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Abstract: An edge-coloured graph G is called properly connected if every two vertices are

connected by a proper path. The proper connection number of a connected graph G, denoted by

pc(G), is the smallest number of colours that are needed in order to make G properly connected.

Susan A. van Aardt et al. gave a sufficient condition for the proper connection number to

be at most k in terms of the size of graphs. In this note, our main result is the following,

by adding a minimum degree condition: Let G be a connected graph of order n, k ≥ 3. If

|E(G)| ≥
(
n−m−(k+1−m)(δ+1)

2

)
+ (k + 1 −m)

(
δ+1
2

)
+ k + 2, then pc(G) ≤ k, where m takes the

value t if δ = 1 and ⌊ k
δ−1⌋ if δ ≥ 2. Furthermore, if k = 2 and δ = 2, pc(G) ≤ 2, except

G ∈ {G1, Gn} (n ≥ 8), where G1 = K1 ∨ 3K2 and Gn is obtained by taking a complete graph

Kn−5 and K1∨(2K2) with an arbitrary vertex of Kn−5 and a vertex with d(v) = 4 in K1∨(2K2)

being joined. If k = 2, δ ≥ 3, we conjecture pc(G) ≤ 2, where m takes the value 1 if δ = 3 and

0 if δ ≥ 4 in the assumption.
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1 Introduction

All graphs in this work are simple, finite connected and undirected. We follow [3] for graph

theoretical notations not defined here. Let G be a connected graph, we denote by c(G) the

circumference of G, i.e., the order of a longest cycle of G, and by p(G) the detour number of

G, i.e., the order of a longest path of G.

As the extension of proper colourings are motivated by rainbow connections of graphs, An-

drews et al.[2] and, independently, Borozan et al.[4] introduced the concept of proper connections

in graphs. An edge-coloured graph G is called rainbow-connected[5] if every two vertices are

connected by a path whose edges have different colours. The rainbow connection number of a

connected graph G, denoted by rc(G), is the smallest number of colours that are needed in order

to make G rainbow connected. An easy observation is that if G has n vertices then rc(G) ≤ n−1,

since one may colour the edges of a given spanning tree of G with different colours, and colour

the remaining edges with one of the already used colours.

A path in an edge-coloured graph is called a proper path if no two adjacent edges of the

path are colored with one same color. An edge-colored graph G is called properly connected if

every pair of distinct vertices of G is connected by a path whose edges are properly coloured.

For a connected graph G, the proper connection number of G, denoted by pc(G), is defined as

the smallest number of colors that are needed in order to make G properly connected.

The proper connection of graphs has the following application. When building a communi-

cation network of wireless signal towers, one fundamental requirement is that the network be

connected. If there cannot be a direct connection between two towers A and B, say for example

if there is a mountain in between, there must be a route through other towers to get from A to

B. As a wireless transmission passes through a signal tower, to avoid interference, it would be

helpful if the incoming signal and the outgoing signal do not share the same frequency. Suppose

that we assign a vertex to each signal tower, an edge between two vertices if the corresponding

signal towers are directly connected by a signal and assign a color to each edge based on the as-

signed frequency used for the communication, then, the number of frequencies needed to assign

to the connections between towers so that there is always a path avoiding interference between

each pair of towers is precisely the proper connection number of the corresponding graph [8].
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For the proper connection number of G, the following results are known.

Proposition 1.1. Let G be a connected graph of order n (number of vertices) and size m

(number of edges). Then

(1) 1 ≤ pc(G) ≤ min{χ′(G), rc(G)} ≤ m, where χ′(G) is the edge chromatic number of G,

(2) pc(G) = 1 if and only if G = Kn,

(3) pc(G) = m if and only if G ∼= K1,m is a star of size m,

(4) If G is a tree, then pc(G) = ∆(G),

(5) If G is traceable, i.e., there exists Hamilton path in G, then pc(G) ≤ 2.

For each pair of positive integers n and k, we define g(n, k) to be the smallest integer such

that every connected graph of order n and size at least g(n, k) has proper connection number at

most k. Huang, Li, and wang [10] showed that g(n, k) =
(
n−k−1

2

)
+ k+2 for k = 2, n ≥ 14, and

for k = 3, n ≥ 14. In this paper we consider the function g(n, k) by adding a minimum degree

condition.

