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RESTRICTED r-STIRLING NUMBERS AND THEIR COMBINATORIAL

APPLICATIONS

BEÁTA BÉNYI, MIGUEL MÉNDEZ, JOSÉ L. RAMÍREZ, AND TANAY WAKHARE

Abstract. We study set partitions with r distinguished elements and block sizes found in
an arbitrary index set S. The enumeration of these (S, r)-partitions leads to the introduc-
tion of (S, r)-Stirling numbers, an extremely wide-ranging generalization of the classical
Stirling numbers and the r-Stirling numbers. We also introduce the associated (S, r)-Bell
and (S, r)-factorial numbers. We study fundamental aspects of these numbers, including
recurrence relations and determinantal expressions. For S with some extra structure, we
show that the inverse of the (S, r)-Stirling matrix encodes the Möbius functions of two
families of posets. Through several examples, we demonstrate that for some S the matri-
ces and their inverses involve the enumeration sequences of several combinatorial objects.
Further, we highlight how the (S, r)-Stirling numbers naturally arise in the enumeration
of cliques and acyclic orientations of special graphs, underlining their ubiquity and im-
portance. Finally, we introduce related (S, r) generalizations of the poly-Bernoulli and
poly-Cauchy numbers, uniting many past works on generalized combinatorial sequences.

1. Introduction

Set partitions of a finite set are an important and classical topic in enumerative combi-
natorics. Extensive work has been conducted concerning enumeration of the total num-
ber of set partitions under certain constraints (cf. [20]). We define a partition of a set
[n] := {1, 2, . . . , n} as a collection of pairwise disjoint subsets, called blocks, whose union
is [n]. For a block B, we denote the cardinality of the block B by |B|. The sequence
counting the total number of set partitions of [n] into k non-empty blocks is the Stirling
numbers of the second kind, denoted by

{
n
k

}
.

There are several important generalizations of the Stirling numbers. One of them is the
r-Stirling numbers of the second kind introduced by Broder [8]. Letting r be a non-negative
integer, the r-Stirling numbers of the second kind,

{
n
k

}
r
, are defined as the number of set

partitions of [n+ r] into k+ r blocks with the additional condition that the first r elements
are in distinct blocks. The partitions where the first r elements are in distinct blocks are
called r-partitions, and the elements 1, 2, . . . , r are called special elements. It is clear that
if r = 0 we obtain the Stirling numbers of the second kind.

Date: December 3, 2018.
2010 Mathematics Subject Classification. Primary 11B83, 11B73 ; Secondary 05A19, 05A15.
Key words and phrases. Set partitions, generalized Stirling numbers, generating functions, combinatorial

identities.
1

http://arxiv.org/abs/1811.12897v1
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For example,
{
2
1

}
2
= 5, with the relevant partitions being

{{1}, {2}, {3, 4}}, {{1, 3}, {2}, {4}}, {{1, 4}, {2}, {3}},

{{1}, {2, 3}, {4}}, {{1}, {2, 4}, {3}}.

Notice that the special elements are overlined.
The r-Stirling numbers of the second kind satisfy the following recurrence [8]:

{
n

k

}

r

=(k + r)

{
n− 1

k

}

r

+

{
n− 1

k − 1

}

r

, n ≥ k,(1)

with
{
n
k

}
r
= 0 if n < k and

{
n
k

}
r
= 1 if n = k.

Mező [22] defined the r-Bell numbers, Bn,r, as the number of r-partitions of an n+r-element
set. This is equivalent to

Bn,r =

n∑

m=0

{
n

m

}

r

.

A natural generalization of the r-Stirling number of the second kind arises from considering
the restriction that all block sizes are contained in a set S ⊆ Z+. For n, k, r ≥ 0 and
S ⊆ Z+, we let ΠS,r(n, k) denote the set of all r-partitions of [n+ r] into k + r non-empty
blocks, such that the cardinality of each block is contained in the set S. We call this kind
of partition an (S, r)-partition. In particular, we let

{
n
k

}
S,r

denote the cardinality of the

set ΠS,r(n, k), and call this sequence the (S, r)-Stirling numbers of the second kind. The
total number of (S, r)-partitions of [n+ r] is the (S, r)-Bell number Bn,S,r. It is clear that

Bn,S,r =

n∑

k=0

{
n

k

}

S,r

.

Recently, Mihoubi and Rahmani [23] studied this new sequence as a generalization of the
partial Bell polynomials. If S = {k1, k2, . . . }, then we have the following exponential
generating functions:

∞∑

n=k

{
n

k

}

S,r

xn

n!
=

1

k!

(
∑

i≥1

xki−1

(ki − 1)!

)r(∑

i≥1

xki

ki!

)k

,(2)

∞∑

n=0

Bn,S,r
xn

n!
=

(
∑

i≥1

xki−1

(ki − 1)!

)r

exp

(
∑

i≥1

xki

ki!

)
.(3)

It is clear that we recover the r-Stirling numbers by setting S = Z+ = {1, 2, 3, . . .}. If
we take S = {1, 2, . . . , m} we obtain the restricted r-Stirling numbers of the second kind
[19]. In a similar way, if we take S = {m,m+ 1, . . . }, we recover the associated r-Stirling
numbers of the second kind [19]. Moreover, if r = 0 we have the S-restricted Stirling
numbers of the second kind [6, 12, 29].
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We can also obtain the following general trivariate generating function by formally summing
(2) over r and k, and interchanging the order of summation:

(4)

∞∑

r=0

∞∑

n=0

(
n∑

k=0

{
n

k

}

S,r

yk

)
zrxn

r!n!
= exp

(
y
∑

i≥1

xki

ki!

)
exp

(
z
∑

i≥1

xki−1

(ki − 1)!

)
.

The paranthesized summand can be regarded as an (S, r) generalization of a Bell polyno-
mial, and will be considered later.
In this paper we study (S, r)-partitions, building on the work of Mihoubi and Rahmani. In
particular, we prove several new combinatorial identities, and provide combinatorial proofs
for some known identities. Using the theory of Riordan matrices we present determinantal
identities for the generalized Bell and factorial sequences. Moreover, for S with a spe-
cific structure, we give combinatorial interpretations for the inverses of the (S, r)-Stirling
matrices of both kinds. Additionally, we present some examples of (S, r)-partitions which
naturally arise in graph theory. Finally, we introduce a new family of polynomials which
generalizes the poly-Bernoulli numbers and poly-Cauchy numbers.

2. Some Combinatorial Properties

2.1. Recurrence relations. First, we derive some fundamental recurrence relations sat-
isfied by the (S, r)-Stirling numbers and associated (S, r)-Bell numbers. We mainly provide
combinatorial proofs, but all of the following results have generating function proofs. Con-
sider the generating function for

{
n
k

}
S,r

in the form

(5)
∞∑

n=k

{
n

k

}

S,r

xn

n!
=

1

k!

(
∑

s∈S

xs−1

(s− 1)!

)r(∑

s∈S

xs

s!

)k

.

A generalization of 5, the partial r-Bell polynomials, was recently introduced by Mi-
houbi and Rahmani [23]. To convert between their notation and ours we note that their

B
(r)
n+r,k+r(aℓ, bℓ) corresponds to our

{
n
k

}
S,r

, with

aℓ = bℓ =

{
1, ℓ ∈ S,

0, 0 ∈ S;

i.e., aℓ = bℓ is the indicator function for whether ℓ is in our index set S. Therefore
we can directly use some of their results, while adding some new ones of our own. The
following theorem follows from appropriately specializing Mihoubi and Rahmanis’ results.
We provide combinatorial proofs of independent interest, in contrast to their generating
function based proofs.
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Theorem 1. [23, Prop. 3] We have the following recurrences:

k

{
n

k

}

S,r

=
∑

s∈S

(
n

s

){
n− s

k − 1

}

S,r

,(6)

r

{
n

k

}

S,r

=
∑

s∈S

r

(
n

s− 1

){
n− s+ 1

k

}

S,r−1

,(7)

and

(n+ r)

{
n

k

}

S,r

=
∑

s∈S

s

(
n

s

){
n− s

k − 1

}

S,r

+ r
∑

s∈S

s

(
n

s− 1

){
n− s+ 1

k

}

S,r−1

.(8)

Proof. The left-hand side of (6) counts the total number of elements in ΠS,r(n, k) such that
one of the non-special blocks is coloured. Suppose that the coloured non-special block has
size s, so that this block can be constructed in

(
n
s

)
ways. The remaining n− s non-special

elements form a (S, r)-partition into k − 1 non-empty blocks, which can be constructed in{
n−s
k−1

}
S,r

ways. Summing over s completes the argument.

For the second identity (7), the left-hand side counts (S, r)-partitions with a coloured spe-
cial block (which is equivalent to saying “with a coloured special element”). Consider the
case where the coloured block has size s. Such a partition can be obtained by first choosing
the coloured special element, then choosing s − 1 non-special elements for this coloured
block (in

(
n
s−1

)
ways), and constructing from the remaining n− (s− 1) + (r− 1) elements

a (S, r − 1)-partition (in
{
n−s+1
k

}
S,r−1

ways). Summing over s completes the argument.

