planar non-collinear CC are the critical points
of the function

(5) U + λM(I − I0)− σV.

Taking the partial derivatives and using the six mutual distances as
variables we obtain

m1m2(r
−3
12 − λ) = 64σ∆1∆2, m3m4(r

−3
34 − λ) = 64σ∆3∆4,

m1m3(r
−3
13 − λ) = 64σ∆1∆3, m2m4(r

−3
24 − λ) = 64σ∆2∆4,(6)

m1m4(r
−3
14 − λ) = 64σ∆1∆4, m2m3(r

−3
23 − λ) = 64σ∆2∆3.

Grouping the above equations by row, so that the product of the
right-hand side is simply (64σ)2∆1∆2∆3∆4, and since the masses are
positive we obtain the well known Dziobeck relation

(7) (r−312 − λ)(r−334 − λ) = (r−313 − λ)(r−324 − λ) = (r−314 − λ)(r−323 − λ),

which must be satisfied for any planar 4-body CC. Solving each of the
three pairs of equations for λ we obtain

(8)

λ =
r−312 r

−3
34 − r−313 r

−3
24

r−312 + r−334 − r−313 − r−324

=
r−313 r

−3
24 − r−314 r

−3
23

r−313 + r−324 − r−314 − r−323

=
r−314 r

−3
23 − r−312 r

−3
34

r−314 + r−323 − r−312 − r−334

.

If we set
s1 = r−312 + r−334 , p1 = r−312 r

−3
34 ,

s2 = r−313 + r−324 , p2 = r−313 r
−3
24 ,

s3 = r−314 + r−323 , p3 = r−314 r
−3
23 ,

then equation (8) can be written as

(9) λ =
p1 − p2
s1 − s2

=
p2 − p3
s2 − s3

=
p3 − p1
s3 − s1

,
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t

t
t
t

m1 = 1

m2

m4

m3

���
���

HHHHHH

Figure 2. Central configurations with two parallel lines

which means that (s1, p1), (s2, p2), (s3, p3), viewed as points in R+2,
must lie on the same line with slope λ. This in turn, is equivalent to

∣∣∣∣∣∣∣

1 1 1

s1 s2 s3

p1 p2 p3

∣∣∣∣∣∣∣
= 0,

a representation that allows to write Dziobeck equation (7) as the nice
factorization

D = (r313−r312)(r323−r334)(r324−r314)− (r312−r314)(r324−r334)(r313−r323) = 0

The Dziobeck equation D = 0 must be satisfied for the six mutual
distances of every four-body planar central configuration.

3. Equations of trapezoidal central configurations

We consider four positive masses m1,m2,m3,m4 located at the ver-
tices of a trapezoid, i.e. located by pairs on two parallel lines, which
without loss of generality we assume are vertical. Since the central con-
figurations are invariant under homotheties we can take the distance
between the two parallel lines equal to one, after normalizing the unity
of mass we can assume that m1 = 1 located at the bottom part of
the left line, m2 above m1 on the same line and m3 above m4 on the
right line (see Fig. 2). ¿From now on we will use this ordering and
normalization of the units of mass and length in this work.

All trapezoidal central configurations are convex, so from the results
of McMillan [31], we know first that the diagonals of the respective
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quadrilateral are longer that any of the four sides, that is

(10) r13, r24 > r12, r14, r23, r34;

and second that the bigger and the smaller sides of the quadrilateral
correspond to opposite sides. We note that in the restricted problem,
i.e. when one or more masses are equal to zero, one of the sides of the
quadrilateral could be equal to one diagonal.

Lemma 1. The biggest side of the quadrilateral is on the parallel lines.

Proof. Assume that r23 is the biggest side and that we exclude the case
where all the sides are equal, that is, the square. So, its opposite side,
r14, has to be the smaller one, and

r13, r24 > r23 ≥ r12, r34 ≥ r14 > 1.

Then depending on the relative position of the four masses we have the
following four scenarios:

(a) r34 = r12 +
√
r223 − 1 +

√
r214 − 1,

(b) r34 = r12 +
√
r223 − 1−

√
r214 − 1,

(c) r34 = r12 −
√
r223 − 1 +

√
r214 − 1,

(d) r34 = r12 −
√
r223 − 1−

√
r214 − 1.

Notice that the cases wherem3 andm4 are either both abovem2 or both
below m1 are not possible because in these cases one of the diagonals
would be smaller than one of the sides.

In all scenarios we will arrive to a contradiction with the fact that
r23 is the biggest side or r14 the smaller one.

In the scenario (a), r34 > r12 +
√
r223 − 1 > 1 +

√
r223 − 1 > r23.

For the scenarios (b) and (c) we shall use the following result: Let
x, y ≥ 1 be two real numbers,

x−
√
x2 − 1 +

√
y2 − 1 = y if and only if x = y.

Moreover if y > x then x−
√
x2 − 1 +

√
y2 − 1 > y, and if y < x then

x−
√
x2 − 1 +

√
y2 − 1 < y.

In (b) r34 >
√
r223 − 1 + r14 −

√
r214 − 1 > r23, and in (c) r34 <

r23 −
√
r223 − 1 +

√
r214 − 1 < r14.