The analogous problem for rainbow connections was introduced in [12] and results on that

problem appeared in [11, 12, 13, 14, 16].

2 Auxiliary results

We shall use the following result of Andrews et al. [2].

Lemma 2.1 ([2]). If G is a connected graph and H is a connected spanning subgraph of G, then

pc(G) ≤ pc(H). In particular, pc(G) ≤ pc(T ) for every spanning tree T of G.

In fact, Lemma 2.1 also states that the proper connection number is monotonic under adding

edges.

Proposition 2.2 ([4]). If a graph G contains a vertex v such that d(v) ≥ 2 and pc(G− v) ≤ 2,

then pc(G) ≤ 2.

Theorem 2.3 ([4]). If G is a 2-connected graph, then pc(G) ≤ 3.
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Huang et al. [10] extended Theorem 2.3 as follows.

Theorem 2.4 ([10]). If G is a connected bridgeless graph, then pc(G) ≤ 3.

For a connected graph G with bridges, Huang et al. [10] described the following natural

approach: Let B ⊆ E(G) be the set of cut-edges of a graph G. Let C denoted the set of

connected components of G′ = (V,E\B). There are two types of elements in C, singletons and

connected bridgeless subgraphs of G. Let S ⊆ C denoted the singletons and let D = C \S. Each

element of S is, therefore, a vertex, and each element of D is a connected bridgeless subgraph

of G. Contracting each element of D to a vertex, we obtain a new graph G∗. It is easy to see

that G∗ is a tree, and the edge set of G∗ is B. Using the above notations, we have the following

result.

Theorem 2.5 ([10]). If G is a connected graph, then pc(G) ≤ max{3,∆(G∗)}.

Theorem 2.6 ([1]). Let G be a connected graph of order n and k ≥ 2. If |E(G)| ≥
(
n−k−1

2

)
+k+2,

then pc(G) ≤ k except when k = 2 and G ∈ {G∗
1, G

∗
2}.

The two attentional graphs in Theorem 2.6. and the following.

Let G∗
1 = K1 ∨ (2K1 +K2) and G∗

2 = K1 ∨ (K1 +2K2) where G+H = (VG ∪ VH , EG ∪EH)

is the disjoint union and G∨H = (VG ∪ VH , EG ∪EH ∪ {uv : u ∈ VG, v ∈ VH}) is the join of the

graphs G = (VG, EG) and H = (VH , EH).

We shall repeatedly use the following identities.

Proposition 2.7. For every pair of positive integers a and b,

(
a
2

)
+

(
b
2

)
=
(
a+b
2

)
− ab and

(
a+1
2

)
=
(
a
2

)
+ a.

In addition, we need the following result.

Theorem 2.8 ([6]). Let G be a graph with n vertices. If δ(G) ≥ n−1
2 then G has a Hamiltonian

path. Moreover, if δ(G) ≥ n
2 , then G has a Hamiltonian cycle. Also, if δ(G) ≥ n+1

2 , then G is

Hamiltonian-connected.

Theorem 2.9 ([1]). Let G be a connected graph of order n and t bridges, then |E(G)| ≤
(
n−t
2

)
+t.
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The next lemma will be useful for the proof of our main result.

Lemma 2.10. Let G be a connected graph of order n with t bridges and δ = δ(G). Then

|E(G)| ≤
(
n−m−(t−m)(δ+1)

2

)
+(t−m)

(
δ+1
2

)
+ t, where if t = 0, then m = 0. If δ = 1, then m = t.

If δ ≥ 2 and t 6= 0, then m = ⌊ t−1
δ−1⌋.

Proof. It is easy to see that the result holds for t = 0. We assume t ≥ 1, then |C| = t + 1.

Let C1, · · · , Ct+1 be the |C| elements and ni (i = 1, · · · , t + 1) be the orders of Ci. Then

|E(G)| =
t+1∑
i=1

|E(Ci)| + t ≤
t+1∑
i=1

(
ni

2

)
+ t. We define a supergraph G̃ of G (that is, G is subgraph

of G̃) by adding all the possible edges in each Ci in G−B (that is, each component of G̃−B is

complete. If no confusion arises, we also use Ci in G̃ to denote the complete subgraphs obtained

from Ci of C).

