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Abstract

Immunotherapy is currently regarded as the most promising treatment to fight against cancer. This
is particularly true in the treatment of chronic lymphocytic leukemia, an indolent neoplastic disease
of B-lymphocytes which eventually causes the immune system’s failure. In this and other areas of
cancer research, mathematical modeling is pointed out as a prominent tool to analyze theoretical
and practical issues. Its lack in studies of chemoimmunotherapy of chronic lymphocytic leukemia is
what motivates us to come up with a simple ordinary differential equation model. It is based on ideas
of de Pillis & Radunskaya and on standard pharmacokinetics-pharmacodynamics assumptions. In
order to check the positivity of the state variables, we first establish an invariant region where these
time-dependent variables remain positive. Afterwards, the action of the immune system, as well as
the chemoimmunotherapeutic role in promoting cancer cure are investigated by means of numerical
simulations and the classical linear stability analysis. The role of adoptive cellular immunotherapy
is also addressed. Our overall conclusion is that chemoimmunotherapeutic protocols can be effective
in treating chronic lymphocytic leukemia provided that chemotherapy is not a limiting factor to the
immunotherapy efficacy.

Keywords: Cancer; Chemotherapy; Immunotherapy; Chronic Lymphocytic Leukemia; Ordinary Dif-
ferential Equations.
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1 Introduction

It is well established the idea that Ordinary Differential Equations (ODEs) can model a huge variety of
evolutionary systems in applied sciences. This paper is devoted to the understanding of cancer (leukemia)
model governed by a system of ODEs. These equations are smooth when the treatment protocol requires
the continuous administration of chemotherapy or immunotherapy. On the other hand, these equations
are piecewise smooth when the treatment protocol requires a non-continuous administration of the drug
and a rest period in which the patients immune system recovers from the effects caused by the drug.
Considering this and another features of the protocols to be presented, the main goal of the analysis is
to discuss some control strategies, looking for the possibility of cancer cure of the disease.

In opposition to radiotherapy, where physical principles can be directly and rightly used, the knowing
of accurate oncologic chemotherapy and immunotherapy protocols is far from obvious, especially in com-
bined treatments. The approach to tackling the most important issues of chemotherapy doses – “How
many?”, “How often?” and “How high?” – have remained mostly empirical over the years, only with
a few quantitative-based exceptions of mathematical models being useful for the clinical practice (see
Ref. [1] for examples). This is mainly because the drug-related biochemistry is in general quite involved
for allowing an accurate quantification of dose response. In addition to that, “more is not necessarily
better” regarding chemotherapy dose intensity: by eliminating sensitive cancer cells, high amounts of
chemotherapeutic drugs can trigger forced selection of resistant cancer cells, possibly causing failures of
some cytotoxic therapies [2, 3].
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The complex biochemistry of chemotherapy and immunotherapy is not the only field in which there
is a lack of a solid quantitative knowledge. In fact, an approach from first principles is far from being
achieved in every area of cancer research [4]. Nonetheless, mean-field mathematical models of Ordinary
Differential Equations (ODE) can be alternatively used to explore key features of cancer [5] and to help
to establish its “general laws”. Namely, the most prominent cancer mathematical model is empirical:
the exponential or Malthusian growth law of tumor cells. Not only historically, but in the present, ODE
models still are of great value for both theoretical and practical issues in oncology (e.g. [6, 7, 8, 9, 10]).
Neglecting marginal biological aspects, they focus on general principles of cancer.

Cancers can be classified as being either solid (tumor mass) or “liquid” (hematopoietic and lymphoid
cancers). Within this classification, leukemia is a hematologic malignancy of white blood cells. Closely
linked with mathematical oncology, the design of antileukemic therapies boosted the use of mathematics
in cancer research [11]. In fact, the practical notion of “counting cancer” raised in a seminal paper
by Skipper et al. [12]. Based on extensive experiments, Skipper et al. hypothesized that antineoplastic
chemotherapy kills leukemic cells not in an absolute amount per infusion, but in a fixed constant fraction.
This is the so-called log-kill hypothesis, which can be understood as a “cell-drug mass action law” under
the assumption that chemotherapeutic drug and leukemic cells are homogeneously distributed in the
blood. A valuable review of how mathematical modeling of chemotherapy has evolved over the years is
given in Ref. [3]. In comparison to neoplastic chemotherapy, oncological immunotherapy is a rather newer
modality that takes advantage of the body’s immune system itself to fight against cancer [13]. Its central
idea relies on promoting the immune system’s capabilities and/or making cancer cells to become more
easily recognizable by it. To boost the immune system, cells and natural or synthetical substances can
be used to trigger not a standard, but an over-responsive version of the immune system. Essentially, the
main issue of cancer immunotherapy lies on how to have these processes happening in a controlled and
efficient way, by means of active (e.g. vaccines) or passive (e.g. antibodies) mechanisms. Another form of
immunotherapy is the adoptive transfer of T lymphocytes, in an autologous (cells from the own patient)
or allogeneic (relative or unrelated individual) manner [14]. From a mathematical point of view, these
two types of transplantion are not limited by possible immunostimulatory saturation mechanisms since
in this procedure donated cells are directly infused into the host.