Finally, in (d) r34 < r23 −
√
r223 − 1 +

√
r214 − 1 < r14 from scenario

(c).
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Similar argument works if r14 > 1 is considered the biggest side. �

Without loss of generality we label the bodies so that r12 is the
longest side. We can also assume that r23 ≥ r14 by an appropriate
relabeling. Indeed, equations (6) are invariant if we interchange bodies
m1 and m2 and bodies m3 and m4. The choice r23 ≥ r14, together
with the fact that r12 is the longest side, implies the relation r24 ≥ r13
between the two diagonals.

Summarizing, we have proved the following result.

Lemma 2. Labeling conveniently the bodies, the mutual distances that
can provide trapezoid central configurations can be restricted to the fol-
lowing set

Ω̃ = {r ∈ R+6
: r24 ≥ r13 > r12 ≥ r23 ≥ r14 ≥ r34}.

Next we give the expression of the masses ratios for the trapezoid

central configurations on Ω̃. Taking into account the sign of the areas
Ai, we have ∆1 = −r34/2, ∆2 = r34/2, ∆3 = −r12/2, ∆4 = r12/2 (note
that we have considered the bodies ordered clockwise). Now from (6)
we obtain the following ratios of the masses

m2

m1

=
(λ− r−313 )

(r−323 − λ)
=

(λ− r−314 )

(r−324 − λ)
,(11)

m3

m1

=
(r−312 − λ) r12

(r−323 − λ) r34
=

(r−314 − λ) r12

(r−334 − λ) r34
,(12)

m4

m1

=
(r−312 − λ) r12

(λ− r−324 ) r34
=

(λ− r−313 ) r12

(r−334 − λ) r34
.(13)

We observe that the fact that all masses must be positive places addi-
tional constraints on the mutual distances. Using λ = (p2−p3)/(s2−s3)
and m1 = 1 into the first equation in (11) and after some simplifications
we obtain

(14) m2 =
r323r

3
24 (r313 − r314)

r313r
3
14 (r324 − r323)

.

Doing similar substitutions in (12) and (13) we get

(15) m3 =
r323r

2
34 (r312 − r314)

r212r
3
14 (r323 − r334)

,
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and

(16) m4 =
r324r

2
34 (r313 − r312)

r212r
3
13 (r324 − r334)

,

respectively.

The masses of equations (14), (15) and (16) are positive and well-

defined on Ω̃, except when r12 = r14 and r23 = r34 simultaneously. In
that case, we use λ = (p1 − p2)/(s1 − s2) into equation (12) getting

(17) m3 =
r534(r

3
14 − r324)(r314 − r313)

r514(r
3
13 − r334)(r324 − r334)

,

which also is positive and well-defined on Ω̃.

In summary we have proved the next result.

Lemma 3. Let

Ω̃′ = {r ∈ R+6
: r ∈ Ω̃ and D = 0}.

Any point in Ω̃′ defines a four–body trapezoid central configuration with

positive masses. Moreover, up to relabeling and rescaling the set Ω̃′

contains all trapezoid central configurations.

4. The trapezoids which are not realizable as central
configuration

In this section we prove that the vertices of the parallelogram, the
rectangle and the 3–sides equal trapezoid are not realizable as cen-
tral configurations of the four-body problem with the exception of the
square and the rhombus.

Assume that the bodies are ordered sequentially as in Figure 2.

Proposition 4. In the planar four–body problem there are no parallelo-
gram shape central configurations with positive masses at their vertices,
excluding squares and rhombus.

Proof. In a parallelogram configuration r12 = r34 and r23 = r14. From
Lemma 3, this parallelogram could be realizable as a central configura-
tion if r12 = r23 = r14 = r34, that is, if it is a rhombus or a square. �

The next result is an immediate consequence of Proposition 4.

Corollary 5. In the planar four–body problem there are no rectangle
shape central configurations with positive masses at their vertices.
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Proposition 6. In the planar four–body problem there are no 3–sides
equal trapezoid shape central configurations with positive masses at their
vertices, excluding the square.

Proof. A 3–sides equal trapezoid is in particular an isosceles trapezoid,
so the length of its diagonals are equal. Assume that r12 is the longest
exterior side, that the equal sides are r23 = r14 = r34 = α < r12 and
that the diagonals are r24 = r13 = β. Then from de Dziobeck equation
D = 0 we get (

β3 − α3
)2 (

α3 − r312
)

= 0.

So either r12 = r23 = r14 = r34 = α and r24 = r13 = β which corre-
sponds to a square, or β = α which is not possible because it implies
r24 = r13 = r12 = r23 = r14 = r34 = α (see Lemma 3).

Proceeding in a similar way when the equal sides are r12 = r23 =
r14 = α > r34 the Dziobeck equation becomes

(
β3 − α3

)2 (
α3 − r334

)
= 0.

When r34 = α we get again the square and when β = α we get condi-
tion r24 = r13 = r12 = r23 = r14 > r34. This condition can be satisfied
only when the positions of m3 and m4 coincide and the resulting con-
figuration is an equilateral triangle. Substituting the above relation
into (15) and (16) we get m3 = m4 = 0. �

5. The set of realizable trapezoid central
configurations

In this section we characterize the set of realizable trapezoid central
configurations.

Proposition 7. The boundaries of Ω̃′ (see Lemma 3) consist of a
square, a curve corresponding to the rhombus, a curve containing the
isosceles trapezoids and a curve corresponding to degenerate central
configurations with m4 = 0.