Now we construct the graph G′ from G̃ if there are two components Ck and Cl satisfying

1 < nk ≤ nl. We move a vertex v from Ck to Cl, replace v with an arbitrary vertex in V (Ck) \ v

for the bridges incident to v, add the edges between v and the vertices in Cl, and delete the

edges between v and the vertices in Ck, where v is not adjacent to the vertices of Cl in G̃. We

claim that |E(G̃)| ≥ |E(G)|, since

|E(G′)| =
t+1∑

i=1
6=k,l

(
ni

2

)
+

(
nk − 1

2

)
+

(
nl + 1

2

)
+ t

=

t+1∑

i=1
6=k,l

(
ni

2

)
+

(
nk

2

)
− (nk − 1) +

(
nl

2

)
+ nl + t

= |E(G̃)|+ nl − nk + 1 > |E(G̃)| ≥ |E(G)|.

(1)

It can be seen that if δ = 1, then we repeatedly move vertices so that D has only one element,

that is, |E(G)| ≤
(
n−t
2

)
+ t by (1).

We next assume δ
G̃

≥ 2. Without loss of generality, we let Ci, 1 ≤ i ≤ m be the elements

of S and Ci,m < i ≤ t + 1 be the elements of D, respectively. Note that, each Ci, i ≤ m has

at least δ neighbors in C, and there are at most m − 1 edges between Ci in S. Thus, we have

mδ − (m− 1) ≤ t, that is, m ≤ t−1
δ−1 .

Suppose there exist na in G̃ so that 1 < na < δ + 1, m < a ≤ t+ 1. Then every vertex is at

least incident to δ + 1− na bridges in V (Ca) as the minimum degree of G̃ is at least δ, that is,
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there is at least δ bridges incident to V (Ca) due to na(δ + 1 − na) > δ for 1 < na < δ + 1. By

(1), the size of G̃ is fewer than the size of the graph obtained by moving vertices of Ca to Cb

(nb ≥ δ+1) so that na = 1. Thus, by (1), if the size of G is as large as possible, then m = ⌊ t−1
δ−1⌋

and ni ≥ δ + 1,m < i ≤ t+ 1.

Therefore, we conclude that |E(G)| ≤
(
n−m−(t−m)(δ+1)

2

)
+ (t−m)

(
δ+1
2

)
+ t.

We end this section with some results on the existence of long cycles in graphs that will be

used below. We first state a classic result of Erdős and Gallai [7].

Theorem 2.11 ([7]). Let G be a graph of order n and circumference c(G). If

|E(G)| >
c

2
(n− 1),

then c(G) > c.

We shall use Woodall’s extension of the Erdős-Gallai Theorem, which may be stated as

follows.

Theorem 2.12 ([17]). Let G be a graph of order n = tm + r, where m ≥ 1, t ≥ 0, and

1 ≤ r ≤ m. If

|E(G)| > t

(
m+ 1

2

)
+

(
r

2

)
,

then c(G) ≥ m+ 2 and p(G) ≥ m+ 3.

Theorem 2.13 (Ore’s Theorem,[15]). If G is a graph of order n ≥ 3 such that d(u) + d(v) ≥ n

for any pair u, v of nonadjacent vertices in G, then G is Hamiltonian.

We shall use the following corollary of Ore’s Theorem.

Corollary 2.14. Assume G is a graph of order n and

|E(G)| ≥

(
n− 1

2

)
+ 2.

Then G is Hamiltonian.
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3 Minimum degree and size conditions for the proper

connection number of graphs

We first establish an upper bound for the function g(n, k) defined in Section 1.

Theorem 3.1. Let G be a connected graph of order n, k ≥ 3. If |E(G)| ≥
(
n−m−(k+1−m)(δ+1)

2

)
+

(k + 1 − m)
(
δ+1
2

)
+ k + 2, then pc(G) ≤ k. Where if δ = 1, then m = k + 1. If δ ≥ 2, then

m = ⌊ k
δ−1⌋.