In opposition to the autologous type, allogeneic adoptive immunotherapies have the major advantage
of minimizing the possibility of cancer recurrence by using stem cells from a healthy donor. Its main dis-
advantages are the risk of developing graft versus host disease (an autoimmune disorder) and the difficulty
of finding a matching donor [15]. These are not limiting factors in autologous stem cell transplants, which
however require a careful selection of cancer-free T lymphocytes [16]. To date, adoptive immunotherapies
are essentially the unique treatment currently available for inducing the complete remission of chronic
lymphocytic leukemia. Nontransplant therapeutic options has resulted in long sustained disease-free inter-
vals, but its curative property has not been completely confirmed yet [17]. The risk of contracting severe
infections due to immunosuppression drugs which prevent the occurrence of graft versus host disease [15]
is then compensated by the possibility of cancer cure.

Chronic Lymphocytic Leukemia (CLL) is a neoplasia of B-lymphocytes originated in the bone marrow
that takes many years to fully develop and exhibit clinically relevant symptoms. The disease results from
the production of too many lymphocytes, which however are defective in the ability to fight infections.
Though classified at the beginning of the 1900s, CLL still has an unknown etiology, even being the most
common type of leukemia diagnosed in adults in Western Europe and North American countries [18, 19].
CLL is a disease of the elderly, with very heterogeneous outcomes [20]. While some patients experience
a rapid progression of the disease, many others are able to live for decades with it. Irrespectively, a
common misconception is CLL seldom leads to death, but the fact is many patients die from infections
as a consequence of the disease [21, 22]. To go against it, the treatment of CLL has been improved over
the years, so much so that in 2014 and 2015 it was officially regarded as the clinical cancer advance of the
year by the American Society of Clinical Oncology (ASCO). In 2016 and 2017, immunotherapy gained the
same significance from ASCO. In the opposite direction, incidence and mortality of CLL in the United
States are expected to reach 20,110 new cases and 4,660 deaths in 2017 [23].

Oncological immunotherapy and CLL have been addressed via mathematical modeling as a relatively
new, fertile subject of study in the last decade [17]. Contributing to advance the state-of-the-art in the
field, validated mathematical models of ODEs have revealed the complex tumor-immune interplay. Exam-
ples of studies from this perspective are the papers by Kuznetsov et al. [24] and de Pillis & Radunskaya
[6, 25]. The latter is one of the rare examples concerning the modeling of CLL in time. A reasonable
fit with clinical human data is found, even considering different patients and in a wide range of disease
progression rates and dynamics. Nonetheless, only immunotherapy is addressed.
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The current trend of use of chemoimmunotherapy in cancer research in general [26] has boosted several
studies on mathematical oncology (e.g. [27, 28, 29, 30]). In a practical sense, chemoimmunotherapy is
becoming more and more a need for successful CLL treatments [31], but only a few studies are aimed
at modeling (e.g. [32, 33]). The same is true for adoptive cellular immunotherapy (e.g. [34, 35]), which
in fact is still poorly understood in quantitative terms. The major point of our study is to contribute to
filling these gaps.

Our modeling approach is built on a simple ODE model gathered from ideas of the literature, aiming
the CLL-immune dynamics under chemoimmunotherapy. The modeling of the tumor-immune interplay
follows the proposal of de Pillis & Radunskaya [36], with the addition of a source term of immune cells that
mimics an adoptive cell transplant. Elimination of first order and a log cell kill hypothesis with Michaelis-
Menten account for pharmacokinetics and pharmacodynamics [37, 12, 38]. Supported by numerical and
analytical results, our model indicates that the joint application of immunotherapy and chemotherapy
requires a careful planning of the chemotherapeutic dose, since the cytotoxic effects on immune cells can
be a limiting factor for successful immunotherapies.

The paper is organized as follows. In Section 2, we present the model. In Section 3, we discuss its
predictions and results in the light of clinical practice in oncology. Finally, Section 4 closes the paper with
concluding remarks.