Proof. The possible boundaries of Ω̃′ are the sets where either r24 = r13,
r13 = r12, r12 = r23, r23 = r14, or r14 = r34. Next we characterize these
boundaries.

Case A: r24 = r13. The trapezoids having equal diagonals are the
rectangle, the square and the isosceles trapezoid. The rectangle is not
a realizable central configuration.
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Case B: r13 = r12. After substituting r13 = r12 into equation D = 0
we get the following three subcacases. Note that the configurations
coming from this condition are central configurations of the restricted
problem; i.e. with one or more masses equal to zero.

B.1: r12 = r14. This implies r12 = r23 = r14, so the masses m1, m2,
m3 and m4 are located at the vertices of an equilateral triangle
with r34 = 0.

B.2: r12 = r23. In this case r13 = r12 = r23, this means that the
masses m1, m2, and m3 are at the vertices of an equilateral
triangle.

B.3: r24 = r34. This implies r24 = r13 = r12 = r23 = r14 = r24 which
is not possible.

Case C: r12 = r23. After substituting r12 = r23 into equation D = 0 we
get the following subcacases.

C.1: r13 = r23. Corresponds to case B.2.
C.2: r23 = r24. This implies r24 = r13 = r12 = r23, so it corresponds

also to case B.2.
C.3: r14 = r34. In this case r12 = r23 and r14 = r34, so the configura-

tion is a kite. Since the configuration must be also a trapezoid
it is necessarily a rhombus.

Case D: r23 = r14. The trapezoids having two equal sides are the
isosceles trapezoid, the rhombus, the square, the parallelogram and
the rectangle. The last two do not correspond to realizable central
configurations (see Proposition 6).

Case E: r14 = r34. After substituting r14 = r34 into equation D = 0 we
get the following subcacases.

E.1: r12 = r23. Corresponds to case C.3.
E.2: r13 = r34. This implies r13 = r12 = r23 = r14 = r34, so the

configuration is a rhombus.
E.3: r24 = r34. Corresponds to case B.3.

�

Next we give the shape of the set of realizable trapezoid central
configurations. To simplify the computations we parametrize the set
of realizable central configurations by using the positions of the masses:
q1 = (0, 0), q2 = (0, a), q3 = (1, b), q4 = (1, c), with a ≥ 1 and b > c,
and substituting the corresponding mutual distances into the Dziobeck
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equation D = 0. This equation gives a relation between a, b, c which
provides an implicit 2–dimensional surface in R3.

Theorem 8. Let q1 = (0, 0), q2 = (0, a), q3 = (1, b), q4 = (1, c), with
a ≥ 1 and b > c, be the positions of the masses m1, m2, m3 and m4

respectively, then the set Ω of realizable CC is

{(a, b, c) ∈ R3 : a ≥ 1, b > c, D = 0, r24 ≥ r13 > r12 ≥ r23 ≥ r14 ≥ r34},
and the boundary of Ω is C1 ∪ C2 ∪ C3 ∪ P1 ∪ P2 ∪ P3 where

C1 = {(2/
√

3, 1/
√

3, c) : c ∈ (−1/
√

3, 1/
√

3)},
C2 = {

(√
1 + c2, c+

√
1 + c2, c

)
: c ∈ (−1/

√
3, 0)},

C3 = {(a, b, c) : a = b+ c, f(b, c) = 0, c ∈ (0, 1/
√

3)},
P1 = (2/

√
3, 1/
√

3, 1/
√

3),

P2 = (2/
√

3, 1/
√

3,−1/
√

3),

P3 = (1, 1, 0),

and

f(b, c) =
(
(b+ c)3 − (c2 + 1)3/2

) (
(b2 + 1)3/2 − (b− c)3

)
−

(
(b2 + 1)3/2 − (b+ c)3

) (
(c2 + 1)3/2 − (b− c)3

)
.

See Figure 3 for the plot of the set Ω.

The points of C1 provide configurations of the restricted problem with
m1, m2 and m3 in an equilateral triangle; the points of C2 and C3

provide rhombus and isosceles trapezoid central configurations, respec-
tively; P1 corresponds to an equilateral triangle configuration of the re-
stricted problem with a collision of m3 and m4 at one of the vertices; P2

corresponds to a configuration of the restricted problem with the masses
at the vertices of a rhombus and such that the positions of m1, m2 and
m3 are the vertices of an equilateral triangle; and P3 corresponds to the
square central configuration.

Proof. Easily we can compute r24 =
√

1 + (a− c)2, r13 =
√

1 + b2,

r12 = a, r23 =
√

1 + (a− b)2, r14 =
√

1 + c2, and r34 = b − c. Propo-
sition 7 gives the characterization of the central configurations on the
boundaries of Ω. We prove the result by using this characterization
and the parametrization (a, b, c).

On the boundary with the masses m1, m2 and m3 at the vertices of
an equilateral triangle we have r13 = r12 = r23. Solving the system of
equations r13 = r12 = r23, we get a = 2/

√
3 and b = 1/

√
3. Substituting
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this solution into r23 and r14 and imposing the condition r23 ≥ r14, we
get the condition −1/

√
3 ≤ c ≤ 1/

√
3. It is easy to check that the

solution (a, b, c) = (2/
√

3, 1/
√

3, c) with c ∈ [−1/
√

3, 1/
√

3] satisfies
r24 ≥ r13 ≥ r12 ≥ r23 ≥ r14 ≥ r34. So the set C1 ∪ P1 ∪ P2 belongs
to the boundary of Ω. Moreover it is easy to check that the point P1

correspond to an equilateral triangle configuration with the masses m3

and m4 colliding at the corresponding vertex of the triangle; and the
point P2 corresponds to a rhombus configuration such that m1, m2 and
m3 are at the vertices of an equilateral triangle.