Finally, the left-hand side of (8) counts the (S, r)-partitions with a single coloured ele-
ment (special or non-special). The coloured element is in a special or a non-special block.
First, assume that it is in a non-special block of size s, so that it must be a non-special
element. There are s

(
n
s

)
ways to choose the s elements for the block and mark one of the

elements in the block. The remaining n − s + r elements are partitioned into k − 1 + r
blocks in

{
n−s
k−1

}
S,r

ways. Assume now that the coloured element is in a special block of

size s. Choose a special element (in one of r ways) and s− 1 non-special elements in one
of
(
n
s−1

)
ways for the block; now, mark one of the elements of the block, the special or

non-special element, in one of s ways, and construct a (S, r− 1)-partition of the remaining
n − (s − 1) + (r − 1) elements into (k + r − 1) non-empty blocks (in

{
n−s+1
k

}
S,r−1

ways).

Summing over s completes the argument.

Note that it is possible to give an algebraic proof of these identities. For example, for (7)
we begin with the generating function (5) and write it as a product of two power series.
First, we downshift the summation index from n = k to n = 0, since

{
n
k

}
S,r

= 0 for n < k.
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Therefore,

∞∑

n=0

{
n

k

}

S,r

xn

n!
=

1

k!

(
∑

s∈S

xs−1

(s− 1)!

)r−1(∑

s∈S

xs

s!

)k(∑

s∈S

xs−1

(s− 1)!

)

=

(
∞∑

n=0

{
n

k

}

S,r−1

xn

n!

)


∞∑

n=0
n+1∈S

xn

n!




=
∞∑

n=0

xn
n∑

j=0
j+1∈S

1

j!(n− j)!

{
n− j

k

}

S,r−1

.

Reindexing the summation to go over S and comparing coefficients of xn completes the
proof. �

We can obtain a slightly more complicated recurrence as follows:

Theorem 2. We have the recurrence{
n + 1

k

}

S,r

=

{
n

k − 1

}

S,r+1

+ r
∑

s∈S

(
n

s− 2

){
n− s+ 2

k

}

S,r−1

.

Proof. We begin with the generating function (5) beginning at n = 0, take a derivative,
and compare coefficients. Therefore,

∞∑

n=0

{
n+ 1

k

}

S,r

xn

n!
=

1

k!

(
∑

s∈S

xs−1

(s− 1)!

)r(∑

s∈S

xs

s!

)k−1

k

(
∑

s∈S

xs−1

(s− 1)!

)

+
1

k!

(
∑

s∈S

xs−1

(s− 1)!

)r−1(∑

s∈S

xs

s!

)k

r


 ∑

s∈S−{1}

xs−2

(s− 2)!




=
∞∑

n=0

{
n

k − 1

}

S,r+1

xn

n!
+ r

∞∑

n=0

{
n

k

}

S,r−1

xn

n!

∑

s∈S−{1}

xs−2

(s− 2)!
.

Reindexing the summation to go over S and comparing coefficients of xn completes the
proof.

We also provide a combinatorial argument. The left-hand side counts the (S, r)-partitions
of [n+1+r] into k+r blocks. Consider the position of the (n+1)-th element. It is contained
in a non-special or a special block. Suppose first that it is contained in a non-special block.
Considering (n + 1) as a special element, we actually have a (S, r + 1)−partition with
k − 1 non-special blocks (since the block containing (n + 1) is now a special block). The
number of such partitions is counted by

{
n
k−1

}
S,r+1

. Suppose now that the (n + 1)-th

element is contained in a special block of size s. This block contains a special element r
and s− 2 other elements, hence it can be constructed in r

(
n
s−2

)
ways. From the remaining
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(n − s + 2) + (r − 1) elements we can construct a (S, r − 1)-partition into k non-special
blocks in

{
n−s+2
k

}
S,r−1

ways. �

Though Mihoubi and Rahman did not consider analogs of the Bell numbers, we can eas-
ily use the previous identities to describe similar recurrences for (S, r)-Bell numbers. In
general, given a recurrence for

{
n
k

}
S,r

that trivially depends on k, we can formally sum

over all k from 0 to ∞ to obtain a Bell number identity. This follows from the fact
Bn,S,r =

∑∞
k=0

{
n
k

}
S,r

, with the k > n terms equal to 0. Therefore, we easily obtain the

following set of identities:

Theorem 3. We have the following recurrences:

Bn,S,r+1 =
∑

s∈S

(
n

s− 1

)
Bn−s+1,S,r,

(n+ r)Bn,S,r =
∑

s∈S

s

(
n

s

)
Bn−s,S,r + r

∑

s∈S

s

(
n

s− 1

)
Bn−s+1,S,r−1,

Bn+1,S,r = Bn,S,r+1 + r
∑

s∈S

(
n

s− 2

)
Bn−s+2,S,r−1.

2.2. Changing the index set. Some of the most interesting results about these numbers
occur when we shift the set S. For the rest of this section, let S+~a = {s+a|s ∈ S}, where
a ∈ Z can also be negative.
The following result is due to Mihoubi and Rahman.

Theorem 4. [23, Prop. 1] If 1 ∈ S, we have the recurrence

{
n

k

}

S,r

=

r∑

i=0

k∑

j=0

(
r

i

)(
n

j

){
n− j

k − j

}

S−{1},r−i

.

Proof. The left-hand side counts the r-partitions of [n+ r] into k+ r blocks. For the right-
hand side we count these r-partitions according to the number of singletons. Suppose that
there are i special blocks of size 1 and j non-special blocks of size 1. Then there are

(
r
i

)(
n
j

)

ways to construct these blocks. The remaining (n− j)+ (r− i) elements must be arranged
in non-singleton blocks, that is in

{
n−j
k−j

}
S−{1},r−i

ways. Summing over i and j completes

the argument. �

From the recurrence above we obtain the following relation for the (S, r)-Bell numbers:

Bn,S,r =

r∑

i=0

n∑

j=0

(
r

i

)(
n

j

)
Bn−j,S−{1},r−i.

In the following theorem we generalize the combinatorial identity given in Theorem 4.
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Theorem 5. If u ∈ S, we have the recurrence
{
n

k

}

S,r

=

r∑

i=0

k∑

j=0

(
r

i

)
n!

(u− 1)!iu!jj!(n− (u− 1)i− uj)!

{
n− (u− 1)i− uj

k − j

}

S−{u},r−i

.

Proof. To show this identity, we count r-partitions according to their number of blocks of
size u. Suppose that there are i special blocks of size exactly u and j non-special blocks
of size u. We first construct the blocks of size u. For these blocks we need i special
elements from the r distinguished elements and (u − 1)i + uj non-special elements from
the remaining n. We choose these elements in

(
r
i

)
ways, resp. in

(
n

(u−1)i+uj

)
ways. We

construct the blocks from the chosen elements in ((u−1)i+uj)!
(u−1)!ii!u!jj!

ways. There are i! ways to

insert our i special elements into the special blocks. Hence, we have(
r

i

)(
n

(u− 1)i+ uj

)
((u− 1)i+ uj)!

(u− 1)!ii!u!jj!
i! =

n!

(u− 1)!iu!jj!(n− (u− 1)i− uj)!

possibilities for constructing the blocks of size u. The remaining (n−(u−1)i−uj)+(r− i)
elements must be arranged in (k+r)−(i+j) blocks with the restriction that the size of the
blocks are contained in the set S − {u} and that the remaining r − i special elements are

in distinct blocks. Hence, we have
{
n−(u−1)i−uj

k−j

}
S−{u},r−i

possible constructions. Summing

over i and j completes the argument. �

We can now obtain a reduction formula for r which also reduces the set S.

Theorem 6. Let ℓ ∈ Z with 0 ≤ ℓ ≤ r. Then we have the recurrence
{
n

k

}

S,r

= ℓ!
n∑

j=0

(
n

j

){
j

k

}

S,r−ℓ

{
n− j

ℓ

}

S−~1

=
n∑

j=0

(
n

j

){
j

k

}

S,r−ℓ

{
n− j

0

}

S,ℓ

.

Proof. We begin, as always, with the generating function (5). Then

∞∑

n=0

{
n

k

}

S,r

xn

n!
=

1

k!

(
∑

s∈S

xs−1

(s− 1)!

)r(∑

s∈S

xs

s!

)k

=
1

k!

(
∑

s∈S

xs−1

(s− 1)!

)r−ℓ(∑

s∈S

xs

s!

)k(∑

s∈S

xs−1

(s− 1)!

)ℓ

=
∞∑

n=0

{
n

k

}

S,r−ℓ

xn

n!
ℓ!

∞∑

n=0

{
n

ℓ

}

S−~1

xn

n!
.

Taking a product and comparing coefficients completes the proof of the first identity. The
proof of the second identity is similar.
We also provide a combinatorial proof. Let j be the number of coloured non-special
elements. We count the (S, r)-partitions according to the special blocks that do not contain
any coloured elements. Let ℓ denote the number of such special blocks. Choose first the j
elements that will be coloured in

(
n
j

)
ways. There are

{
j
k

}
S,r−ℓ

ways to construct (k+r−ℓ)
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blocks, such that a special block contains coloured elements, and
{
n−j
0

}
S,ℓ

ways to construct

the ℓ special blocks without coloured non-special elements. This proves the second identity.
We can also construct the ℓ special blocks without coloured non-special elements such that
we partition the n − j elements into ℓ blocks such that each block has size in S − ~1 in{
n−j
ℓ

}
S−~1

ways, and add one of the ℓ special element to each block in ℓ! ways. This proves
the first identity. �

This result also suggests a more in-depth combinatorial study of
{
n
0

}
S,r

as a special limit
case.

