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Abstract

We are interested in high-order linear multistep schemes for time discretization of ad-
joint equations arising within optimal control problems. First we consider optimal control
problems for ordinary differential equations and show loss of accuracy for Adams-Moulton
and Adams-Bashford methods, whereas BDF methods preserve high–order accuracy. Sub-
sequently we extend these results to semi–lagrangian discretizations of hyperbolic relax-
ation systems. Computational results illustrate theoretical findings.
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1 Introduction

Efficient time integration methods are important for the numerical solution of optimal control
problems governed by ordinary (ODEs) and partial differential equations (PDEs). In order
to increase efficiency of the solvers, by reducing the memory requirements, there is a strong
interest in the development of high–order methods. However, direct applications of standard
numerical schemes to the adjoint differential systems of the optimal control problem may lead
to order reduction problems [19, 33]. Besides classical applications to ODEs these problems
gained interest recently in PDEs, in particular in the field of hyperbolic and kinetic equations
[1, 2, 24, 29].

In this work we focus on high–order linear multi–step methods for optimal control prob-
lems for ordinary differential equations as well as for semi–Lagrangian approximations of
hyperbolic and kinetic transport equations, see for example [8, 11, 12, 16, 17, 18, 30, 32].

Regarding the time discretization of differential equations many results in particular on
Runge–Kutta methods have been established in the past years. Properties of Runge–Kutta
methods for use in optimal control have been investigated for example in [4, 14, 15, 19,
23, 27, 28, 34, 35]. In particular, Hager [19] investigated order conditions for Runge–Kutta
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methods applied to optimality systems. This work has been later extended [4, 23, 27] and also
properties of symplecticity have been studied, see also [10]. Further studies of discretizations
of state and control constrained problems using Runge–Kutta methods have been conducted in
[14, 15, 28, 35] as well as automatic differentiation techniques [37]. Previous results for linear
multi–steps method have been considered by Sandu in [33]. Therein, first–order schemes are
discussed and stability with respect to non–uniform temporal grids has been studied. Here,
we extend the results to high–order adjoint discretizations as well as to problems governed by
partial differential equations. However, we restrict ourselves to the case of uniform temporal
grids.

In the PDE context, we will focus on hyperbolic relaxation approximations to conserva-
tion laws and relaxation type kinetic equations, [7, 31]. For such problems semi–Lagrangian
approximations have been proposed recently in [18] in combination with Runge–Kutta and
BDF methods. The main advantage of such an approach is that the relaxation operator can
be treated implicitly and the CFL condition can be circumvented by a semi-Lagrangian for-
mulation. We mention here also [13] where linear multistep methods have been developed for
general kinetic equations. We consider a general linear multistep setting for semi–Lagrangian
schemes to reduce the optimal control problem for the PDEs to an optimal control problem
for a system of ODEs.

The rest of the paper is organized as follows. In Section 2 we introduce the prototype
optimal control problem for ODEs and consider the case of a general linear multi-step scheme.
We then study the conditions under which the time discrete optimal control problem originates
the corresponding time discrete adjoint equations. We prove that Adams type methods may
reduce to first order accuracy and that only BDF schemes guarantee that the discretize-then-
optimize approach is equivalent to the optimize-then-discretized one. Next, in Section 3, we
consider the case of semi–Lagrangian approximation of hyperbolic relaxation systems and
extend the linear multistep methods to control problems for such systems. In Section 4 with
the aid of several numerical examples we show the validity of our analysis. Finally we report
some concluding remarks in Section 5.

2 Linear multi-step methods for optimal control problems of
ODEs

We are interested in linear multi–step methods for the time integration of ordinary differential
and partial differential equations. In order to illustrate the approach we consider first the
following problem.