On the rhombus configurations we have r12 = r23 = r14 = r24. Solv-
ing the system of equations r12 = r23 = r14 = r24 we get the solu-
tion s(c) = (a, b) = (

√
1 + c2, c +

√
1 + c2). Imposing that this solu-

tion satisfies r24 ≥ r13 > r12 we get the condition −1/
√

3 < c ≤ 0.
So C2 belongs to the boundary of Ω. Moreover s(0) = (1, 1) and
s(−1/

√
3) = (2/

√
3, 1/
√

3). So the endpoints of C2 are P2 and P3.

On the isosceles trapezoid, configurations (a, b, c) are such that r23 =
r14, r24 = r13 and D = 0. If r23 = r14 and r24 = r13, then the Dziobeck
equation D = 0 becomes

(
r314 − r313

) ((
r312 − r314

) (
r313 − r334

)
−
(
r313 − r312

) (
r314 − r334

))
= 0.

If r14 = r13, then r24 = r13 = r12 = r23 = r14. This corresponds to the
point P1 (see the proof of Proposition 6). Assume now that r14 6= r13.
Solving system r23 = r14, r24 = r13 we get a = b + c. So r24 = r13 =√
b2 + 1, r12 = b+c, r23 = r14 =

√
c2 + 1, and r34 = b−c and condition

D = 0 is equivalent to condition f(b, c) = 0. Cors and Roberts in [15],
using a different parametrization, proved the existence of a unique one-
parameter family of isosceles trapezoid central configurations which is
characterized by a differentiable function of one of the parameters in
the parameter space. Moreover they prove that the endpoints of this
family are the square configuration and the configuration consisting
of an equilateral triangle with the masses m3 = m4 = 0 at one of
the vertices. In our parametrization the differentiable function of the
parameter is the function b(c) defined implicitly by f(b, c) = 0 and the
endpoints of the curve are the points P1 and P3. Thus C3 is the last
curve in the boundary of Ω and it is a curve joining P1 and P3, see
Figure 3. �

Unfortunately we are not able to prove that Ω is a differentiable
function over the two positions of the masses, as was stablish in the
co–circular case, see [15]. Nevertheless, in the next section we prove
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Figure 3. The surface Ω of the trapezoid central con-
figurations in the abc–space.

that there exist a one–parameter family of trapezoid central configu-
rations that divides Ω in two disjoint regions, namely the region that
contains the trapezoid central configurations and the one that contains
the obtuse trapezoid central configurations.

6. The right trapezoid family

We suppose again that we are in the hypotheses of Lemma 2; i.e.
that r12 > r23 > r14 > r34. We assume also that the position of the
masses m1 = 1,m2,m3 and m4 are respectively (0, 0), (0, a), (1, b), (1, 0)
with a > 1 and a > b > 0. Easily we can compute the mutual distances
r12 = a, r23 =

√
1 + (a− b)2, r14 = 1, r34 = b, and r13 =

√
1 + b2 and

r24 =
√

1 + a2 (the diagonals).

First we give the set Ω̃ (see Lemma 2) on the right trapezoid family
parameterized by the positions of the masses (a, b). It is obvious that
condition r24 > r12 is always satisfied and that condition r34 6 r14
implies b 6 1. On the other hand, it is easy to see that conditions
r13 > r12 and r12 > r23 imply that a < a1(b) =

√
1 + b2 and a > a2(b) =

(b2 + 1)/(2b) respectively. From here we get condition a1(b) > a2(b)

which is satisfied for b > 1/
√

3. In short, the set Ω̃ (see Lemma 2) on
the right trapezoid family is

Ωr =

{
(a, b, c) ∈ R3 :

b2 + 1

2b
6 a <

√
1 + b2,

1√
3
< b 6 1, c = 0

}
.
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(a) (b)

Figure 4. (a) The region Ωr and the the curve D = 0
for the right trapezoid family in the a− b plane. (b) The
the curve D = 0 for the right trapezoid family on the
region Ω.

We can see that a1 is a decreasing function in b ∈ (1/
√

3, 1] with
a1(1/

√
3) = 2/

√
3 and a1(1) = 1, whereas a2 is an increasing function

in b ∈ (1/
√

3, 1] with a2(1/
√

3) = 2/
√

3 and a2(1) =
√

2 (see Figure 4).
Therefore a ∈ (1,

√
2).

Theorem 9. The curve D = 0 is a graph with respect to the variable a
in the region Ωr (see Figure 4). In fact, ∂D/∂a evaluated at the curve
D = 0 restricted to Ωr is negative.