2 The Model

We consider the interplay between neoplastic B-lymphocytes and “healthy” T-lymphocytes under
chemotherapy and immunotherapy. A detailed discussion of these intervening treatments is postponed
until the presentation of the model, but for the moment we emphasize that an infusion of T-lymphocytes
in time is considered for modeling adoptive cellular immunotherapy. Other blood cells such as erytrocytes
are not taken into account in the model, but we consider that chemotherapy does negatively affect the
immune cells. Cancer cells (as well as immune cells) are assumed to be identical within their niche, and
then modeled as a single compartment. For the sake of simplicity, we neglect the dynamics of natural
killer cells since there is some evidence that their natural cytotoxic capacity may be weak in neoplastic
B-lymphocytes [39, 40]. Finally, the other assumptions that complete the model are:

• Cancer cells grow according to the logistic law;

• Immune cells are naturally provided at a constant rate by the host (even in the absence of cancer),
but they also die naturally (exponentially);

• Cancer cells stimulate the production of new immune cells, with a recruitment rate that saturates
after a certain number of cancer cells;

• The interaction between and cancer and immune cells has a negative impact on each other, whose
rate is proportional to the number of encounters between them;

• The pharmacodynamics of the chemotherapeutic drug follows the log-kill hypothesis, but with a
Michaelis-Menten drug saturation response;

• The drug is eliminated according to first-order kinetics.

Denoting the number of cancer cells by N (neoplastic B-lymphocytes), the number of immune cells by
I (“healthy” T-lymphocytes) and the amount (or mass) of chemotherapeutic agent in the bloodstream
by Q, based on de Pillis & Radunskaya [36] we propose the following model:

dN

dt
= r N

(
1− N

k

)
− c1N I − µN Q

a+Q
;

dI

dt
= s(t) + s0 − d I +

ρN I

γ +N
− c2N I − δ I Q

b+Q
;

dQ

dt
= q(t) − λQ.

(1)

(2)

(3)

In order to complete the initial value problem, we set N(0) = N0 > 0 (i.e., somehow cancer is already
established), I(0) = I0 ≥ 0 and Q(0) = 0 (i.e., the initial amount of the chemotherapeutic drug is zero).

All parameters of the model are non-negative: k > 0, the cancer cells carrying capacity; r, the cancer
cell growth rate; c1 and c2, the interaction coefficients between cancer and immune cells, respectively
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affecting cancer and immune populations; s0, the natural influx of immune cells to the place of interaction;
d, the natural death rate of immune cells; ρ, the production rate of immune cells estimulated by the cancer;
γ, the number of cancer cells by which the immune system response is the half of its maximum; µ and
δ, the mortalities rates due to the action of the chemotherapeutic drug on cancer and immune cells,
respectively; a and b, the drug amount for which such effects are the half of its maximum in each cell
population; and λ, the washout rate of a given cycle-nonspecific chemotherapeutic drug

λ
.
=

ln 2

t1/2
, (4)

where t1/2 is the drug elimination half-life [41]). Also, the time-dependent functions s and q are source
terms respectively standing for immunotherapy and chemotherapy. To the simplest scenario, they are
constants.

The first term in the equation for dN/dt describes the classical logistic cancer growth [42], and the ci
term models the interspecific interaction between cancer and immune cells on each population (i = {1, 2},
respectively). Also, the immune system is represented by s0 − dI, as discussed in Ref. [6].

The equation (3) describes the first order pharmacokinetics of a chemotherapeutic drug with an
external source [37]. As for pharmacodynamics, the last term of the equations (1) and (2) represent
the log-kill hypothesis [12], with a Michaelis-Menten drug saturation response [38], as it appears in the
denominators of µN Q/(a + Q) and δ I Q/(b + Q). An analogous functional response with positive sign
is taken for bounding the production of immune cells stimulated by the cancer, i.e., ρN I/(γ +N).

With respect to the chemotherapeutic or immunotherapeutic infusion fluxes given by the functions q
and s, there are two basic ways of therapy delivery. In terms of a generic function f they are:

1. Constant administration: f is a constant function everywhere,

f(t) = f∞ ≥ 0. (5)

2. Periodic administration: f is defined by

f(t) =

 fp > 0, n ≤ t < n+ τ,

0, n+ τ ≤ t < n+ T,
(6)

where τ is the time taken for administration, T is the administration period and n = {0, T, 2T, . . . ,mT},
with m+ 1 being the number of administrations of chemotherapy or immunotherapy.

Constant administration is a more theoretical way of therapy delivery, but (as we will see later on)
still important to understand thresholds of chemotherapy and immunotherapy infusion fluxes that lead
to cancer cure. Periodic administration, on the other hand, is more practical in oncology and is the main
point of the numerical simulations discussed here.

Irrespective to the therapy delivery, the accumulated chemotherapeutic or “immunotherapeutic” doses
up to the time t′ can be directly calculated as:

D =

∫ t′

0

f(t) dt. (7)

For immunotherapy, we emphasize that the accumulated “dose” actually corresponds to a number of
immune cells injected into the system by adoptive cell transplant [15]. As a first analysis, to establish
some analytical results, we begin our discussion assuming a constant administration of chemotherapy
with or without the joint application of immunotherapy.