(OCP ) min j(y(T )) such that (1a)

ẏ(t) = f(y(t), u(t)), t ∈ [0, T ] (1b)

y(0) = y0. (1c)

Related to the optimal control problem we introduce the Hamiltonian function H as

H(y, u, p) := pT f(y, u). (2)

Under appropriate conditions it is well–known [25, 36] that the first–order optimality condi-
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Figure 1: Time–dependent optimal control problems discretized using linear–multi step meth-
ods. Discretization of the arising adjoint equations either using discretized optimal control
problems or discretized continuous adjoint equations (3b). We investigate the relation indi-
cated by the question mark in the figure.

tions for (1) are

ẏ = Hp(y, u, p) = f(y, u), y(0) = y0 (3a)

ṗ = −Hy(y, u, p) = −fy(y, u)T p, p(T ) = j′(y(T )) (3b)

0 = Hu(y, u, p) = fu(y, u)T p. (3c)

we assume f : Rn × Rm → Rn, then, for some integer κ ≥ 2, the problem (1) has a local
solution (y∗, u∗) in W κ,∞ ×W κ−1,∞. There exists an open set Ω ⊂ Rn × Rm and ρ > 0 such
that Bρ(y

∗(t), u∗(t)) ⊂ Ω for every t ∈ [0, T ]. If the first κ derivatives of f and g are Lipschitz
continuous in Ω and the first κ derivatives of j are Lipschitz in Bρ(y

∗(T )), then, there exists
an associated Lagrange multiplier p∗ ∈W κ,∞ for which the first–order optimality conditions
(3) are necessarily satisfied in (y∗, p∗, u∗). Under additional coercivity assumptions on the
Hamiltonian (3) those conditions are also sufficient [19, Section 2]. From now on we assume
that the previous conditions are fulfilled.

For possible numerical discretization we investigate the relations depicted in Figure 1.
Therein, we consider two different linear multi–step schemes for the discretization of the for-
ward equation (3a) and the adjoint equation (3b). Also, we consider the optimality conditions
(3a)–(3b) for the discretized problem. Then, we establish possible connections between both
approaches. A similar investigation will be carried out for semi–Lagrangian discretization of
hyperbolic relaxation systems.

The ordinary differential equation is discretized using a linear multi–step method on [0, T ].
For simplicity an equidistant grid in time ti = ∆t i for i = 0, . . . , N such that N∆t = T
is chosen. The point value at the grid point ti is numerically approximated by y(ti) ≈ yi,
f(y(ti)) ≈ f(yi) and u(ti) ≈ ui. A scheme is of order p if the consistency error of the numerical
scheme is y(ti) = yi + O(∆tp), see [21]. An s−stage linear multi-step scheme is defined by
[20, 21] two vectors a ∈ Rs, with components denoted by a = (a0, . . . , as−1), and b ∈ Rs+1 with
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components b = (b−1, b0, . . . , bs−1). Depending on the choice of a, b we obtain so called Adams
methods or BDF methods. In the case of BDF methods we have bi = 0, i ≥ 0 but b−1 6= 0.
Further, we define the numerical approximation of the solution at time tn, . . . , tn−s+1 as Yn =
(yn, . . . , yn−s+1). For a s−stage multi-step scheme we obtain an approximation to the solution
y(t) on the time interval [(1− s)∆t, . . . , T ] that is denoted by ~y = (y1−s, . . . , y0, y1, . . . , yN ).

2.1 Discretization of the optimal control problem

The continuous problem (1) is discretized using an s−stage scheme. The initial condition is
discretized by Y0 = (y0)s−1

i=0 and where (y0)s−1 for i > 0 is an approximation to y0. Further,
(y0)i for i < s−1 an approximation to the solution y(t) of (3a) at time (1−s+i)∆t. In practice,
initialization may pose a difficulty and it can be observed that the order of scheme deteriorates
if the initialization has not been done properly. We assume a consistent initialization at the
order of the scheme.

Then, for a given control sequence ~u := (un)n a linear multi–step discretization of equation
(3a) is of the following form

yn+1 = −atYn + ∆tbtF (Yn, Un), n ≥ 0, (4)

where F (Yn, Un) = (f(yi, ui))
i=n−s+1
i=0 . In order to compute the discretized linear multi–step

optimality conditions it is advantageous to rewrite the previous system in matrix form

~y = −A~y + ∆tBF (~y, ~u) + (Y0, 0, . . . , 0)t, (5)

where A,B ∈ RN+s×N+s have the same structure, namely,

A =


0s×s
as−1 a1 a0 0s+1,s+1

0 as−1 a1 a0 0s+2,s+2
...