Proof. When b = 1 equation D = 0 becomes
(

1− 2
√

2
)((

a2 + 1
)3/2 − 1

)(
a3 −

(
a2 − 2a+ 2

)3/2)
= 0,

which has a unique real solution with a ≥ 1, the solution a = 1. After
straightforward computations we see that substituting a = a2(b) into
D we get a function of b that is zero at b = 1 and b = 1/

√
3 and positive

for b ∈ (1/
√

3, 1). In a similar way substituting a = a1(b) into D we
get a function of b that is zero at b = 0 and b = 1/

√
3 and negative for

b ∈ (1/
√

3, 1]. Therefore each curve in Ωr joining a point of the curve
a1(b) with a point of the curve a2(b) has at least a point with D = 0.
Therefore there exist al least one set in Ωr satisfying D = 0. Next we
see that this set is a graph in the variable a that joins the points (1, 1)
and (2/

√
3, 1/
√

3), see Figure 4(a).
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By simple computations we get

∂D

∂a
=

∂D

∂r12

∂r12
∂a

+
∂D

∂r23

∂r23
∂a

+
∂D

∂r24

∂r24
∂a

,

where

∂r12
∂a

= 1,

∂r23
∂a

=
a− b
r23

=
r12 − r34
r23

,

∂r24
∂a

=
a

r24
=
r12
r24

,

and

∂D

∂r12
= −3r212

(
r313 − r323

) (
r324 − r334

)
− 3r212

(
r324 − r314

) (
r323 − r334

)
,

∂D

∂r23
= 3r223

(
r313 − r312

) (
r324 − r314

)
+ 3r223

(
r312 − r314

) (
r324 − r334

)
,

∂D

∂r24
= 3r224

(
r313 − r312

) (
r323 − r334

)
− 3r224

(
r312 − r314

) (
r313 − r323

)
.

Rearranging the terms in a convenient way ∂D/∂a can be written in
terms of the mutual distances as

∂D

∂a
= 3(f1 + f2 + f3 + f4 + f5 + f6)

where

f1 = −r212
(
r324 − r314

) (
r323 − r334

)
,

f2 = −r212
(
r313 − r323

) (
r324 − r334

)
,

f3 = r23(r12 − r34)
(
r313 − r312

) (
r324 − r314

)
,

f4 = r23(r12 − r34)
(
r312 − r314

) (
r324 − r334

)
,

f5 = r12r24
(
r313 − r312

) (
r323 − r334

)
,

f6 = −r12r24
(
r312 − r314

) (
r313 − r323

)
.

Next, we will see that at the points of Ωr satisfying D = 0 the following
conditions hold: f1 + f4 < 0, f2 + f5 < 0 and f3 + f6 6 0. Therefore
∂D/∂a evaluated at the curve D = 0 restricted to Ωr is negative.

From D = 0 we get

(
r324 − r314

) (
r323 − r334

)
=

(r312 − r314) (r313 − r323) (r324 − r334)
r313 − r312

.
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Then f1 + f4 can be written as

f1 + f4 =
g1 (r312 − r314) (r324 − r334)

r313 − r312
,

where

g1 = −r34r23
(
r313 − r312

)
− r12(r12 − r23)

(
r12r23(r12 + r23) + r313

)
.

Since r13 > r12 > r23 on Ωr and g1 < 0 on Ωr, it follows that f1+f4 < 0
evaluated at the curve D = 0 restricted to Ωr.

Proceeding as above, using that D = 0 expression f2 + f5 can be
written as

f2 + f5 =
g2 (r313 − r312) (r323 − r334)

r312 − r314
,

where

g2 = −r12(r24 − r12)(r314 + r212r24 + r12r
2
24).

Since r24 > r12 on Ωr, g2 < 0 on Ωr, we obtain that f2 + f5 < 0
evaluated at the curve D = 0 restricted to Ωr.

Finally, using that D = 0 expression f3 + f6 can be written as

f3 + f6 =
g3 (r313 − r312) (r324 − r314)

r324 − r334
,

where

g3 = −r24r12(r323 − r334) + r23(r12 − r34)(r324 − r334).
There exists a curve in Ωr such that g3 = 0, so the previous arguments
are not valid to prove that f3 + f6 evaluated at the curve D = 0
restricted to Ωr is negative.

In order to avoid the last obstacle, by using resultants we will prove
that there are no values (a, b) in the interior of Ωr for which D and g3
are zero simultaneously.

Let Res[P,Q, x] denote the resultant of the polynomials P (x, y) and
Q(x, y) with respect to x. The resultant Res[P,Q, x] is a polynomial
in the variable y satisfying the following property: if (x, y) = (x∗, y∗)
is a solution of system P (x, y) = 0, Q(x, y) = 0 then y = y∗ is a
zero of Res[P,Q, x]. In other words, the set of zeroes of Res[P,Q, x]
contains the components y of all solutions of the system P (x, y) = 0
and Q(x, y) = 0. We observe that it may contain additional solutions
that are not related with the solutions of the system P (x, y) = 0 and
Q(x, y) = 0.
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Let

(18)
e1 = e1(a, b, r13, r23, r24) = 0,
e2 = e2(a, b, r23, r24) = 0,

be the system defined by the two equations D = 0 and g3 = 0 after
performing the substitutions r12 = a, r14 = 1 and r34 = b. Here
we think that the mutual distances r13, r23 and r24 are the positive
solutions of system

e3 = e3(a, b, r13) = r213 − (b2 + 1) = 0,

e4 = e4(a, b, r23) = r223 − ((a− b)2 + 1) = 0,

e5 = e5(a, b, r24) = r224 − (a2 + 1) = 0.