Proposition 7. If 1 /∈ S, then
{
n

0

}

S,r

= r!

{
n

r

}

S−~1

.

If 1 ∈ S, then {
n

0

}

S,r

=

r∑

i=0

(r)i

{
n

i

}

S−{1}

,

where (r)i := r(r − 1)(r − 2) · · · (r − i+ 1) is a falling factorial.

Proof. Note that
{
n
0

}
S,r

counts partitions of n + r into r blocks, each block containing

a special element. Deleting the special elements we obtain an (S − ~1, r)-partition into r
non-empty blocks. Otherwise, there are r! ways to augment each block with an element of
[r].
Assume now that S contains 1. In this case there are some, say i, singleton blocks con-
taining only a special element. Choose the special elements for the singleton blocks in

(
r
i

)

ways, and apply the same argument as before for the remaining construction to obtain
(r − i)!

{
n
r−i

}
S−{1}

. �

3. (S, r)-restricted Permutations

The goal of this section is to study an analogous restriction for the case of permutations.
The (S, r)-Stirling numbers of the first kind, denoted by

[
n
k

]
S,r

, enumerate the number of

permutations of a set with n+r elements into k+r cycles such that the first r elements are
in different cycles and all cycle sizes are contained in the set S ⊆ Z+. The permutations
where the first r elements are in distinct cycles are called r-permutations. The elements
1, 2, . . . , r will also be called special elements, and the cycles with special elements will be
called special cycles.
The exponential generating function of the sequence

[
n
k

]
S,r

is

(9)
∞∑

n=k

[
n

k

]

S,r

xn

n!
=

1

k!

(
∑

s∈S

xs−1

)r(∑

s∈S

xs

s

)k

.

We recover the r-Stirling numbers of the first kind by setting S = Z+. If we take S =
{1, 2, . . . , m} we obtain the restricted r-Stirling numbers of the first kind [19]. Similarly, if
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we take S = {m,m+1, . . . }, we recover the associated r-Stirling numbers of the first kind
[19].
The (S, r)-Stirling numbers of the first kind

[
n
k

]
S,r

coincide with the partial r-Bell polyno-

mials B
(r)
n+r,k+r(aℓ, bℓ) [23] with

aℓ = bℓ =

{
(ℓ− 1)!, ℓ ∈ S,

0, 0 ∈ S;

Therefore we can use Proposition 3 in [23] to deduce some simple recurrences, for which
we will provide combinatorial proofs.

Theorem 8. [23, Prop. 3] We have the following recurrences:

k

[
n

k

]

S,r

=
∑

s∈S

(s− 1)!

(
n

s

)[
n− s

k − 1

]

S,r

(10)

r

[
n

k

]

S,r

=
∑

s∈S

r(s− 1)!

(
n

s− 1

)[
n− s+ 1

k

]

S,r−1

(11)

and

(n+ r)

[
n

k

]

S,r

=
∑

s∈S

s!

(
n

s

)[
n− s

k − 1

]

S,r

+ r
∑

s∈S

s!

(
n

s− 1

)[
n− s+ 1

k

]

S,r−1

.(12)

Proof. The left-hand side of (10) counts the total number of r-permutations with a coloured
non-special cycle. If the coloured non-special cycle has size s, then there are (s − 1)!

(
n
s

)

ways to construct this cycle, and the remaining n− s+ r elements are arranged in
[
n−s
k−1

]
S,r

ways. Summing over s completes the argument.
The proofs of the remaining identities follow a similar argument to that used in Theorem
1. �

The proofs of the following theorems follow those of Theorems 2 and 4.

Theorem 9. We have the recurrence[
n + 1

k

]

S,r

=

[
n

k − 1

]

S,r+1

+ r
∑

s∈S

(s− 1)!

(
n

s− 2

)[
n− s+ 2

k

]

S,r−1

.

Theorem 10. [23, Prop. 1] If 1 ∈ S, we have the recurrence

[
n

k

]

S,r

=

r∑

i=0

k∑

j=0

(
r

i

)(
n

j

)[
n− j

k − j

]

S−{1},r−i

.

Theorem 11. If u ∈ S, we have the recurrence
[
n

k

]

S,r

=
r∑

i=0

k∑

j=0

(
r

i

)
n!

ujj!(n− (u− 1)i− uj)!

[
n− (u− 1)i− uj

k − j

]

S−{u},r−i

.
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Proof. The proof of the theorem follows the proof of Theorem 5. Assume that there are j
non-special and i special cycles of length exactly u in the permutation. First we choose the
necessary i special element in

(
r
i

)
ways and i(u−1)+ju non-special elements in

(
n

(u−1)i+uj

)
,

which exhausts the cycles of length u. For a permutation of [i(u − 1) + ju] , we associate
these j + i cycles as follows: take u elements as a cycle, j times, then take u− 1 elements
i times. For each u − 1 elements insert one of the chosen special elements as a starting
element. The insertion of the special elements can be done in i! ways. However, this double
counts some permutations; if we permute the non-special cycles, as well as the order of the
special cycles we obtain the same associated permutation. Furthermore, for a non-special
cycle we could choose any u element to start the cycle. Hence, we have

(
r

i

)(
n

(u− 1)i+ uj

)
((u− 1)i+ uj)!

ujj!
=

(
r

i

)
n!

ujj!(n− (u− 1)i− uj)!

total ways to construct the relevant cycles. The remaining n− i(u− 1)− ju elements form
a (S − {u}, r− i)-permutation. �

4. (S, r)-restricted Stirling Matrices

As a next step we use the algebraic theory of Pascal and Stirling matrices, and the theory
of Riordan groups [26] respectively, for the study of our sequences. We introduce
the (S, r)-Stirling matrix of the second kind and (S, r)-Stirling matrix of the first kind, as
the infinite matrices defined by

MS,r :=

[{
n

k

}

S,r

]

n,k≥0

and LS,r :=

[[
n

k

]

S,r

]

n,k≥0

.

An infinite lower triangular matrix L = [dn,k]n,k∈N is called an exponential Riordan array,

(cf. [2]), if its column k has generating function g(x) (f(x))k /k!, k = 0, 1, 2, . . . , where
g(x) and f(x) are formal power series with g(0) 6= 0, f(0) = 0 and f ′(0) 6= 0. The matrix
corresponding to the pair f(x), g(x) is denoted by 〈g(x), f(x)〉.
If we multiply 〈g(x), f(x)〉 by a column vector (c0, c1, . . . )

T with exponential generat-
ing function h(x), then the resulting column vector has exponential generating function
g(x)h(f(x)). This property is known as the fundamental theorem of exponential Riordan
arrays. The product of two exponential Riordan arrays 〈g(x), f(x)〉 and 〈h(x), ℓ(x)〉 is then
defined by:

〈g(x), f(x)〉 ∗ 〈h(x), ℓ(x)〉 = 〈g(x)h (f(x)) , ℓ (f(x))〉 .

The set of all exponential Riordan matrices is a group under the operator ∗ (cf. [2, 26]).

For example, the Pascal matrix P, the Stirling matrix of the second kind S2, and the
Stirling matrix of the first kind S1 are all given by the Riordan matrices:
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P = 〈ex, x〉 =

[(
n

k

)]

n,k≥0

, S2 = 〈1, ex − 1〉 =

[{
n

k

}]

n,k≥0

,

S1 = 〈1,− ln(1− x)〉 =

[[
n

k

]]

n,k≥0

.

From Equations (5) and (9), and the definition of Riordan matrix we obtain the following
theorem.

Theorem 12. For all S ⊆ Z+ with 1 ∈ S, the matrices MS,r and LS,r are exponential
Riordan matrices given by

MS =

〈(
∑

s∈S

xs−1

(s− 1)!

)r

,
∑

s∈S

xs

s!

〉
LS =

〈(
∑

s∈S

xs−1

)r

,
∑

s∈S

xs

s

〉
.

It is clear that the row sum of the matrix MS,r are the (S, r)-Bell numbers Bn,S,r.
The inverse exponential Riordan array of MS,r and LS,r are denoted by

TS,r :=

[{
n

k

}−1

S,r

]

n,k≥0

and US,r :=

[[
n

k

]−1

S,r

]

n,k≥0

.

For the particular case r = 0, Engbers et al. [12] gave an interesting combinatorial inter-

pretation for the absolute values of the entries
{
n
k

}−1

S
and

[
n
k

]−1

S
by using Schröder trees.

Since MS,r ∗ TS,r = I, where I is the identity matrix, we have the orthogonality relation:

n∑

i=k

{
n

i

}

S,r

{
i

k

}−1

S,r

=
n∑

i=k

{
n

i

}−1

S,r

{
i

k

}

S,r

= δk,n.

The orthogonality relation gives us the inverse relation:

fn =

n∑

k=0

{
n

k

}−1

S,r

gk ⇐⇒ gn =

n∑

k=0

{
n

k

}

S,r

fk.

Let us introduce the (S, r)-Bell polynomials by

Bn,S,r(x) :=
n∑

k=0

{
n

k

}

S,r

xk.