0 . . . 0 as−1 a1 a0 0s+N,s+N


and

B =


0s×s
bs−1 b1 b0 b−1

0 bs−1 b1 b0 b−1
...

0 . . . 0 bs−1 b1 b0 b−1

 .

Finally, we discretize the cost functional j. Several possibilities exist, the simplest one being
j(y(T )) ≈ j(yN ). Other choices might include a polynomial reconstruction of j(y(T )) using
the s−stages j(YN ). We denote the numerical approximation of j(y(T )) by j(YN ).

Lemma 2.1 Using an s−stage linear multi-step method the discretized optimality system (1)
with equi-distant temporal discretization tn = n∆t reads

min
~y,~u

j(YN ) subject to (4), Y0 = (y0)0
i=1−s. (6)
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The discrete optimality conditions for i = 1− s, . . . , N are given by

~y = −A~y + ∆tBF (~y, ~u) + (Y0, 0, . . . , 0)t, (7a)

0 = (Bt~p)ifu(yi, ui), (7b)

0 = pi + (At~p)i −∆t(Bt~p)ify(yi, ui) + ∂yij(YN ). (7c)

The initial conditions for ~y are yi = (y0)i, i = 1− s, . . . , 0. The terminal condition for multi-
plier ~p are obtained from (7c) for i = N − s+ 1, . . . , N and read e.g. for i = N

0 = pN + ∂yN j(YN )− b−1∆tpNfy(yN , uN ). (8)

Proof. Due to the definition of a linear multi-step scheme the solution ~y exists for any choice
of ~u. Therefore, we may write ~y = ~y(~u) and the constrained minimization problem (7) reduces
to an unconstrained problem in ~u. Hence, the discrete optimality conditions are necessary.
They are derived as saddle point of the discrete Lyapunov function given by

L(~y, ~u, ~p) := j(YN ) + ~pt~y + (At~p)t~y −∆t(Bt~p)tF (~y, ~u)− ~pt(Y0, 0, . . . , 0)t,

where ~p denotes the vector of adjoint states. Computing the partial derivatives of L with
respect to ~u and ~y, respectively, yields the discrete optimality conditions where we denote by
fu and fy the partial derivatives of f with respect to u and y. For the computation note that

(At~p)i = at(pi+1, . . . , pi+s), and (Bt~p)i = bt(pi, pi+1, . . . , pi+s).

Also note that the multipliers pi for i = 1− s, . . . , 0 only appear in the computation of ui for
i < 0. Using the initial data Y0 and the recalling the form of A, we observe that they do not
enter the optimality conditions. Therefore, equation (7c) is in fact required only to hold for
i ≥ 0. �

Remark 2.1 It is important to remark that the equation (7c) does in general not lead to a
linear multi–step method for the adjoint equation (3b). It utilized a fixed discretization point
fy(yi, ui) even so Btpi is the interpolation of p using values from ti, . . . , ti + s∆t.

In view of Remark 2.1 we consider a linear multi-step method applied to (3b). For nota-
tional simplicity we transpose equation (3b) and obtain

− p′(t) = fy(y(t), u(t))p(t), p(T ) = jy(y(T )). (9)

Lemma 2.2 A s−stage linear multi-step method applied to equation (9) on an equidistant
grid for given functions y(t), u(t) with discretizations (~y, ~u) is given by

pn−1 = −
s−1∑
i=0

aipn+i + ∆tbify(yn+i−1, un+i−1)pn+i (10)

and terminal condition PN = ((jy)(yi))
N+s
i=N .