Proof. We first note that the statement is true for δ = 1 by Theorem 2.6. In the following, we

show that it is true for δ ≥ 2.

If G is a connected bridgeless graph, then pc(G) ≤ 3 ≤ k by Theorem 2.4. So we assume

that G is connected with t ≥ 1 bridges. We consider two cases.

Case 1. t ≤ k.

In this case, pc(G) ≤ max{3,∆(G∗)} ≤ max{3, t} ≤ max{3, k} = k by Theorem 2.5.

Case 2. t ≥ k + 1.

By Lemma 2.10, we have |E(G)| ≤
(
n−m−(t−m)(δ+1)

2

)
+ (t−m)

(
δ+1
2

)
+ t, where m = ⌊ t−1

δ−1⌋.

Suppose t−1
δ−1 is not a positive integer (i.e., t−2

δ−1 = t−1
δ−1 ), then

|E(G)| ≤

(
n−m− (t−m)(δ + 1)

2

)
+ (t−m)

(
δ + 1

2

)
+ t

=

(
n−m− (t− 1−m)(δ + 1)

2

)
− (δ + 1)(n −m− (t−m)(δ + 1))

−

(
δ + 1

2

)
+ (t− 1−m)

(
δ + 1

2

)
+

(
δ + 1

2

)
+ (t− 1) + 1

=

(
n−m− (t− 1−m)(δ + 1)

2

)
+ (t− 1−m)

(
δ + 1

2

)

+ (t− 1)− (δ + 1)(n −m− (t−m)(δ + 1)) + 1

≤

(
n−m− (t− 1−m)(δ + 1)

2

)
+ (t− 1−m)

(
δ + 1

2

)
+ (t− 1)
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Suppose t−1
δ−1 is a positive integer (i.e., t−2

δ−1 = t−1
δ−1 − 1), then

|E(G)| ≤

(
n−m− (t−m)(δ + 1)

2

)
+ (t−m)

(
δ + 1

2

)
+ t

=

(
n− (m− 1)− (t−m)(δ + 1)

2

)
− (n−m− (t−m)(δ + 1))

+ (t−m)

(
δ + 1

2

)
+ t

≤

(
n− (m− 1)− (t− 1− (m− 1))(δ + 1)

2

)
− (n− (m− 1)

− (t− 1− (m− 1)) + (t− 1− (m− 1))

(
δ + 1

2

)
+ (t− 1) + 1

≤

(
n−m− (t− 1−m)(δ + 1)

2

)
+ (t− 1−m)

(
δ + 1

2

)
+ (t− 1)

Hence, |E(G)| is monotonic decreasing on the bridges t, then if t = k + 1, |E(G)| is maximum

and |E(G)| ≤
(
n−m−(k+1−m)(δ+1)

2

)
+ (k + 1−m)

(
δ+1
2

)
+ k + 1, a contradiction.

Remark 3.2. If δ ≥ t (i.e., m = 0), then we construct a graph Gk as follows: Take a complete

graph Kn−(k+1)(δ+1) and k + 1 complete graph Kδ+1. Now a vertex of Kn−(k+1)(δ+1) and an

arbitrary vertex of (k + 1) complete graph Kδ+1) are joined. The resulting graph Gk has order

n, size |E(Gk)| =
(
n−(k+1)(δ+1)

2

)
+(k+1)

(
δ+1
2

)
+ k+1, and proper connection number pc(Gk) ≥

k + 1−m+m > k. Therefore, g(n, k) =
(
n−(k+1)(δ+1)

2

)
+ (k + 1)

(
δ+1
2

)
+ k + 2, k ≥ 3.

Finally, we consider the case k = 2. When n ≤ 2n+ 1, then pc(G) ≤ 2 by Theorem 2.8.

Theorem 3.3 ([9]). Let G be a connected noncomplete graph of order 5 ≤ n ≤ 8, if G /∈ {G1, G8}

and δ(G) ≥ 2, then pc(G) = 2.

The two attentional graphs in Theorem 3.3 and the following.