From the definition of the polynomials Bn,S,r(x) we obtain the equality:

X = M
−1
S,rBS,r,

where X = [1, x, x2, . . . ]T and BS = [B0,S,r(x), B1,S,r(x), B2,S,r(x), . . . ]
T . Further, X =

TS,rBS,r and

xn =
n∑

k=0

{
n

k

}−1

S,r

Bk,S,r(x).
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Therefore,

Bn,S,r(x) = xn −
n−1∑

k=0

{
n

k

}−1

S,r

Bk,S,r(x), n ≥ 0.(13)

From the above identity we obtain a determinantal identity for Bn,S,r(x).

Theorem 13. For all S ⊆ Z+ with 1 ∈ S, the (S, r)-Bell polynomials satisfy

Bn,S,r(x) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣

1 x · · · xn−1 xn

1
{
1
0

}−1

S,r
· · ·

{
n−1
0

}−1

S,r

{
n
0

}−1

S,r

0 1 · · ·
{
n−1
1

}−1

S,r

{
n
1

}−1

S,r
... · · ·

...

0 0 · · · 1
{

n
n−1

}−1

S,r

∣∣∣∣∣∣∣∣∣∣∣∣

.

Proof. This identity follows from Equation (13) and by expanding the determinant by the
last column. �

For example, if S = {1, 3, 8} and r = 2, then

M{1,3,8},2 =

〈(
1 +

x2

2!
+
x7

7!

)2

, x+
x3

3!
+
x8

8!

〉

=




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 7 0 1 0 0 0 0 0
0 0 16 0 1 0 0 0 0
0 50 0 30 0 1 0 0 0
0 0 220 0 50 0 1 0 0
0 210 0 700 0 77 0 1 0
0 17 2240 0 1820 0 112 0 1
...

...
...




,

and

T{1,3,8},2 =

[{
n

k

}−1

{1,3,8},2

]

n,k≥0

=




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 −7 0 1 0 0 0 0 0
0 0 −16 0 1 0 0 0 0
0 160 0 −30 0 1 0 0 0
0 0 580 0 −50 0 1 0 0
0 −7630 0 1610 0 −77 0 1 0
0 −17 −38080 0 3780 0 −112 0 1




.
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Notice that in this example the sequence a(n) = 7, 16, 30, 50, 77, 112, . . . (A00581 in [25])
arises in both matrices (up to sign). One of the combinatorial interpretations of these
numbers is the following: let X be a [n + 2] element set and Y a 2-subset of X , then
a(n)n≥1 is the number of (n− 1)-subsets of X intersecting Y .
The first few ({1, 3, 8}, 2)-Bell polynomials are

1, x, x2, x3 + 7x, x4 + 16x2, x5 + 30x3 + 50x, x6 + 50x4 + 220x2,

x7 + 77x5 + 700x3 + 210x, x8 + 112x6 + 1820x4 + 2240x2 + 17x, . . .

In particular,

B6,{1,3,8},2(x) = x6 + 50x4 + 220x2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 x3 x4 x5 x6

1 0 0 0 0 0 0
0 1 0 −7 0 160 0
0 0 1 0 −16 0 580
0 0 0 1 0 −30 0
0 0 0 0 1 0 −50
0 0 0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Analogously to the definition of (S, r)-Bell polynomials, we can define the (S, r)-factorial
polynomials An,S,r(x) by the expression

An,S,r(x) =
n∑

k=0

[
n

k

]

S,r

xk.

Notice that if S = Z+ and r = 0, then An,Z+,0(1) = n!. Some of their combinatorial and
arithmetical properties for the cases S = {1, 2, . . . , m} and S = {m,m+ 1, . . . } have been
studied in [24].
From a similar argument, we have the following theorem:

Theorem 14. For all S ⊆ Z+ with 1 ∈ S, the (S, r)-factorial polynomials satisfy

An,S,r(x) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣

1 x · · · xn−1 xn

1
[
1
0

]−1

S,r
· · ·

[
n−1
0

]−1

S,r

[
n
0

]−1

S,r

0 1 · · ·
[
n−1
1

]−1

S,r

[
n
1

]−1

S,r
... · · ·

...

0 0 · · · 1
[
n
n−1

]−1

S,r

∣∣∣∣∣∣∣∣∣∣∣∣

.

5. Combinatorial interpretations of the (S, r)-Stirling matrices and their

inverses

In this section we provide a combinatorial interpretation of the inverses of the (S, r)-Stirling
matrices of the first and second kind. For this purpose, we introduce posets whose Möbius
function is given by these matrices.
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5.1. Composition-partition pairs and ordered composition-permutation pairs.

An r-composition of a set U is an r-tuple of disjoint sets U = (U1, U2, . . . , Ur) (some of
which may be empty) whose union is U ,

U1 ⊎ U2 ⊎ · · · ⊎ Ur = U.

We consider pairs of the form (V, π) where V is an r-composition of a subset V of U
and π is a set partition of the complementary set U − V . Such objects will be called
composition-partition pairs.
We have the following interpretation of the (S, r)-Stirling numbers of the second kind. For
shorter notation, let S ′ denote the set of integers that we obtain by reducing each integer
in S by 1, S ′ = {s− 1|s ∈ S}. We call S ′ the derivative of S.

Proposition 15. The (S, r)-Stirling number of the second kind
{
n
k

}
S,r

counts the composition-

partition pairs (V, π) over a set of n elements satisfying the following two conditions.

(1) The sizes of the sets in the composition are all in S ′.
(2) The partition π has exactly k blocks, the sizes of each of which is in S.

Proof. We establish a bijection between the set ΠS,r(n, k) and the given composition-
partition pairs. LetB1,B2, . . . ,Br,Br+1, . . . ,Bk+r be the blocks of a partition in ΠS,r(n, k)
arranged in such a way that the first r blocks (B1,B2, . . . ,Br) contain the elements
1, . . . , r; i.e., i ∈ Bi for i = 1, 2, . . . , r. Define the composition-partition pair (V, π) as
follows: Vi = Bi − {i} and π = {Br+1,Br+2, . . . ,Br+k}. The composition-partition pair
(V, π) (over the n-element set {r+1, r+2, . . . , r+n}) clearly satisfies the conditions. The
correspondence is obviously reversible and hence bijective. �

We use the notation ΠS,r(n, k) for the set of composition-partition pairs (V, π) described
in Proposition 15, and ΠS,r(n) for the same kind of composition-partition pairs without
restrictions on the number of blocks of π.
A similar combinatorial interpretation can be given for the (S, r)-Stirling numbers of the
first kind. For our purposes it is useful to fix a a certain order of the elements in the cycles
and of the disjoint cycles. In our notation each cycle lists its least element first and the
cycles are sorted in increasing order by their first element. For instance, (1 5 7)(2 4 6)(3 8).
Fixing this convention, we view a cycle as a linear order of its elements. We consider
compositions enriched with linear orders, ℓ = (ℓ1, ℓ2, . . . , ℓr), each ℓi being a linear order
on the set Vi, with V = (V1, V2, . . . , Vr) being an r-composition of some set V . Such a
tuple ℓ will be called an ordered composition.

Proposition 16. The (S, r)-Stirling number of the first kind
[
n
k

]
S,r

count the ordered

composition-permutation pairs (ℓ, σ) over a set of n elements, satisfying the following two
conditions.

(1) The sizes of the linear orders in the composition are all in S ′.
(2) The permutation σ has exactly k cycles, the sizes of each of them being in S.
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The proof of the Proposition 16 is analogue to the proof of Proposition 15. We denote by
PS,r(n, k) the set of all ordered compositions-permutation pairs and by PS,r(n) all these
pairs without restrictions on the number of cycles in σ.

5.2. The special struture of S. In order to give a combinatorial interpretation of the
inverses of restricted Stirling matrices of the first and second kind, we have to assume that
the set S has a special structure. This structure is necessary to construct a partial order on
the composition-partition (resp. ordered composition-permutation) pairs, whose Möbius
functions will give us the respective inverse matrices TS,r and US,r.

Definition 17. Let S be a subset of Z+. It is said to be a +1-monoid if

(1) 1 ∈ S; and
(2) for every sequence s1, s2, . . . , sℓ of elements in S with ℓ ∈ S, we have that the sum∑ℓ

j=1 sj is also in S.

As a consequence of the definition of +1-monoid we obtain the following proposition.

Proposition 18. If S is a +1-monoid then for every sequence s1, s2, . . . , sℓ of elements in
S, where the integer ℓ is in S ′, the sum

∑ℓ
j=1 sj is in S ′.

Proof. Setting sℓ+1 = 1, all the elements of the sequence s1, s2, . . . , sℓ, sℓ+1 are in S, and
ℓ + 1 is also in S. Then s1 + s2 + · · ·+ sℓ + sℓ+1 = s1 + s2 + · · ·+ sℓ + 1 is in S, and the
result follows. �

Example 19. The set of odd positive integers O+ = {2k + 1|k = 0, 1, 2, . . .} is a +1-
monoid. If we add an odd number of odd integers, the result is again an odd integer. The
same argument can be applied for the set of positive integers congruent to one modulo a
fixed positive integer, Sq = {qk + 1|k = 0, 1, 2, . . . }.
Observe that the set S ′

q of multiples of q is a submonoid of N.

A simpler and equivalent condition for a set S to be a +1-monoid is the following.

Lemma 20. A set S is a +1-monoid if and only if

(1) 1 ∈ S; and
(2) if s1, s2 ∈ S, then s1 + s2 − 1 ∈ S.