Proof. We define g(t) = fy(y(T − t), u(T − t)) and p(t) = p(T − t) and obtain the equivalent
equation

p′(t) = g(t)p(t), p(0) = jy(y(T )).
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A linear multi-step method on the grid ti = i ∆t for the adjoint variable pn = p(tn)
gi = g(ti) is then given by

pn+1 = −
s−1∑
i=0

aipn−i + ∆tbign−ipn−i

or transformed in original variables, i.e., pN = p1, p1 = pN , pn = pN−n+1, gn = gN−n+1,
reads as

pn−1 = −
s−1∑
i=0

aipn+i + ∆tbign+ipn+i

Since gi = gN−i+1 = fy(y(T − tN−i+1), u(T − tN−i+1)) = fy(yi−1, ui−1) we obtain the
discretized continuous adjoint as (10). �

Now, comparing (10) and (7c) we observe that depending on a b, both equations are
equivalent.

Lemma 2.3 Assume j(y(T )) is approximated by j(yN ). Then, for t < T , the update formula
for discretize–then–optimize, i.e., equation (7c) and optimize–then–discretize (10) coincide
up to O(∆tp) for BDF type methods.

Proof In case of BDF methods we have bi = 0 for i ≥ 0. Therefore, equation (3c) reads for
i < N :

pn−1 = −
s−1∑
i=0

aipn+i + ∆tbify(yn+i−1, un+i−1)pn+i

On the other hand, (10) reads

pn−1 = −
s−1∑
i=0

aipn+i + ∆tb−1fy(yn−2, un−2)pn−1

Since yn−2 = yn−1 +O(∆tp) the equations coincide up to the order of the scheme for i < N.
�

Remark 2.2 The terminal data is discretized in the case of Lemma 2.1 by (8) and by pN =
∂yN j(yN ) in the case of Lemma 2.2. However, for the continuous discretization of the adjoint
equation (2.2) this choice can be altered to be consistent with the discretization of Lemma 2.1.
Clearly, if fy = const, different discretizations do not affect the method. Therefore, the
previous Lemma only states necessary conditions. We refer to Section 4.1 for numerical
results.

We further observe that no method with bi 6= 0 for i ≥ 0 yields a consistent discretization
in both approaches. Hence, in Figure 1 only the question mark in between the BDF methods
can be answered positive. In fact, for Adams–Bashfort and Adams–Moulton type methods we
observe a decay in the order, see Section 4.2. The results presented in [33] also show that
in general one can only expect first–order convergence without further assumptions on the
choices of a and b.

Finally, in [23] also the question of long–term integration of the optimality conditions has
been studied. In the context of linear multi–step scheme it is already known [21] that there is
no high–order scheme that is symplectic.
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3 Linear multi-step methods for optimal control problems of
relaxation systems

3.1 Semi-lagrangian schemes for relaxation approximations

Relaxation approximations to hyperbolic conservation laws have been introduced in [26]. To
exemplify the approach we consider a nonlinear scalar conservation law of the type

ut + F (u)x = 0, x ∈ R, t ≥ 0 (11)

and initial datum u(0, x) = u0(x). The flux function F : R → R is assumed to be smooth.
In order to apply a numerical integration scheme we introduce a relaxation approximation to
(11) as

ut + vx = 0,

vt + a2ux =
1

ε
(F (u)− v) .

(12)

Note that the above approximation can be interpreted as a BGK-type kinetic model [5] by
introducing the Maxwellian equilibrium states Ef and Eg given by

Ef (u) =
1

2a
(au+ F (u)) , Eg(u) =

1

2a
(au− F (u)) .

The kinetic variables f, g : R+ × R→ R fulfill then

ft + afx =
1

ε
(Ef (u)− f) ,

gt − agx =
1

ε
(Eg(u)− g) ,

(13)

with u = f + g and v = a(f − g). Herein, a is the characteristic speed of the transported
variables and it is assumed that this speed bounds the eigenvalues of (11), i.e., the subchar-
acteristic condition holds

a ≥ max
x∈R
|F ′(u0(x))|.

In the formal relaxation limit ε→ 0 we recover the following relations

f = Ef (u), g = Eg(u), v = a(f − g) = F (u). (14)

Therefore, u = f + g fulfills in the small relaxation limit the conservation law (11). Due
to the linear transport structure in equation (13) semi–Lagrangian schemes can be used and
the system (13) reduces formally to a coupled system of ordinary differential equations. Let
us mention that recently, linear multi-step methods have been proposed to numerically solve
kinetic equations of BGK-type [18].