G1 = K1 ∨ 3K2 and G8 is obtained by taking a complete graph K3 and K1 ∨ (2K2) with an

arbitrary vertex of K3 and a vertex with d(v) = 4 in K1 ∨ (2K2) being joined.

Theorem 3.4. Let G be a simple connected graph of order n (n ≥ 6), k = 2, δ = 2. If

|E(G)| ≥
(
n−5
2

)
+ 7, then pc(G) ≤ 2 unless G ∈ {G1, Gn}, where G1 = K1 ∨ 3K2 and Gn is

obtained by taking a complete graph Kn−5 and K1 ∨ (2K2) with an arbitrary vertex of Kn−5 and

a vertex with d(v) = 4 in K1 ∨ (2K2) being joined.
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Proof. If k = 2, δ = 2, then m = 2. We observe that the requirement |E(G)| ≥
(
n−5
2

)
+ 7 is

equivalent to the requirement |E(Ḡ)| ≤ 5n − 22 where Ḡ is the complement of G.

Now we suppose 6 ≤ n ≤ 8, the result holds by Theorem 3.3.

We now assume that n ≥ 9 and proceed by induction on n. We consider five cases.

Case 1. p(G) = n− 1.

Let P = v1v2 . . . vn−1 be a path of order n − 1 in G and let w be the vertex not contained

in P . As δ = 2, then d(w) ≥ 2. It follows from Proposition 2.2 that pc(G) ≤ 2, a contradiction.

Claim. If |E(G)| ≥
(
n−6
2

)
+ 7 (n ≥ 9) with order n − 1 of G, and pc(G) ≤ 2 unless Gn−1.

Let G′ = G+ v and dG′(v) = n− 6, then pc(G′) ≤ 2 or G′ = Gn.

Proof. We suppose G′ 6= Gn, there exist vi which does not belong to V (Kn−5) such that vvi ∈

E(G), then p(G′) ≥ n− 1. Hence pc(G′) ≤ 2 according to Case 1 and Proposition 1.1.

Case 2. p(G) = n− 2.

Let P = v1v2 . . . vn−2 be a path of order n − 2 in G and let w1, w2 be the two vertices not

contained in P . Since δ = 2, we have d(w1) ≥ 2 and d(w2) ≥ 2. Now assume dp(w2) ≥ 2 or

dp(w2) ≥ 2, without loss of generality, we assume dp(w2) ≥ 2. Since P is a longest path in G,

then w2 does not have consecutive neighbours on P and neither v1 nor vn−2 is a neighbour of w2.

And if w1va ∈ E(G), then v1va+1 ∈ E(Ḡ). We have d(w2) ≤
n−5
2 + 1 ≤ n − 6 for n ≥ 9. Then

pc(G−w1) ≤ 2 by our induction hypothesis. Thus, by applying Propositions 2.2, we obtain that

pc(G) ≤ 2.

Hence we may assume that dp(w1) = 1 and dp(w2) = 1, then w1 and w2 are adjacent. Let

w1va, w2vb ∈ E(G), then d(v1) ≤ n− 6 and d(vn−2) ≤ n− 6, since v1va+1, v1va+2, v1vb+1, v1vb+2,

v1w1, v1w2, vn−2va−1, vn−2va−2, vn−2vb−1, vn−2vb−2, vn−2w1, vn−2w2, v1vn−2, v1vn−3, v2vn−2 ∈ E(Ḡ).

Then |E(G−v)| ≥
(
n−5
2

)
+7−(n−6) =

(
n−6
2

)
+7 (v ∈ {v1, vn−2}) by Propositions 2.7. If δG−v ≥ 2,

then, by our induction hypothesis, pc(G−v) ≤ 2. We obtain that pc(G) = 2 by applying Propo-

sitions 2.2. Thus we may assume δG−v = 1, then dG(v2) = dG(vn−3) = dG(w1) = dG(w2) = 2

and dG(v1) >
n
2 . There exist vi (i is even) such that v1vi ∈ E(G). Take a graph G′ by adding

v2vi in G− v1. Note δG′ = 2, we have G′ = G8 or pc(G′) ≤ 2. If pc(G′) ≤ 2, then pc(G− v) ≤ 2

9



by our induction hypothesis and pc(C) ≤ 2, where C = v1, . . . , vi is an even cycle. If G′ = G8,

then p(G) ≥ n− 1, a contradiction. Hence, pc(G) ≤ 2.