Using resultants we eliminate the variables r13, r23 and r24 from the
equations (18) in the following way. We eliminate the variable r13 from
e1 by doing the resultant

R1 = Res[e1, e3, r13].

Then we eliminate the variable r23 from R1 and e2 by doing the resul-
tants

S1 = Res[R1, e4, r23], S2 = Res[e2, e4, r23],

and the variable r24 from S1 and S2 by doing the resultants

T1 = Res[S1, e5, r24], T2 = Res[S2, e5, r24].

Here T1 = 16a2b2T̃1 and T2 = b4T̃2, were T̃1 and T̃2 are polynomials of
total degree 64 and 16, respectively, in the variables a and b. Note that
by the properties of resultants the set of solutions of the new system of

equations T̃1 = 0, T̃2 = 0 contains all solutions with a, b 6= 0 of system
(18), or equivalently all the solutions with a, b 6= 0 of system D = 0,
g3 = 0 (thinking D and g3 as a function of a, b via the mutual distances
rij).

Now we solve system T̃1 = 0, T̃2 = 0 by using resultants again. We

compute Res[T̃1, T̃2, a] and we get the polynomial

(19)
W (b) = (b− 1)16b96 (b2 + 1)

20
(b2 − b+ 1)

4
(b2 + b+ 1)

16

(3b2 − 4)
2

(21b4 + 12b2 + 16)
4

(21b4 + 24b2 + 16)
2

W1(b)W2(b)W3(b)W4(b),

where W1, W2, W3 and W4 are polynomials of degrees 162, 202, 210,
and 214 respectively. From properties of resultants the set of zeroes

of W contains the component b of all the solutions of system T̃1 = 0,

T̃2 = 0. Recall that we are only interested in solutions belonging to
Ωr, so we only consider zeroes with 1/

√
3 < b 6 1. We compute
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analytically the zeroes of the first eight factors of W and numerically
the zeroes of the remaining four factors of W and we get the following
solutions with 1/

√
3 < b 6 1

b = 0.61283303 . . . , b = 0.69216326 . . . ,

b = 0.71614387 . . . , b = 0.76874157 . . . ,

b = 0.79099409 . . . , b = 0.82966657 . . . ,

b = 0.91953907 . . . , b = 1.

Next we compute Res[T̃1, T̃2, b] and we get the polynomial

(20)
w(a) = (a− 1)24a64 (a2 + 1)

40
(a2 − a+ 1)

4
(a2 + a+ 1)

8

(3a2 − 1)
2

(21a4 + 6a2 + 1)
4

(21a4 + 54a2 + 49)
2

w1(a)w2(a)w3(a)w4(a),

where w1, w2, w3 and w4 are polynomials of degrees 162, 202, 210, and
214 respectively. The set of zeroes of w contains the component a of

all the solutions of system T̃1 = 0, T̃2 = 0. Since we are only interested
in solutions belonging to Ωr, we only consider zeroes with 1 6 a 6

√
2.

As above we compute analytically the zeroes of the first eight factors
of w and numerically the zeroes of the remaining four factors of w and
we get the following solutions with 1 6 a 6

√
2

a = 1, a = 1.04304633 . . . ,

a = 1.07124596 . . . , a = 1.08484650 . . . ,

a = 1.09217286 . . . , a = 1.10559255 . . . ,

a = 1.16459040 . . . .

We consider D and g3 as a function of (a, b) by substituting the ex-
pressions of the mutual distances rij. The possible solutions (a, b) of
system D = 0, g3 = 0 are the pairs (a, b) = (a∗, b∗) formed by a zero
a∗ of w with a∗ ∈ [1,

√
2], and a zero b∗ of W with b∗ ∈ (1/

√
3, 1].

Substituting all possible pairs (a, b) = (a∗, b∗) into D = 0, g3 = 0 we
see that (a, b) = (1, 1) is the unique pair that provides a solution of
the system. This point belongs to the boundary of Ωr. Therefore the
function g3 does not change its sign on the solutions of D = 0 that
belong to Ωr.

It is easy to the check that the point (a, b) = (2/
√

3, 1/
√

3), which
belongs to the boundary of Ωr, satisfies D = 0. Moreover the function
g3 evaluated at (a, b) = (2/

√
3, 1/
√

3) is negative. Hence g3 6 0 in Ωr.
This end the proof of the theorem. �
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æææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ

ææææææææææææææææææææææææææææææææææææææææææææææææææææææ
æææææææææææææææææææææææææææææææææææææææææææææææææææææ

ææææææææææææææææææææææææææææææææææææææææææææææææææææææææ
ææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ

æææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ

ææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ
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Figure 5. The plot of the masses m2 (upper line), m3

(medium line) and m4 (bottom line) along the right
trapezoid family.

In short, the set of realizable right trapezoid central configurations
is

Ω′r = {(a, b, c) ∈ Ωr : D = 0},
and it is plotted in Figure 4. In Figure 5 we plot the masses along
the right trapezoid family parameterized by the parameter a. We note
that the limit case (a, b) = (1, 1) correspond to the square with equal
masses, and the limit case (a, b) = (2/

√
3, 1/
√

3) corresponds to a right
trapezoid central configurations with masses m1 = 1, m4 = 0 and

m2 =
7
(
8
√

3− 9
) (

49 + 8
√

7
)

2511
= 0.94993335 . . . ,

m3 =
2

63

(
8
√

3− 9
)

= 0.15417163 . . . ,

(21)

such that the masses m1,m2,m3 form an equilateral triangle with edge
length 2/

√
3.