Proof. Assume that S is a +1-monoid. Letting k1 = s1, k2 = 1, k3 = 1, . . . , ks2 = 1, we
obtain, since s2 ∈ S, that k1 + k2 + · · ·+ ks2 = s1 + s2 − 1 ∈ S. Conversely, assume that
s1, s2, . . . , sℓ and ℓ are in S. Iteratively applying condition 2 of the lemma, we have

s1 + ℓ− 1 ∈ S ⇒ s1 + s2 + ℓ− 2 ∈ S

⇒ s1 + s2 + s3 + ℓ− 3 ∈ S

...

⇒ s1 + s2 + · · ·+ sℓ ∈ S.

�
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As a direct consequence of the Lemma 20, we get the following proposition.

Proposition 21. The derivative of a +1-monoid is a submonoid of the natural numbers
under addition. Conversely, if a set S ′ is a submonoid of N, then S = {s + 1|s ∈ S ′} is a
+1-monoid.

Proof. The proof is easy, and left to the reader. �

5.3. The partial order on the sets ΠS,r(n) and PS,r(n). Now we are able to define a
partial order on the set ΠS,r(n). Its Möbius function is encoded by the matrix TS,r.
We introduce two operations on the set ΠS,r(n). Let (V, π) ∈ ΠS,r(n). We obtain another
composition-partition pair (V′, π′) ∈ ΠS,r(n) by the following two operations.

(1) The compositions remain unchanged, i.e., V = V′, and π′ is obtained from π by
joining ℓ blocks of π, for some ℓ ∈ S.

(2) The components of V′ are the same as the components of V except one, say Vj,
which is augmented by some blocks of π; while π is reduced by these blocks. Pre-
cisely:

V ′
i = Vi, for i 6= j, and V ′

j = Vj ∪
ℓ⋃

i=1

Bi, ℓ ∈ S ′; and

π′ = π − {B1,B2, . . . ,Bℓ}.

From now on, we follow the convention of separating the composition-partition ordered
pair (V, π) with double bars

V||π := (V, π).

Example 22. Consider the set ΠO,2(6), where O denotes the set of odd integers, and its ele-
ment ({1, 2}, ∅)||3|4|5|6. By operation 1 we obtain for instance the element ({1, 2}, ∅)||3 4 5|6
and by operation 2 the element ({1, 2}, {4, 5})||3|6.

The operations (1) and (2) are closed on ΠS,r(n); operation (1) by Definition 17, operation
(2) by Propositions 18 and 21. Hence we can define the following partial order on the set
ΠS,r(n).

Definition 23. Let (V, π) and (V′, π′) be two elements of ΠS,r(n). We will say that
(V, π) ≤ (V′, π′) if (V′, π′) is obtained from (V, π) by any combination of the two above
operations (1) and (2).

The poset ΠS,r(n) has a least element 0̂ = (∅, ∅, . . . , ∅)||1|2| . . . |n. When n ∈ S, the
maximal elements are of the form V||∅, V being a composition of [n].

Example 24. For S the set of positive odd integers, the Riordan matrix MS,r is given by

MS,r = 〈(cosh(x))r, sinh(x)〉 .

The inverse matrix TS,r is given by

(14) TS,r =
〈
cosh−r(sinh〈−1〉(x)), sinh〈−1〉(x)

〉
=
〈
(1 + x2)−r/2, sinh〈−1〉(x)

〉
.



RESTRICTED r-STIRLING NUMBERS AND THEIR COMBINATORIAL APPLICATIONS 17

For r = 2, the first few rows and columns of MS,2 are

MS,2 =
〈
(cosh(x))2, sinh(x)

〉
=




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0
0 7 0 1 0 0 0 0 0
8 0 16 0 1 0 0 0 0
0 61 0 30 0 1 0 0 0
32 0 256 0 50 0 1 0 0
0 547 0 791 0 77 0 1 0
128 0 4096 0 2016 0 112 0 1




.

We will see (Theorem 32 below) that the nth row of the inverse matrix

TS,2 =
〈
(1 + x2)−1, sinh〈−1〉(x)

〉

=




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
−2 0 1 0 0 0 0 0 0
0 −7 0 1 0 0 0 0 0
24 0 −16 0 1 0 0 0 0
0 149 0 −30 0 1 0 0 0

−720 0 544 0 −50 0 1 0 0
0 −6483 0 1519 0 −77 0 1 0

40320 0 −32768 0 3584 0 −112 0 1




encodes the Möbius function of the poset ΠS,2(n). We have that

TS,2(n, k) =
∑

(V,π)∈ΠS,2(n,k)

µ (0̂, (V, π)).

For example, its 4th row is (24, 0,−16, 0, 1). Since 0̂ = (∅, ∅)||1|2|3|4, we have

1 = TS,2(4, 4) = µ(0̂, 0̂), −16 = TS,2(4, 2) =
∑

(V,π)∈ΠS,2(4,2)

µ (0̂, (V, π)),

and
24 = TS,2(4, 0) =

∑

(V,∅)∈ΠS,2(4,0)

µ (0̂, (V, π)).

We manually check this. The elements of ΠS,2(4, 2) are of two kinds:

(1) Those where π has two singletons. They are of the form ({a1, a2}, ∅)||a3|a4, or
(∅, {a1, a2})||a3|a4.

(2) Those where π has a block of size 3 and a singleton block; i.e., elements of the form
(∅, ∅)||a1 a2 a3|a4.

There are 2 ×
(
4
2

)
= 12 elements of type (1) and 4 elements of type (2). Each of them

covers 0̂, the Möbius function of each of them is equal to −1, and their sum equals −16.
The elements of ΠS,2(4, 0) are also of two kinds:
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(1) Those where each component of the composition has two elements. They have the
form ({a1, a2}, {a3, a4})||∅.

(2) Those where one of the components has the whole set {1, 2, 3, 4} and the other the
emptyset. There are only two elements of this kind.

There are 6 =
(
4
2

)
elements of type (1). Each of them covers exactly two elements,

since ({a1, a2}, {a3, a4})||∅ covers ({a1, a2}, ∅)||a3|a4 and (∅, {a3, a4})||a1|a2. Hence, each
has Möbius function equal to 1. Their contribution to the sum is then 6. The element
({1, 2, 3, 4}, ∅)||∅ covers all the elements of the form ({a1, a2}, ∅)||a3|a4, and all of the form
(∅, ∅)||a1, a2, a3|a4. The number of all of them is 6 + 4 = 10. Then, its Möbius function is
equal to 9. Then the contribution of the elements of type (2) is 18. The sum of the Möbius
function on elements of both types is equal to 24, as expected.

Now we turn our attention to the ordered case, to an analogue definition of a partial order
on the set PS,r(n). We denote the concatenation of linear orders (cycles) by the + symbol.
The result of concatenation of two cycles is also a cycle. For example, (1 4 3) + (8 10 9) +
(2 5 7 6) = (1 4 3 8 10 9 2 5 7 6).
We define two operations on the set PS,r(n). Let (ℓ, σ) ∈ PS,r(n) be given. The element
(ℓ′, σ′) is obtained the following ways.

(1) The ordered compositions remain unchanged ℓ = ℓ
′, and σ′ is obtained from σ by

concatenating s cycles of σ, for some s ∈ S in any order.
(2) The components of the ordered compositions remain unchanged, except one, say

ℓ′j; which is obtained by concatenation of the corresponding component ℓj with s
cycles of σ (in any order), s being an element of S ′. More formally,

ℓ′i = ℓi, for i 6= j, and ℓ′j = ℓj + cj1 + cj2 + · · ·+ cjs, s ∈ S ′; and

σ′ = σ − {(cj1), (cj2), . . . , (cjs)}.

Example 25. Let S = O be the set of odd integers, and (5 3, 7 9)||(1 4 6)(2 8 10)(11) an ele-
ment of the set PO,2(11). By applying operation 1 we obtain the pair (5 3, 7 9)||(1 4 6 11 2 8 10),
since (1 4 6 11 2 8 10) = (1 4 6) + (11) + (2 8 10) is a sum of 3 cycles (3 ∈ S). On the
other hand, by operation 2 we obtain the pair (5 3, 7 9 11 1 4 6)||(2 8 10), since 7 9 11 1 4 6 =
7 9 + 11 + 1 4 6 is a sum of a linear order and two cycles (2 ∈ S ′).

Definition 26. Let (ℓ, σ) and (ℓ′, σ′) be two elements of PS,r(n). We say that (ℓ, σ) ≤
(ℓ′, σ′) if (ℓ′, σ′) is obtained from (ℓ, σ) by any combination of the two above operations
(1) and (2).

The poset PS,r(n) has a least element 0̂ = (∅, ∅, . . . , ∅)||(1)(2) . . . (n). The maximal ele-
ments are of the form ℓ||∅, ℓ being an ordered composition over [n] and ∅ being the empty
permutation.
The posets ΠS,r(n), PS,r(n) can be defined equivalently as follows. The equivalence with
Definitions 23 and 26 is easy to verify.

Definition 27. Let (V, π) and (V′, π′) be two elements of ΠS,r(n). We have that (V, π) ≤
(V′, π′) if
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(1) every component of V′ is obtained as the union of the corresponding component of
V with t blocks of π, t ∈ S ′; and

(2) every block of π′ is obtained as a union of s blocks of π, s ∈ S.