Case 3. p(G) = n− 3.

Let P = v1v2 . . . vn−3 be a path of order n − 3 in G and let w1, w2, w3 be the three

vertices not contained in P . First prove that exist v, where v ∈ {w1, w2, w3, v1, vn−3}, such that

δG−v ≥ 2. Suppose δG−v = 1, for all v ∈ {w1, w2, w3, v1, vn−3}, then d(v2) = d(vn−4) = 2 and

exist two vertices such that d(v) = 2 for v ∈ {w1, w2, w3}, without loss of generality, we assume

d(w1) = d(w2) = 2. In fact, if w3va ∈ E(G), then v1va+1 ∈ E(Ḡ). Hence d(w3) + d(v1) ≥ n.

then |E(Ḡ)| ≥ 4(n − 3) − 8 + n = 5n − 20, a contradiction. Since d(wi) ≤
n−7
2 + 2 < n − 6 for

i = 1, 2, 3 and d(v1)(d(vn−3))≤ n − 6. Then |E(G − v)| ≥
(
n−5
2

)
+ 7 − (n − 6) =

(
n−6
2

)
+ 7 by

Propositions 2.7. Hence, by our induction hypothesis, pc(G− v) ≤ 2. We obtain that pc(G) ≤ 2

by applying Propositions 2.2.

Case 4. p(G) = n− 4.

Let P = v1v2 . . . vn−4 be a path of order n − 4 in G and let w1, w2, w3, w4 be the four

vertices not contained in P . We obtain that pc(G) = 2, similar to Case 3.

Case 5. p(G) ≤ n− 5.

If n = 9, |E(G)| ≥ 13, so G contains a cycle of length at least 3. Since p(G) ≤ 4, this implies

that c(G) = 3. Hence |E(G)| ≤ 4
(3
2

)
= 12, a contradiction.

If n = 10, |E(G)| ≥ 17. By Thorem 2.12 (by taking t = 4, m = 2, r = 2), we obtain

c(G) ≥ 4. Since p(G) ≤ 5, this implies that c(G) = 4 and the longest cycle can only exist one.

Then it is easily seen that pc(G) ≤ 2, a contradiction.

If n = 11, then |E(G)| ≥ 21. By Thorem 2.12 (by taking t = 3, m = 3, r = 2), we obtain

c(G) ≥ 5. Since p(G) ≤ 6, this implies that c(G) = 5 and the longest cycle can only exist one.

Then |E(G)| ≤
(5
2

)
+ 3 · 3 = 19 < 21, a contradiction.

If 12 ≤ n ≤ 20, by the arguments similar to that of n = 11, we have the contradicting on

|E(G)| ≥
(
n−5
2

)
+ 7.

If n > 20, then |E(G)| ≥
(
n−5
2

)
+ 7 =

(
n−6
2

)
+ (n− 6) + 7 >

(
n−6
2

)
+

(7
2

)
and then it follows

from Theorem 2.12 (by taking t = 1, m = n−7, r = 7) that p(G) ≥ m+3 = n−4, contradicting
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our assumption on p(G).

Remark 3.5. The way is not applicable for k = 2 and δ ≥ 3, since δG−v = δG − 1 and the

vertex belonging to P with the degree being δG−v (δG − 1) in G − v (G) is possible and |E(G)|

reduces along with the bridges δ growth. We conjecture the following.

Conjecture 3.6. Let G be a connected graph of order n, k = 2 and δ ≥ 3. If |E(G)| ≥
(
n−m−(3−m)(δ+1)

2

)
+ (3−m)

(
δ+1
2

)
+ 4, then pc(G) ≤ 2, where m takes the value 1 if δ = 3 and 0

if δ ≥ 4.

Remark 3.7. We suggest a related (stronger) work for the conjecture above. Huang et al [9]

showed if G is a connected noncomplete graph of order n ≥ 9 and minimum degree δ(G) ≥ n/4,

then pc(G) = 2.
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