7. Trapezoid CC with a couple of equal masses

In this section we will study the trapezoid CC with a pair of equal
masses. In [15] Cors and Roberts shown that for a given order of the
mutual distances in any co–circular central configuration the set of
masses is completely ordered. A similar result for the trapezoid central
configurations has been obtained recently by Santoprete [40]. Although
in that case the masses are not totally ordered. With our particular
choice of labeling, from [40] any trapezoid central configuration satisfies

(22) m4 ≤ m3 ≤ m1 = 1 m4 ≤ m2.
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Figure 6. The image of Ω in m2m3m4–space under
equations (14), (15) and (16) with m1 = 1.

Moreover, also from Santoprete [40], we know that if m3 = m1 = 1 or
m2 = m4, then the central configuration is a rhombus and the remain-
ing two masses have to be equal. And if m3 = m4, then the central
configuration is an isosceles trapezoid and again the two remaining
masses are necessarily equal. Figure 6 shows the full set of masses for
which a trapezoid central configuration exist.

From the previous results only two cases of trapezoid central con-
figuration with only a pair of equal masses remains unknown, namely,
m2 = m3 and m2 = m1 = 1. In the next two subsections we are going
to show the existence of these two classes of trapezoid central config-
uration. Something remarkable is that we will proved analytically the
existence of non–symmetric trapezoid central configurations with two
equal masses. As far as we know this result was known numerically,
but we think that is the first time that this result is proved analytically
in the four–body problem.

Now we study the value of masses along the boundary of Ω.

The equilateral triangle family. By substituting the points of C1 into
(14), (15) and (16) we get m4 = 0 and
(23)

m2 = µ2(c) =

(
8
√

3− 9k31
)
k32

9k31 (k32 − 8)
, m3 = µ3(c) =

2
(√

3− 3c
)2 (

8
√

3− 9k31
)

27
(√

3c+ 1
)
k31k

2
2

,

where k1 =
√
c2 + 1 and k2 =

√
3c2 − 4

√
3c+ 7. The function µ2 is

defined for all c ∈ [−1/
√

3, 1/
√

3), µ2(−1/
√

3) = 0 and µ2(c) → 1
when c → 1/

√
3; moreover it is increasing for c ∈ [−1/

√
3, c0), it has

a maximum at c0 = 0.27448350 . . . with µ2(c0) = 1.0912476 . . . and
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it is decreasing for c ∈ (c0, 1/
√

3). The function µ3 is defined for all
c ∈ (−1/

√
3, 1/
√

3], µ3(1/
√

3) = 0, µ3(c)→ 1/2 when c→ −1/
√

3 and
it is decreasing for c ∈ (−1/

√
3, 1/
√

3]. The plot of the masses on C1

is given in Figure 7 (a).

The rhombus family. By substituting the points of C2 into (14), (16)
and (17) we get m1 = m3 = 1 and

m2 = m4 = µr(c) = −
((c− k)2 + 1)

3/2
(

((c+ k)2 + 1)
3/2 − k3

)

(
k3 − ((c− k)2 + 1)3/2

)
((c+ k)2 + 1)3/2

,

where k =
√

1 + c2. Note that on the rhombus family expression (15)
is not well defined and we should take expression (17) instead of it. We
can see that µr is an increasing function defined for all c ∈ [−1/

√
3, 0],

such that µr(−1/
√

3) = 0 and µr(0) = 1. The plot of the masses on C2

is given in Figure 7 (b).

The isosceles trapezoid family. On the isosceles trapezoid family we
know that m1 = m2 = 1 and m3 = m4 = µ (see for instance [15]),
but since we do not have an explicit expression of the solutions of
f(b, c) = 0, we cannot give the explicit expression of µ as a function of
the parameter c. Studying numerically the function µ we see that it is
a decreasing function in c ∈ (0, 1/

√
3) such that µ → 1 when c → 0

and µ → 0 when c → 1/
√

3. The plot of the masses on C3 is given in
Figure 7 (c).

Note that if we approach to P2 over the set C2 then m3 → 1, whereas
if we approach to P2 over the set C1 then m3 → 1/2. Thus the limit of
m3 as we approach to P2 depends on the path you take and m3 has a
non removable discontinuity at P2.

7.1. m2 = m3. Take f = m2 −m3. We are interested in the solutions
of f = 0. On C2 (corresponding to the rhombus family) we have r12 =
r23 = r34 = r14 and m1 = m3 = 1.

We know from equation (14) that on C2

(24) m2 =
r323r

3
24 (r313 − r314)

r313r
3
14 (r324 − r323)

=
r324 (r313 − r312)
r313 (r324 − r312)

.

Therefore

m2 < 1 ⇐⇒ r324 (r313 − r312) < r313 (r324 − r312)
⇐⇒ −r324 r312 < −r313 r312 ⇐⇒ r324 > r313.
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Figure 7. (a) The plot of the masses m2 (continuous
line) and m3 (dashed line) on the boundary C1. (b) The
plot of the masses m2 = m4 (continuous line) and m1 =
m3 = 1 (dashed line) along the rhombus family. (c)
The plot of the masses m1 = m2 = 1 (dashed line) and
m3 = m4 (continuous line) along the isosceles trapezoid
family.