3 Results and Discussion

3.1 Constant administration of chemotherapy with or without constant im-
munotherapy

Immunotherapy (if any) and chemotherapy are assumed to be constant over time, with fluxes denoted
by s∞ and q∞, respectively.

Being s = s(t) and q = q(t) non-negative constant functions, the system (1)–(3) has the following
equilibria:
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• E1(0, Î, q∞/λ), i.e., cancer cure;

• E2(Nc, Ic, q∞/λ), i.e., coexistence between cancer and immune cells.

As for E1(0, Î, q∞/λ),

Î =
s̃ (b λ+ q∞)

δ q∞ + d (b λ+ q∞)
. (8)

The values of Nc and Ic in E2(Nc, Ic, q∞/λ) cannot be explicited, but they are related by:

Ic =
r (a λ+ q∞) (1−Nc/k) − µ q∞

c1 (a λ+ q∞)
. (9)

3.1.1 Solutions with positive values remain positive

In practice, the values of the variables N = N(t), I = I(t) and Q = Q(t) only make sense when they
are non-negative. In a mathematical point of view, however, it is possible to admit negative values for
them. Let us call the positive octant O+ being the octant in the domain N × I × Q where these three
coordinates are positive, i.e., O+ = {(N, I,Q) ∈ R3 : N ≥ 0, I ≥ 0, Q ≥ 0}.

Generically, the behavior outsideO+ could have an effect onO+. For example, an asymptotically stable
equilibrium outside O+ could attract trajectories which initial conditions placed on O+. As consequence,
there are points of these trajectories where exactly one of the variables N , I or Q vanishes and then the
model must be analyzed considering the interation modeled by the other two remaining variables. To
understand the behavior of the model (1)-(3) in the border of O+ is the aim of this section.

Initially, let us analyze the plane NQ = {(N, I,Q) ∈ R3 : I = 0}. When I = 0 we have dI/dt =
s(·) + s0 > 0 since s0 is positive and s(·) ≥ 0. Therefore, I is an increasing function for initial conditions
on the plane NQ. Let us also consider the plane IQ = {(N, I,Q) ∈ R3 : N = 0}. In this case, dN/dt = 0
and any initial condition will remain in the plane IQ, i.e., IQ is an invariant plane. Finally, the plane
NI = {(N, I,Q) ∈ R3 : Q = 0}. When Q = 0, we have dQ/dt = q(·) ≥ 0. If q(t) > 0 ∀t, then Q is
an increasing function and if q(t) ≡ 0 then NI is an invariant plane. A summary of the aforementioned
planes is presented in Figure 1, either with or without chemotherapy and respective trajectories. An
immediate consequence is that O+ is invariant and we can restrict our analysis to this region.

Q

I

N

Invariant

Increasing

Incre
asi

ng

Incre
asi

ng

Invariant

Invariant

Q

I

N

Figure 1: Trajectories over the planes NQ, IQ and NI respectively either with or without a chemother-
apeutic agent.

Further, we can study the behavior of the system (1)-(3) on the axes. Let us consider the axis I =
{(N, I,Q) ∈ R3 : N = 0, Q = 0} over which then dI/dt = s∞ + s0 + dI. By assuming that s(t) = s∞,
when I = (s∞ + s0)/d

.
= I0 implies dI/dt = 0 so that I is a constant function for these values. On

the other hand, the coordinate I is increasing for 0 < I < I0 and decreasing for I > I0. If q(t) ≡ 0 we
observe that the axis I is invariant. Besides, on the axis N = {(N, I,Q) ∈ R3 : I = 0, Q = 0}, follows
that dN/dt = rN(1 − N/k) and then N is an increasing function when 0 < N < k and decreasing for
N > k. Lastly, considering q(t) = q∞ ∀t, dQ/dt = q(t) − λQ and then Q is increasing if 0 < Q < q∞/λ
and decreasing if Q > q∞/λ.

In the sequel let us study the behavior of the model (1)-(3) in the invariant planes IQ and NI, the last
one just in the case without chemotherapeutic agent. To fix ideas, the analysis that follows is illustrated
using the parameter values summarized in Table 1.

5



D
RA
FT

Table 1: Parameters of the model; cancer cells, immune cells and cyclophosphamide.

Parameter Value Unity Reference

r 10−2 day−1 [43]

k 1012 cell [44]

c1 5× 10−11 cell−1day−1 -

c2 1× 10−13 cell−1day−1 -

s0 3× 105 cell day−1 -

d 10−3 day−1 -

ρ 10−12 day−1 -

γ 102 cell -

µ 8 day−1 -

δ 104 day−1 -

a 2× 103 mg -

b 5× 106 mg -

λ 4.16 day−1 [45]

Initially, we consider the plane IQ and the system (1)-(3) without chemotherapy (q(t) ≡ 0) or im-
munotherapy (s(t) ≡ 0) infusions, as in the following

dI

dt
= s0 + I

(
−d− δQ

b+Q

)
;

dQ

dt
= −λQ.