Definition 28. Let (ℓ, σ) and (ℓ′, σ′) be two elements of PS,r(n). We have that (ℓ, σ) ≤
(ℓ′, σ′) if

(1) every component of ℓ′ is obtained as the concatenation of the corresponding com-
ponent of ℓ with t cycles of σ (in any order), t ∈ S ′; and

(2) every cycle in σ′ is the concatenation of s cycles of σ, s ∈ S.

5.4. Combinatorial Interpretation. For the proof of our main theorem of this section
we will need the following lemma.

Lemma 29. Let S be a +1-monoid. Let us consider (V, π) and (ℓ, σ) elements of ΠS,r(n)
and PS,r(n), respectively. Let k ≤ n be the number of blocks of π, and assume that the
number of cycles of σ is also equal to k. Then, we have

|{(V′, π′) : (V′, π′) ≥ (V, π), |π′| = j}| = |ΠS,r(k, j)|,(15)

|{(ℓ′, σ′) : (ℓ′, σ′) ≥ (ℓ, σ), |σ′| = j}| = |PS,r(k, j)|.(16)

Proof. For each (V′, π′) ≥ (V, π) with j = |π′|, we are going to construct a unique element
(W, κ) ∈ ΠS,r(k, j). First we order the elements of π, π = {B1,B2, . . . ,Bk}. By part (1)
of Definition 27, each V ′

i is of the form

(17) V ′
i = Vi ∪

⋃

h∈Wi

Bh

for some subset Wi of [k] satisfying |Wi| ∈ S ′ (Wi might be empty, 0 ∈ S ′). By part (2) of
Definition 27, for each block B of π′, there exists a subset KB of [k], such that

(18) B =
⋃

j∈KB

Bj ,

where |KB| ∈ S. Let W = (W1,W2, . . . ,Wr) and κ = {KB|B ∈ π′}. Define the correspon-
dence

(V′, π′)
φ
7→ (W, κ).

Clearly |κ| = j, and hence (W, κ) ∈ ΠS,r(k, j). It is easy to check that φ is a bijection.
Given (V, π) and (W, κ), we recover (V′, π′) by Equations (17) and (18).

Example 30. For r = 2 and S the set of odd integers we have that

(V1, V2)||{B1,B2,B3,B4,B5,B6,B7,B8,B9}

≤ (V1 ∪B1 ∪B3, V2 ∪B2 ∪B5)||{B4 ∪B6 ∪B7,B8,B9}

whatever the blocks of the partitions (of odd size) and the elements of the composition (of
even size) are. The bijection φ acts as follows

(V1 ∪B1 ∪B3, V2 ∪B2 ∪B5)||{B4 ∪B6 ∪B7,B8,B9}
φ
7→ ({1, 3}, {2, 5})||467|8|9.
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Let σ = (c1)(c2) . . . (ck), the cycles ordered in such way that the minimum element of ci is
less than the minimum of ci+1, i = 1, 2, . . . , k − 1. Assume that (ℓ′, σ′) ≥ (ℓ, σ) and the
number of cycles of σ′ is j. By Definition 28 part (1), for every i = 1, 2, . . . , r, there exists

a linear order ℓ̂i of a subset of [k] (that might be empty), |ℓ̂i| ∈ S ′, such that

(19) ℓ′i = ℓi +
∑

h∈ℓ̂i

(ch).

The concatenation in the sum is made following the order of ℓ̂i. By Definition 28, part (2),
for every cycle c ∈ σ′ there exists a cycle γ(c) on some subset of [k], | γ(c) | ∈ S, such that

(20) (c) =
∑

h∈γ(c)

(ch).

The concatenation in the sum is made following the order in γ(c), so the least cycle in

{(ch)|h ∈ γ(c)} goes first. That guarantees that (c) is a cycle. Let ℓ̂ = (ℓ̂1, ℓ̂2, . . . , ℓ̂r) and

σ̂ be the permutation whose cycles are of the form γ(c), (c) ∈ σ′. It is clear that (ℓ̂, σ̂) is in
PS,r(k, j). The correspondence

(ℓ′, σ′)
ψ
7→ (ℓ̂, σ̂)

is the desired bijection. Given (ℓ, σ) and (ℓ̂, σ̂) we can recover (ℓ′, σ′) by Equations (19)
and (20). �

Example 31. Let S be the set of odd integers and r = 2, we have that

(ℓ1, ℓ2)||(c1)(c2)(c3)(c4)(c5)(c6)(c7)(c8)(c9) ≤ (ℓ1 + c2c1c9c3, ℓ2 + c5c4)||(c6c7c8).

whatever the cycles (of odd size) and the linear orders (of even size) are. The bijection ψ
acts as follows

(ℓ1 + c2c1c9c3, ℓ2 + c5c4)||(c6c7c8)
ψ
7→ (2 1 9 3, 5 4)||(6 7 8).

Theorem 32. Let S be a +1-monoid. Then, the Möbius function of the posets ΠS,r(n) and
PS,r(n), n ∈ N, give us respectively the matrices TS,r and US,r,

TS,r(n, k) =
∑

(V,π)∈ΠS,r(n,k)

µ(0̂, (V, π)),(21)

US,r(n, k) =
∑

(ℓ,σ)∈PS,r(n,k)

µ(0̂, (ℓ, σ)).(22)

Proof. We begin by defining the Möbius cardinal of the sets ΠS,r(n, k) and PS,r(n, k),

|ΠS,r(n, k)|µ :=
∑

(V,π)∈ΠS,r(n,k)

µ(0̂, (V, π)),

|PS,r(n, k)|µ :=
∑

(ℓ,σ)∈PS,r(n,k)

µ(0̂, (ℓ, σ)).
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In order to prove Equation (21), since MS,r = |ΠS,r(n, k)|, it is enough to prove that for
every j ≤ n, n, j ∈ N,

(23)

n∑

k=0

|ΠS,r(n, k)|µ |ΠS,r(k, j)| = δn,j.

Similarly, Equation (22) is equivalent to

(24)

n∑

k=0

|PS,r(n, k)|µ |PS,r(k, j)| = δn,j.

Let (V′, π′) be an element of ΠS,r(n, j). By properties of the Möbius function we have that

∑

0̂≤(V,π)≤(V′,π′)

µ(0̂, (V, π)) = δ(0̂, (V′, π′)) = δn,j.

Summing over all the elements of ΠS,r(n, j), interchanging sums and classifying by the size
of π, we get

δn,j =
∑

(V′,π′)∈ΠS,r(n,j)

∑

0̂≤(V,π)≤(V′,π′)

µ(0̂, (V, π))

=
n∑

k=0

∑

(V,π)∈ΠS,r(n,k)


 ∑

(V′,π′)≥(V,π)

µ(0̂, (V, π))




=
n∑

k=0

∑

(V,π)∈ΠS,r(n,k)

µ(0̂, (V, π))


 ∑

(V′,π′)≥(V,π)

1




=
n∑

k=0

∑

(V,π)∈ΠS,r(n,k)

µ(0̂, (V, π))|{(V′, π′)|(V′, π′) ≥ (V, π)}|.

From this, by Equation (15), Lemma 29, we obtain Equation (23). Equation (24) can be
proven in a similar manner. �

Example 33. Let S be, as in Example 24, the +1-monoid of odd integers. It is not difficult
to check that

LS,r =

〈
(1− x2)−r, ln

(
1 + x

1− x

) 1
2

〉
.

Since ln
(
1+x
1−x

) 1
2 is the hyperbolic arctangent, we have

US,r =
〈
cosh−2r(x), tanh(x)

〉
.
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For r = 1 we have

US,1 =
〈
cosh−2(x), tanh(x)

〉

=




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
−2 0 1 0 0 0 0 0 0
0 −8 0 1 0 0 0 0 0
16 0 −20 0 1 0 0 0 0
0 136 0 −40 0 1 0 0 0

−272 0 616 0 −70 0 1 0 0
0 −3968 0 2016 0 −112 0 1 0

7936 0 −28160 0 5376 0 −168 0 1




.

The Möbius functions of the posets in this case have very interesting combinatorial inter-
pretations. The absolute values of the first row gives us the number of “Zag” permutations
(or tangent numbers), z2n+1 (Sequence A000182 in [25]). The second one gives us the
number of cyclically (reverse) alternating permutations c2n+1 of order 2n + 1 (Sequence
A024283 in [25]). By Theorem 32 we have

z2n+1 = |
∑

(ℓ,∅)∈PS,1(2n,0)

µ(0̂, (ℓ, ∅))|,(25)

c2n+1 = |
∑

(ℓ,c)∈PS,1(2n−1,1)

µ(0̂, (ℓ, (c)))|.(26)

The sum in Equation (26) is over linear order-cyclic permutation pairs. For example, for
n = 2, the pairs are of two forms:

(1) a1 a2||(a3)
(2) ∅||(a1 a2 a3)

Both kinds of pairs cover 0̂ = ∅||(1)(2)(3). There are 6 elements of type (1) and 2 of type
(2). Hence, ∑

(ℓ,(c))∈PS,1(3,1)

µ(0̂, (ℓ, (c))) = −8.

The number of cyclically (reverse) alternating permutations of size 5 is 8,

2 4 3 5 1 3 4 2 5 1 3 5 2 4 1 4 5 1 3 2
2 5 3 4 1 3 4 1 5 2 3 5 1 4 2 4 5 2 3 1.