The last inequality follows from the fact that r24 > r13 > 1. Therefore
on C2 we have f = m2 −m3 < 0.

Now on C3 (corresponding to the isosceles trapezoid family) we have
r23 = r14, r24 = r13 and m1 = m2 = 1. We also know that on this
family m3 = m4.

m3 = m4 < 1 ⇐⇒ r234 (r313 − r312)
r212 (r313 − r334)

⇐⇒ r234(r
3
13 − r312) < r212(r

3
13 − r334)

⇐⇒ −r313(r212 − r234) < r212r
2
34(r12 − r34)

⇐⇒ −r313(r12 − r34)(r12 + r34) < r212r
2
34(r12 − r34)

⇐⇒ −r313(r12 + r34) < r212r
2
34.

That is, on C3 we have f = m2−m3 > 0. Therefore for any given path
connecting C2 and C3 in Ω, there exist (a, b, c) ∈ Ω such that f = 0 or
equivalently m2 = m3.

Numerically we show that for any fixed path connecting C2 and C3

in Ω the solution of f = 0 is unique. Curve representing the zeros of f
in Ω goes from P3 to (2/

√
3, 1/
√

3,−0.351839354 . . . ) ∈ C1 (see Figure
8). To verify the last statement, we observe that the function f on C1

becomes

f =

(
8

3
√
3
− (c2 + 1)

3/2
)(
− 6

(
1√
3
−c

)2

8−(3c2−2
√
3c+1)

3/2 − (3c2−4
√
3c+7)

3/2

8−(3c2−4
√
3c+7)

3/2

)

(c2 + 1)3/2
.
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Figure 8. (a) In black, the curve m2 = m3 on the re-
gion Ω. (b) The curves m1 = 1, m2 = m3, and m4

parameterized by a on the curve in (a).

We apply Sturm Theorem to conclude that f = 0, as a polynomial of
degree 24, has a unique real solution in c ∈ (−1/

√
3, 1/
√

3), namely
c = −0.351839354 . . .

7.2. m2 = m1 = 1. It is clear that m2 = m1 = 1 along the isosceles
trapezoid central configuration family, that is, on the boundary C3.
Moreover m1 = m2 = m3 = m4 = 1 on P3, that is, on the square
configuration, and m2 −m1 < 0 on C2 ∪ P2.

On the boundary C1 ∪ {P1, P2} we have m4 = 0 and m1,m2 and
m3 at the vertices of an equilateral triangle. Let m2 = µ2(c) be the
value of the mass m2 on C1, see (23). We have seen that µ2(c) → 1
when c → 1/

√
3, and that µ2 is decreasing for c ∈ (c0, 1/

√
3) with

c0 = 0.27448350 . . . , so m2 −m1 > 0 near P1. On the other hand at
the point Q = (2/

√
3, 1/
√

3, 0) corresponding to the right trapezoid we
have m2 = 0.15417163 · · · < 1, see (21) which implies m2 − m1 < 0.
Therefore there exists a point T on C1 such that m2 = m1. Again
applying Sturm Theorem to a polynomial of degree 22 in c, we can
conclude that T is unique, and its coordinates are (2/

√
3, 1/
√

3, c1)
where c1 = 0.0517595932 . . .

Let C̃1 = {(a, b, c) ∈ C1 : c < c1} and C̃′1 = {(a, b, c) ∈ C1 : c > c1}.
Therefore, for any given path connecting C̃1 and P3 ∪ C3 ∪ P1 ∪ C̃′1 in
Ω, there exist (a, b, c) ∈ Ω such that m2 = m1 = 1.
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Figure 9. (a) In black, the curve m2 = 1 on the region
Ω. (b) The curves of m3 and m4, parameterized by a on
the curve in (a).

Numerically we show that for any fixed path connecting C̃1 and

P3∪C3∪P1∪ C̃′1 in Ω the solution of m2−1 = 0 is unique. Curve repre-
senting the zeros of m2− 1 joins the boundaries C3 and C1. This curve
goes from (1.13102016 . . . , 0.896392974 . . . , 0.234627188 . . . ) ∈ C3 to
(2/
√

3, 1/
√

3, c1) ∈ C1 (see Figure 9 (a)). The values of the masses m3

and m4 along this curve are plotted in Figure 9 (b).

8. Conclusions

Using the positions of the masses we have classified the set of trape-
zoid central configurations. This set is a two–dimensional surface whose
boundaries are known families consisting in a rhombus, an isosceles
trapezoid and an equilateral triangle with a zero mass off the triangle.
Although a specific ordering of the masses has not hold for any trape-
zoid central configuration, we can split the two–dimensional surface in
three disjoint regions where the set of masses is totally ordered. Some-
what we must remark that we have proved analytically the existence
of non–symmetric trapezoid central configurations with a pair of equal
masses.

There exist a one–parameter family of right trapezoid central con-
figurations that also splits the two–dimensional surface in two disjoint
regions, namely the acute and the obtuse regions. Along such a non–
symmetric family the masses are completely ordered, that is, the family
belong to one of the previous three regions, concretely the middle one,
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where the set of masses is totally ordered. Moreover, when the pair of
equal masses belong to biggest parallel side, only acute trapezoid cen-
tral configurations are allow. On the other hand, when the two equal
masses belongs to the non–parallel side, only obtuse trapezoid central
configurations are allow.
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