(10)

System (10) has the equilibrium (I, 0) = (s0/d, 0), which is an attractor of the trajectories, as it is
shown in 2. The case with constant immunotherapy (s(t) = s∞) and without chemotherapy infusion
(q(t) ≡ 0) is similar, but with the equilibrium shifted to the point ((s∞ + s0)/d, 0).

0 20000 40000 60000 80000 100000

0

20000

40000

60000

80000

100000

Figure 2: Behavior of the vector field given by (1)-(3) on the plane IQ without chemotherapy infusion or
immunotherapy, for parameters values taken from Table 1.

Now, let us consider a constant drug infusion rate of chemotherapy, and no immunotherapy (s(t) ≡ 0),
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resulting in the system 
dI

dt
= s0 + I

(
−d− δQ

b+Q

)
;

dQ

dt
= q∞ − λQ.

(11)

System (11) has the equilibrium

(I,Q) =

 s0

d+ δ q∞/λ
b+ q∞/λ

, q∞/λ

 ,

which is an attractor for the trajectories of (11). Again, as in the previous case, the addition of a constant
immunotherapy just results in a shifted equilibrium.

The plane NI is invariant in the absence of a chemotherapy infusion (q(t) ≡ 0). If, in addition to that
(s(t) ≡ 0), the system (1)-(3) reads

dN

dt
= rN

(
1− N

k

)
− c1NI;

dI

dt
= s0 +

ρNI

γ +N
− dI − c2NI;

(12)

whose equilibrium (N, I) = (0, s0/d) could be an attractor for the trajectories of (12), as it is shown in 3.
We observe that the previous system has another equilibrium P ∗ whose first coordinate is positive. So,
P ∗ is an equilibrium where the cancer is not eliminated. The expression of P ∗ is involving.

0 2×108 4×108 6×108 8×108 1×109

0

2×108

4×108

6×108

8×108

1×109

Figure 3: Behavior of the vector field given by (12) on the plane NI without chemotherapy or immunother-
apy, for parameters values taken from Table 1.

In the system (1)-(3), if q(t) = q∞, the plane Q0 = {(N, I,Q) ∈ R3 : Q = q∞/λ} is invariant, so that
in the particular case in which s(t) ≡ 0 the system (1)-(3) reads

dN

dt
= rN

(
1− N

k

)
− c1NI −

µNq∞/λ
a+ q∞/λ

dI

dt
= s0 − dI +

ρNI

γ +N
− c2NI −

δIq∞/λ
b+ q∞/λ

,

(13)
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whose equilibrium (N, I) = (0, (q∞s0 + bs0λ)/(dq∞ + q∞δ + bdλ)) could be attractor for the trajectories
of (13), as it is shown in Figure 4. Again, another equilibria without the elimination of the cancer can be
predicted, but it is quite involved to be explicited.

0 2×106 4×106 6×106 8×106 1×107

0

2×106

4×106

6×106

8×106

1×107

Figure 4: Behavior of the vector field given by (13) on the plane Q0 without immunotherapy and with
chemotherapy, for parameters values taken from Table 1 and q∞ = 300 mg/day.

3.1.2 Linear stability analysis

In terms of s̃, a necessary and sufficient condition for E1(0, Î, q∞/λ) to be locally asymptotically
stable is the inequality (33) given in A. It reveals an interesting scenario where the chemotherapy dose is
decreased to give way to the immune system or immunotherapy, which in general almost do not produce
unwanted effects such as cytotoxicity of healthy cells. According to our modeling, a flux of immune
cells higher than the lower threshold bound on the right hand side of (33) could be an alternative for
eliminating cancer. This would be promising for oncologic treatments such as allogeneic hematopoietic
stem cell transplant for adoptive immunotherapy of chronic lymphocytic leukemia.

Another result of our model reinforces the importance of immunotherapy. For higher chemotherapeutic
drug fluxes than the presented in (34), the chemotherapy itself entails cancer cure, but at the cost of
intense doses. However, according to (33), lower chemotherapeutic doses than (34) could be applied upon
the claiming of immunotherapy.