6. Some Graph Theoretical Connections

6.1. Restricted Stirling numbers for graphs. The Stirling numbers for graphs were
introduced in [28] as the number of partitions of V (G) into k independent subsets, i.e.,
there are no edges between any two vertices included in a subset. Motivated by its strong
connection to the chromatic polynomial many authors investigated the properties of these
sequences, see [13] for a brief history on these studies. Here we introduce a dual version
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in order to give a natural interpretation of the (S, r)−Stirling number of the second kind,{
n
k

}
S,r

.

Let G be a simple finite graph on [n]. We let
{
G
k

}c
denote the number of partitions of

V (G) into k cliques, i.e., such that the induced graph on the vertices of each block is a

clique. Let further B(G)c be the number of partitions of V (G) into cliques. We call
{
G
k

}c
the dual Stirling number of the second kind for graphs and B(G)c the dual Bell-number

for graphs. Clearly,
{
G
k

}c
is the dual of

{
G
k

}
in the sense that

{
G
k

}c
=
{
G
k

}
, where G is

the complement of the graph G. Similarly, B(G)c is the dual of B(G), the Bell-number
of graphs defined for instance in [11]. Further, given a set of integers S = {s1, s2, . . . , sk},
we let

{
G
k

}c
S
denote the number of ways to partition V (G) into the union of k occurrences

of Ksi, where si ∈ S and Ks denotes the complete graph on s vertices. For instance, if

S contains only the integer 2,
{
G
k

}c
S
is the number of perfect matchings of the graph G.

Similarly, we define BS(G)
c as the number of ways to partition V (G) into cliques of Ksi,

where si ∈ S. For instance, BS(Pn)
c with S = {1, 2}, where Pn denotes the path graph on

[n], is equal to the Fibonacci number.

It is clear that if G is the complete graph,
{
G
k

}c
S
is the S-restricted Stirling number

{
n
k

}
S
.

Further, if G is the join of the complete graph on n vertices and the empty graph on r
vertices Kn + Er, we have

{
Kn + Er

k

}c

S

=

{
n

k

}

S,r

and BS(Kn + Er)
c = Bn,S,r.
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Figure 1. K8 + E3 and two examples of a partition of K8 + E3 into k = 4
blocks with S = {2, 3}.

6.2. Acyclic orientations of the complete bipartite graph. Let G = (V,E) be a
simple graph with vertex set V , |V | = n, and edge set E, |E| = m. An acyclic orientation
−→
G of the undirected graph G is an assignment of a direction to each edge of the graph
such that there are no directed cycles. Let A(G) be the number of acyclic orientations
of the graph G; it is an interesting graph parameter with unexpected connections to the
chromatic polynomial of a graph.
Bipartite graphs are crucial in the theory of acyclic orientations, and interestingly A(Kn1,n2)
leads to the natural appearance of Stirling numbers. Let Kn1,n2 be the complete bipartite
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graph on n = n1 + n2 vertices. Kn1,n2 is the graph with vertex set A ∪ B, where A =
{u1, . . . , un1} and B = {v1, . . . , vn2}, and edge set E = {(u, v)|u ∈ A and v ∈ B}. A and
B are called the bipartite blocks. It is known [9] that

A(Kn1,n2) = B
(−n2)
n1

=

minn1,n2∑

m=0

(m!)2
{
n1 + 1

m+ 1

}{
n2 + 1

m+ 1

}
,

where B
(−n2)
n1 is the poly-Bernoulli number of negative indices [14]. (We refer to these

numbers in a later section.)
Next, we present an example of a graph such that the number of acyclic orientations is
given by a modified poly-Bernoulli number, involving

{
n
k

}
S,r

. The degree of a vertex v,

deg(v), is the number of edges adjacent to v. The vertices of the bipartite block A have
degree |B| and the vertices of the B all have degree |A|. Let dego(v) denote the outdegree
of the vertex v, the number of edges e whose starting vertex is v.
Let S = {s1, . . . , sk} be a set of positive integers. Let A∗ = {a1, a2, . . . , ar} and B∗ =
{b1, b2, . . . , br} be two r−sets of vertices. We let Kn1+r,n2+r denote the complete bipartite

graph with bipartite blocks A ∪ A∗ and B ∪ B∗. Further, we let K̂n1+r,n2+r denote the

complete bipartite graph on Â = A∪A∗∪{u} and B̂ = B ∪B∗∪{v}. Consider the acyclic

orientations of the K̂n1+r,n2+r with the following properties:

S : ∀v, w ∈ A ∪ A∗: dego(v) − dego(w) ∈ S, and analogously for all v, w ∈ B ∪ B∗.
This means that the outdegrees of two vertices in A ∪ A∗ or B ∪ B∗ differ only by
a number contained in S.

r : if u, v ∈ A∗ then dego(u) 6= dego(v), and analogously for u, v ∈ B∗.
ss : u is the unique source (vertices without ingoing edges) and v is the unique sink

(vertex without outgoing edges).

Let A(r,S,ss)(K̂n1+r,n2+r) denote the number of acyclic orientations of K̂n1+r,n2+r satisfying
the conditions given above. Condition S could also be formulated the following way: the
number of vertices with the same outdegree in a bipartite block A ∪ A∗ resp. B ∪ B∗ is
contained in S. In Figure 2 we give an example with n1 = n2 = 4, r = 2, and S = {2, 3, 4},
which is associated with the sequence {2, 4}{2, 4, 5}{1, 5, 3, 6}{1, 3, 6}. We only draw the

edges of K̂4+2,4+2 that are oriented from the set Â to B̂. The edges that are not drawn are

oriented from the set B̂ to Â.

u 1 2 3 4 5 6

v 1 2 3 4 5 6
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Figure 2. An acyclic orientation of K̂4+2,4+2.
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Theorem 34. We have

A(r,S,ss)(K̂n1+r,n2+r) =

min(n1,n2)∑

k=0

(k + r)!2
{
n1

k

}

S,r

{
n2

k

}

S,r

.(27)

Proof. We follow the proof of [9] and apply it to this particular case. Colour the vertices
of A red and those of B blue. Any acyclic orientation of the complete bipartite graph
K̂n1+r,n2+r can be obtained by ordering the vertices of the graph and orienting each edge
from the smaller to larger index. In this arrangements red and blue sequences alternate.
The order of vertices inside a sequence of the same colour is irrelevant, since there are
no edges between those vertices. Hence, an acyclic orientation can be determined by an

alternating sequence of red and blue blocks of the vertices of K̂n1+r,n2+r. We now consider
the conditions in turn. Condition [S] gives bounds on the size of the blocks of the same
colour. Condition [r] forbids having two vertices from A∗ (resp. B∗) in the same block.
Condition [ss] means that the alternating sequence starts with a red block containing the
single element u and ends with the blue block containing the single vertex v. Fix k, the
number of the non-special blocks (blocks that do not contain any elements of A∗ resp. B∗).

We obtain the alternating sequence of the vertices of K̂n1+r,n2+r by determining an ordered
partition of the (n1 + r) red elements into (k + r) blocks and an ordered partition of the
(n2 + r) blue elements into (k+ r) blocks satisfying the given special conditions. This can
be done in (k + r)!2

{
n1

k

}
S,r

{
n2

k

}
S,r

ways. Summing over k we obtain the theorem. �

Remark 35. There are several classically studied objects that count alternating sequence
of blocks, such as lonesum matrices, Callan permutations, Vesztergombi permutations
(permutations with a bound on the distance between every element and its image), per-
mutations of [n + k] with excedance set [k], and so on (cf. [3, 4, 5, 7, 9]). For instance,
there is a natural bijection between lonesum matrices and acyclic orientations of complete
bipartite graphs [9]. In every interpretation we can formulate conditions which correspond
to the restrictions given by r and the index set S. This theorem could be formulated for
many other combinatorial objects using these well-studied bijections.

7. Some Applications in Special Polynomials

The Stirling numbers of first and second kind arise in the closed expressions of poly-
Bernoulli and poly-Cauchy numbers, number arrays that received a lot of attention recently
in number theory and combinatrics. Here, we introduce a generalization of the poly-
Bernoulli and poly-Cauchy numbers, the (S, r)-poly-Bernoulli, resp. (S, r)-poly-Cauchy

numbers. The poly-Bernoulli numbers B
(µ)
n were introduced by Kaneko [14] using the

exponential generating function

Liµ(1− e−t)

1− e−t
=

∞∑

n=0

B
(µ)
n

tn

n!
, µ ∈ Z,
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where

Liµ(t) =
∞∑

n=1

tn

nµ

is the µ-th polylogarithm function. If µ = 1 we get B
(1)
n = (−1)nBn for n ≥ 0, where Bn

are the Bernoulli numbers.
Kaneko [14, Theorem 1] found the following explicit formula for poly-Bernoulli numbers:

B
(µ)
n =

n∑

k=0

{
n

k

}
(−1)n−kk!

(k + 1)µ
.(28)

The poly-Bernoulli numbers have numerous applications in number theory. In particu-
lar, Arakawa and Kaneko [1] showed that the poly-Bernoulli numbers can be expressed
as special values at negative arguments of certain combinations of the generalized zeta
function

ζ(k1, . . . , kn−1; s) =
∑

0<m1<m2<···<mn

1

mk1
1 · · ·mkn−1

n−1 m
s
n

.