The role of therapies based on immune cells in decreasing chemotherapeutic doses needed for cancer
cure is show in Figure 5. Each curve represents a numerical solution of the system (1)–(3) for a different
value of q∞, for a given infusion of immune cells, where the time spent for attaining cure (tcure) is defined
as the one when the value of N drops below one cancer cell. In Figure 5a, the chemotherapeutic dose
Dchemo is plotted as function of q∞ itself. In Figure 5b, Dchemo is a function of tcure. In these two, there
are not only quantitative, but qualitative changes in the Dchemo behavior depending on the value of s∞,
since a flux of immune cells is able to change the concavity of the dose curve. In Figure 5a, one can see
that Dchemo is minimum for q∞ approximately equal to 3 × 102 mg/day and that the external flux of
immune cells provided by immunotherapy has a large impact on the chemotherapeutic dose required for
cure (since the graphs are in log scale). In Figure 5b, from tcure = 10 to 1000 days the given drug dose
remains approximately constant at 3×104 mg/day. Again, this a wide variation of 2 orders of magnitude
in the time scale required for cure; the shorther tcure, the higher q∞.
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(a) Chemo dose as a function of the infusion rate

s∞ = 7.0× 105

s∞ = 4.0× 105

s∞ = 0.0

q∞

Dchemo

105104103102101100

106

105

104

103

(b) Chemo dose as a function of the time required for cure

s∞ = 7.0× 105

s∞ = 4.0× 105

s∞ = 0.0

tcure

Dchemo

105104103102101100

106

105

104

103

Figure 5: (a) Chemotherapeutic dose Dchemo as a function of the infusion rate q∞; (b) Chemotherapeutic
dose Dchemo and respective time tcure required to reach the tumoral elimination. Initial condition: N(0) =
2 × 1010 cancer cells, I(0) = 5 × 107 immune cells and Q(0) = 0 mg of cyclophosphamide. Parameter
values are from Table 1.

3.2 Periodic chemotherapy and the immune system

In this section we discuss the immune system’s role when only periodic administration of chemotherapy
is applied, i.e., s(t) ≡ 0. The numerical simulations were performed by Runge-Kutta 4th order method.

To set the chemotherapeutic schedule, we define the function q based on a drug regimen already
used in practice. In the specific case of chronic lymphocytic leukemia, one possible choice is a drug
combination with pentostatin, cyclophosphamide and rituximab, usually known as PCR protocol [46]. In
our modeling, we adopt a simpler version of it, considering only the use of cyclophosphamide in standard
of care protocols of CLL treatment [17].

The chemotherapeutic regimen consists of a 21-day, 6-cycle schedule of 600 mg of cyclophosphamide
per m2 of body surface per infusion. For a hypothetical human patient of height 1.70m and weight 70
kg, resulting in a body surface of 1.8m2 [47], the dose per infusion is then 600 × 1.8 = 1080 mg. Also,
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we consider a drug infusion time of 3 hours, or 1/8 day and a cyclophosphamide half-life of 4 hours
[45]. According to these assumptions, the drug-schedule parameters are ninf = 6 infusions, τq = 1/8 day,
Tq = 21 days and qp = 600 × 1.8 / (1/8) = 8640 mg/day. The other parameters are listed in Table 1. A
carrying capacity of 1012 cancer cells was chosen based on Ref. [48]. The value of λ was calculated from
the equation (4).

Based on the PCR chemotherapeutic schedule for cyclophosphamide, in Figure 6 we show the immune-
cancer dynamics considering two immunological situations: typical immunity, represented by s0 = 3×105

cells/day and a hypothetical case where the immune system is able to provide a higher flux of immune cells
of s0 = 7× 105 cells/day. In the former, there is a regrowth of cancer cells after the end of chemotherapy.
In the latter, however, once the cancer cells were killed by chemotherapy, the immune system promotes
cancer elimination. This is an overly optimistic scenario (in general, the immune system is not capable
of curing CLL on its own), but the point here is that the negative difference of 4 × 105 cells/day in the
exemplified typical immunity case could be amended by considering an external source of immune cells,
i.e., taking s = s(t) as a strictly positive function. This indicates that not only more responsive treatments
can be reached by using immunotherapy after chemotherapy, but mainly that the cancer dynamics can be
completely different depending on the number of immune cells. This idea is formally stated and explored
in the next section.

I, s0 = 7× 105
N, s0 = 7× 105
I, s0 = 3× 105
N, s0 = 3× 105

Periodic chemotherapy in the absence of immunotherapy

t
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Figure 6: CLL evolution with initial chemotherapy, but in absence of immunotherapy (s(t) ≡ 0). Initial
condition: N(0) = 2× 1010 cancer cells (red line), I(0) = 5× 107 immune cells (gray line) and Q(0) = 0
mg of cyclophosphamide. The dashed lines are for s0 = 3 × 105 cells/day and the solid lines are for a
greater value of natural immune cell flux: s0 = 7× 105 cells/day. Parameter values are from Table 1.

3.3 Periodic chemotherapy and immunotherapy

CLL could be treated by using solely immunotherapy. However, combined approaches with chemother-
apy appear to be more appealing since chemotherapeutic drugs are very effective at inducing remission,
but not cure, which then could be reached with the joint use of immunotherapy [26, 31]. In what follows,
we numerically show that this can be true if constant immunotherapy is used in conjuction with periodic
chemotherapy. Afterwards, we address the more complex case in which both therapies are periodically
delivered.
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3.3.1 Periodic chemotherapy and constant immunotherapy

The simplest way of modeling immunotherapy is assuming that other than a natural influx of immune
cells (s0), a constant flux of immune cells is externally provided and injected into the system (s∞). We
denote the sum of these by the constant as

s̃
.
= s0 + s∞. (14)

The chemotherapeutic infusion follows a periodic delivery given by (6).
In Figure 6, we have shown that the value of s0 (or s̃) critically determines cure or cancer relapse.

This is a result of the role of immunotherapy in the combined chemoimmunotherapeutic approach. One
can ask if the chemotherapeutic schedule can play the same role in promoting cancer cure. To answer
this question, we performed two numerical simulations that differ only by the number of infusions in
each simulation, with ninf = 5 or 6 infusions. The parameter values are from Table 1 and the external
flux of immune cells is fixed at s∞ = 1 × 105 cells/day. The results are shown in Figure 2, in which
one can see that the performing of just one more infusion is responsible for changing the steady state
equilibrium reached, going from treatment failure to cancer cure. This change in evolution is attained
because the additional infusion decreased the number of cancer cells below a certain level so that the
immune cells can completely kill them, leading to cure. The mathematical interpretation of this result is
that the tumor-immune system (1)–(3) is exhibiting bistability under Q(t) ≡ 0, but is the application of
the chemotherapeutic drug which changes the steady state equilibrium to cure.
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Figure 7: CLL evolution with initial chemotherapy and constant immunotherapy over time (s∞ = 1×105

cells/day) for 5 or 6 drug infusions. Initial condition: N(0) = 2×1010 cancer cells (red line), I(0) = 5×107

immune cells (gray line) and Q(0) = 0 mg of cyclophosphamide. The dashed lines are for ninf = 5 infusions
and the solid lines are for ninf = 6 infusions. Parameter values are from Table 1.
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In situations where constant immunotherapy is combined with periodic chemotherapy, it is also critical
to determine if cytotoxic effects of chemotherapy on immune cells are too strong to invalidate an effective
immunotherapeutic response. To analyze this issue, we choose to vary the mortality rate of immune cells
due to chemotherapy (parameter δ) from the well succeeded protocol of 6 infusions shown in Figure 7,
changing δ from 104 to 106/day. The results are shown in Figure 8. If δ = 106/day, the cure is not
attained anymore, since the chemotherapeutic effect on immune cells is preventing them to attack cancer
cells effectively. In such a case, there is no point in performing immunotherapy, since it is limited by
chemotherapy.
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Figure 8: CLL evolution with initial chemotherapy and constant immunotherapy over time (s∞ = 1×105

cells/day) depending on the mortality rate of immune cells due to chemotherapy (parameter δ). Initial
condition: N(0) = 2× 1010 cancer cells (red line), I(0) = 5× 107 immune cells (gray line) and Q(0) = 0
mg of cyclophosphamide. The dashed lines are for δ = 106/day and the solid lines are for δ = 104/day.
Parameter values are from Table 1.

3.3.2 Periodic chemotherapy and non-constant immunotherapy

In this section we address a non-constant immunotherapy delivery after periodic chemotherapy. In
the numerical simulations performed, the natural influx of immune cells (s0) is kept at the same value
as before (see Table 1 for this and the other parameter values), but now the function s is not taken as a
constant.

The first result presented aims to mimic an adoptive cell transplant of immune cells after chemother-
apy. The number of immune cells transplanted into the host (i.e., the “immunotherapeutic” dose Dimmuno)
is a relevant quantity since the therapeutic effect of transplantation critically depends on it. The time
taken to complete such a procedure is τs = 1 day and then Dimmuno = sp × τs. Two simulations are
presented in Figure 9, in which sp = 107 (Dimmuno = 107) or sp = 1010 cells/day (Dimmuno = 1010 cells),
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this last one dose being a typical value currently used in clinics [16]. Only for the higher of these two
doses the cure is attained, though a unique dose of the order of 108 cells is already able to result in cancer
cure (result not shown).

I,Dimmuno = 1010
N,Dimmuno = 1010
I,Dimmuno = 107
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Adoptive cell transplant after periodic chemotherapy
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Figure 9: CLL evolution with initial chemotherapy before adoptive cell transplant at t = 126, depending
on the number of transplanted cells Dimmuno. Initial condition: N(0) = 2 × 1010 Cancer cells (red line),
I(0) = 5× 107 immune cells (gray line) and Q(0) = 0 mg of cyclophosphamide. The dashed lines are for
Dimmuno = 107 cells and the solid lines are for Dimmuno = 1010 cells. Parameter values are from Table 1.