As we mentioned in a previous section, in combinatorics the poly-Bernoulli numbers B
(−k)
n

enumerate many objects.

7.1. (S, r)-poly-Bernoulli numbers. A natural generalization of Equation (28) is by
means of the (S, r)-Stirling numbers of the second kind. In particular, we define the (S, r)-
poly-Bernoulli numbers by the expression:

B
(µ)
n,S,r =

n∑

k=0

{
n

k

}

S,r

(−1)n−kk!

(k + 1)µ
.(29)

For convenience, put

ES(t) =
∑

s∈S

ts

s!
=
∑

i≥1

tki

ki!
.

Notice that EZ+(t) = et − 1.
We can now give the generating function of (S, r)-poly-Bernoulli numbers in terms of ES(t).

Theorem 36. The exponential generating function of (S, r)-poly-Bernoulli numbers is

∞∑

n=0

B
(µ)
n,S,r

tn

n!
=
(
ES−~1(−t)

)r Liµ
(
−ES(−t)

)

−ES(−t)
.
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Proof. By definition (29) and using (2), we have
∞∑

n=0

B
(µ)
n,S,r

tn

n!
=

∞∑

n=0

n∑

k=0

{
n

k

}

S,r

(−1)n−kk!

(k + 1)µ
tn

n!
=

∞∑

k=0

(−1)kk!

(k + 1)µ

∞∑

n=k

{
n

k

}

S,r

(−t)n

n!

=

∞∑

k=0

(−1)kk!

(k + 1)µ
1

k!

(
∑

i≥1

(−t)ki−1

(ki − 1)!

)r(∑

i≥1

(−t)ki

ki!

)k

=
(
ES−~1(−t)

)r ∞∑

k=0

(−ES(−t))
k

(k + 1)µ
=
(
ES−~1(−t)

)r Liµ
(
−ES(−t)

)

−ES(−t)
.

�

The following exponential generating functions follow from some particular cases of S. We
use the notation

Em(t) = 1 + t+
t2

2!
+ · · ·+

tm

m!
,

with E0 = 1, to denote partial sums of the Taylor series for ex. Moreover, let E and
O denote the even and odd positive integers, respectively. We then have the generating
functions

∞∑

n=0

B
(µ)
n,Z+,r

tn

n!
=
e−rtLiµ

(
1− e−t

)

1− e−t
,

∞∑

n=0

B
(µ)
n,≤m,r

tn

n!
=

(
Em−1(−t)

)r
Liµ
(
1− Em(−t)

)

1−Em(−t)
,

∞∑

n=0

B
(µ)
n,≥m,r

tn

n!
=

(
e−t −Em−2(−t)

)r
Liµ
(
Em−1(−t)− e−t

)

Em−1(−t)− e−t
,

∞∑

n=0

B
(µ)
n,E,r

tn

n!
=

(
− sinh t

)r
Liµ
(
1− cosh(t)

)

1− cosh t
,

∞∑

n=0

B
(µ)
n,O,r

tn

n!
=

(
cosh t

)r
Liµ
(
sinh t

)

sinh t
.

The numbers B
(µ)
n,≤m,r and B

(µ)
n,≥m,r are called the incomplete r-poly-Bernoulli numbers, and

were studied in detail by Komatsu and Ramı́rez [19]. The particular case r = 0 was studied
by Komatsu et al. [18].

7.2. (S, r)-poly-Cauchy numbers. Komatsu [16] introduced the poly-Cauchy numbers

of the first kind, c
(µ)
n , through the expression

c(µ)n =

∫ 1

0

· · ·

∫ 1

0︸ ︷︷ ︸
µ

(t1 · · · tµ)n dt1 · · · dtµ.
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Here, (t)n is the falling factorial defined by (t)n = t(t−1) · · · (t−n+1), n ≥ 1, and (t)0 = 1.

The exponential generating function of c
(µ)
n is

Lifµ(ln(1 + t)) =

∞∑

n=0

c(µ)n

tn

n!
, (µ ∈ Z)

where

Lifµ(t) =

∞∑

n=0

tn

n!(n+ 1)µ

is the µ-th polylogarithm factorial function. The sequence c
(µ)
n is a generalization of the

classical Cauchy numbers cn. In particular, with µ = 1, we have c
(1)
n = cn. See [10, 21] for

general information about Cauchy numbers.
The poly-Cauchy numbers of the first kind can be defined in terms of Stirling number of
the first kind

[
n
k

]
using the formula

c(µ)n =
n∑

k=0

[
n

k

]
(−1)n−k

(k + 1)µ
.

We define the (S, r)-poly-Cauchy numbers of the first kind by the expression:

c
(µ)
n,S,r =

n∑

k=0

[
n

k

]

S,r

(−1)n−k

(k + 1)µ
.(30)

For convenience, put

FS(t) =
∑

s∈S

(−1)s+1 t
s

s
=
∑

i≥1

(−1)i+1 t
ki

ki
,

with F0 = 0. Notice that FZ+ = ln(1 + t).
The exponential generating function of the (S, r)-poly-Cauchy numbers of the first kind
can be given in terms of FS(t).

Theorem 37. The exponential generating function of the (S, r)-poly-Cauchy numbers of
the first kind is

∞∑

n=0

c
(µ)
n,S,r

tn

n!
=

(
∑

s∈S

(−t)s−1

)r

Lifµ
(
FS(t)

)
.(31)
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Proof. From definition (30) and using (9), we have

∞∑

n=0

c
(µ)
n,S,r

tn

n!
=

∞∑

n=0

n∑

k=0

[
n

k

]

S,r

(−1)n−k

(k + 1)µ
tn

n!
=

∞∑

k=0

(−1)k

(k + 1)µ

∞∑

n=k

[
n

k

]

S,r

(−t)n

n!

=

∞∑

k=0

(−1)k

(k + 1)µ
1

k!

(
∑

s∈S

(−t)s−1

)r(∑

s∈S

(−t)s

s

)k

=

(
∑

s∈S

(−t)s−1

)r ∞∑

k=0

1

k!(k + 1)µ

(
∑

s∈S

(−1)s+1ts

s

)k

=

(
∑

s∈S

(−t)s−1

)r

Lifµ
(
FS(t)

)
.

�

The following exponential generating functions follow from some particular cases of S.

∞∑

n=0

c
(µ)
n,Z+,r

tn

n!
=

1

(1 + t)r
Lifµ

(
ln(1 + t)

)
,

∞∑

n=0

c
(µ)
n,≤m,r

tn

n!
=

(
1− (−t)m

1 + t

)r
Lifµ

(
Fm(t)

)
,

∞∑

n=0

c
(µ)
n,≥m,r

tn

n!
=

(
(−t)m−1

1 + t

)r
Lifµ

(
ln(1 + t)− Fm−1(t)

)
,

where

Fm(t) = t−
t2

2
+ · · · −

(−t)m

m
,

with F0 = 0. The numbers c
(µ)
n,≤m,r and c

(µ)
n,≥m,r are called incomplete Cauchy numbers

[19]. The particular case r = 0 was studied in [17]. Moreover, if r = 0 and S = Z
+ the

generating function reduces to the generating function of the poly-Cauchy numbers ([16,
Theorem 2]):

Lifµ
(
ln(1 + t)

)
=

∞∑

n=0

c(µ)n

tn

n!
.

The poly-Cauchy numbers of the second kind ĉ
(µ)
n [16, Theorem 4] can be also defined by

means of Stirling numbers of the first kind:

ĉ(µ)n =
n∑

k=0

[
n

k

]
(−1)n

(k + 1)µ
.
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When µ = 1, ĉn = ĉ
(1)
n are the classical Cauchy numbers of the second kind:

ĉn =

n∑

k=0

[
n

k

]
(−1)n

k + 1
=

∫ 1

0

t(t + 1) · · · (t+ n− 1)dt .

The generating function of the Cauchy numbers of the second kind is

t

(1 + t) ln(1 + t)
=

∞∑

n=0

ĉn
tn

n!
.

We define the (S, r)-poly-Cauchy numbers of the second kind by the expression

ĉ
(µ)
n,S,r =

n∑

k=0

[
n

k

]

S,r

(−1)n

(k + 1)µ
.(32)

Theorem 38. The exponential generating function of (S, r)-poly-Cauchy numbers of the
second kind is

∞∑

n=0

ĉ
(µ)
n,S,r

tn

n!
=

(
∑

s∈S

(−t)s−1

)r

Lifµ
(
−FS(t)

)
.(33)

The following exponential generating functions follow from some particular cases of S.

∞∑

n=0

c
(µ)
n,Z+,r

tn

n!
=

1

(1 + t)r
Lifµ

(
− ln(1 + t)

)
,

∞∑

n=0

ĉ
(µ)
n,≤m,r

tn

n!
=

(
1− (−t)m

1 + t

)r
Lifµ

(
−Fm(t)

)
,

∞∑

n=0

ĉ
(µ)
n,≥m,r

tn

n!
=

(
(−t)m−1

1 + t

)r
Lifµ

(
− ln(1 + t) + Fm−1(t)

)
.

If r = 0 and S = Z
+ the generating function reduces to the generating function of the

poly-Cauchy numbers ([16, Theorem 5])

Lifµ
(
− ln(1 + t)

)
=

∞∑

n=0

ĉ(µ)n

tn

n!
.
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