Instead of a Dirac-like function for s = s(t), the following step is to consider a periodic delivery
of immunotherapy as stated in (6). To this end, we establish a periodic immunotherapeutic regimen of
21-day, 6-cycle schedule with infusions of 1/8 day each, so that Ts = 21 days, ninf = 6 and τs = 1/8 day,
being the parameter sp left free to vary. Two values of sp are used, 7×107 and 8×107 cells/day. According
to (6) and (7) these corresponds to Dimmuno = 5.25× 107 and Dimmuno = 6× 107 cells, respectively. The
results are presented in Figure 10. Though there is only a slightly difference between these values, again
the protocol established (the choice of the function s, essentially) critically determines cure or cancer
regrowth, as it was already discussed in the results presented Figure 1.
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Figure 10: CLL evolution with initial chemotherapy before periodic immunotherapy. Initial condition:
N(0) = 2 × 1010 cancer cells (red line), I(0) = 5 × 107 immune cells (gray line) and Q(0) = 0 mg of
cyclophosphamide. The dashed lines are for sp = 7×107 cells/day and the solid lines are for sp = 8×107

cells/day, but in both cases the time taken for administering each infusion of cells is τs = 1/8. Parameter
values are from Table 1.

4 Concluding Remarks

In this paper, we explore the joint application of chemotherapy and immunotherapy for treating CLL
disease by means of a simple ODE model. We also address the post-chemotherapeutic use of adoptive
immunotherapy aiming to provide a quantitative view of this possibly curative procedure for CLL. Our
results reinforce the current point of view in oncology that chemotherapy and immunotherapy can be
synergistic forms of cancer treatment.

According to our mathematical modeling, the option for a combined treatment of chemotherapy
with immunotherapy must be analyzed carefully, since the unwanted cytotoxic effects on immune cells
critically determine the immunotherapeutic efficacy. On the other hand –and this is our main point here–,
the application of chemotherapy paves the way for immunotherapy: it decreases the number of cancer cells
so that the immune cells then can act on a smaller population. Finally, our numerical results show that
there is a minimum value of immune cells to be transplanted in adoptive therapy needed for promoting
complete remission or cure. More studies aiming at modeling are needed in chemoimmunotherapy and in
adoptive cellular immotherapy, since CLL research is claiming for a more solid quantitative basis.
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where

j11 = r

(
1− N

k

)
− rN

k
− c1I −

µQ

a+Q
, (16)

j12 = − c1N, (17)

j13 = − µaN

(a+Q)
2 , (18)

j21 =
ρ I

g +N
− ρ IN

(g +N)
2 − c2I, (19)

j22 = − d+
ρN

g +N
− c2N −

δ Q

b+Q
, (20)

j23 = − δ b I

(b+Q)
2 , (21)

j33 = − λ. (22)

The Jacobian matrix evaluated in the equilibrium E1(0, Î, q∞/λ) becomes

J
(

0, Î,
q∞
λ

)
=
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l11 0 0

l21 l22 l23

0 0 l33
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where
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(
r − c1Î − µ

)
q∞ − λ a

(
−r + c1Î

)
a λ+ q∞

, (24)

l21 =
(ρ− c2γ)

γ
Î, (25)

l22 = − d (b λ+ q∞) + δ q∞
b λ+ q∞

, (26)

l23 = − δ b λ2 Î

(b λ+ q∞)
2 , (27)

l33 = − λ. (28)

The eigenvalues of J(0, Î, q∞/λ) are l11, l22 and l33. The last two are negative, thus the local stability

of E1(0, Î, q∞/λ) depends solely on the sign of l11. From (8),

l11 =
p2 q∞2 + p1 q∞ + p0[

d (b λ + q∞) + δ q∞
]

(a λ+ q∞)
, (29)

where

p2 = (r − µ) d − µ δ + r δ − c1 s̃, (30)

p1 = − λ
{[
−a r − b (r − µ)

]
d + (c1 s̃− r δ) a + c1 s̃ b

}
, (31)

p0 = − a b λ2 (c1 s̃ − r d) , (32)

with s̃ given by (14).
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The necessary and sufficient condition for E1(0, Î, q∞/λ) to be locally asymptotically stable is that
l11 < 0. The equivalent condition in terms of s̃ is

s̃ >

[
(r − µ) q∞ + r a λ

][
(d+ δ) q∞ + d b λ

]
c1 (a λ + q∞) (b λ + q∞)

.
= g(q∞). (33)

The function g = g(q∞) has the vertical asymptotes − a λ and − b λ, but they are not relevant
because they lie on the left hand side of the plane R2. The same occurs with one of the roots of g, namely
−(d b λ)/(δ + d). If r 6= µ, g has one more root, given by

q∗∞ =
r a λ

µ− r . (34)

Moreover, if the inequality µ > r holds, then any s̃ > 0 implies that E1(0, Î, q∞/λ) is locally asymptoti-
cally stable under the sufficient condition q∞ > q∗∞.
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