Let
f̄(t, y) := f(t, y + at), ḡ(t, y) = g(t, y − at)

for a point y ∈ R. Then, the macroscopic variable u(t, x) is obtained through

u(t, x) = f̄(t, x− at) + ḡ(t, x+ at),
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and for any y we have

d

dt
f̄(t, y) = ft(t, y + at) + afy(t, y + at).

Therefore, the unknowns f̄ and ḡ fulfill a coupled system of ordinary differential equations
for all y ∈ R :

d

dt
f̄(t, y) =

1

ε

(
Ef (u(t, y + at))− f̄(t, y)

)
, u(t, y + at) = f̄(t, y) + ḡ(t, y + 2at) (15a)

d

dt
ḡ(t, y) =

1

ε
(Eg(u(t, y − at))− ḡ(t, y)) , u(t, y − at) = f̄(t, y − 2at) + ḡ(t, y). (15b)

Next, we turn to the numerical discretization of the previous system of (parameterized)
ordinary differential equations. We introduce a spatial grid of width ∆y and denote for i ∈ Z
the grid point yi = i∆y. Similarly, in time we introduce a spatial grid of width ∆t and denote
by tn = n∆t for n ∈ N.

Note that explicit schemes require a CFL condition for the relation between spatial and
temporal grid to hold, i.e.,

∆t ≤ a∆y. (16)

In the case of implicit discretizations as e.g. BDF this is not required. The point values of f̄
and ḡ are denoted by

f
n
i = f(tn, yi) := f(n∆t, i∆y), gni = g(tn, yi) := g(n∆t, i∆y).

For each yi we apply a linear–multi step scheme to discretize in time. For simplicity here we
restrict the analysis to BDF methods. These require only a single evaluation of the source
term and this evaluation is implicit. Therefore, the time discretization ∆t does not dependent
on the size of ε. For an s−stage scheme and using a temporal discretization ∆t = a∆y we
obtain an explicit scheme on the indices i, given by

f
n+1
i =

∆tb−1

∆tb−1 + ε
Ef

(
f
n+1
i + gn+1

i+2(n+1)

)
− ε

∆tb−1 + ε

s−1∑
`=0

a`f
n−`
i , (17a)

gn+1
i =

∆tb−1

∆tb−1 + ε
Eg

(
f
n+1
i−2(n+1) + gn+1

i

)
− ε

∆tb−1 + ∆t

s−1∑
`=0

a`g
n−`
i . (17b)

Since there is no spatial reconstruction it suffers in the case of strong discontinuities in the
spatial variable as observed in [18].

We further investigate the continuous system (15) and its discretization (17) in the par-
ticular case

F (u) = c u, c > 0.

For the relaxation system to approximate the conservation law we require a ≥ c. Using the
semi-Lagrange scheme we observe that the choice a = c leads to an exact scheme. In this
case we obtain Ef (u) = u and Eg(u) = 0. Furthermore, the equations (15) reduce to

d

dt
f̄(t, y) =

1

ε
ḡ(t, y + 2at),

d

dt
ḡ(t, y) = −1

ε
ḡ(t, y).

(18)
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As initial data for f̄ and ḡ we may chose f̄(0, x) = u0(x) and ḡ(0, x) = 0. Then, the previous
dynamics yield in the limit ε → 0 the projections ḡ(t, y) = 0 and f̄(t, y) = u0(y). Rewritten
in Eulerian coordinates we obtain u(t, x) = u(t, x − at) being the solution to the original
linear transport equation (11) if a = c. This computation shows that a = c is necessary for
consistency with the original problem in the small ε limit. The discretized equations (17)

with initial data g0
i = 0, f

0
i = u0(xi) simplify to gni ≡ 0 and

f
n+1
i

(
1− ∆t

∆tb−1 + ε

)
= − ε

∆tb−1 + ε

s−1∑
`=0

a`f
n−`
i . (19)

Summarizing, equation (19) shows that the BDF discretization in the case of a linear flux
function with suitable initialization of the relaxation variables leads to a high–order formula-
tion in Lagrangian coordinates. The discretization is independent of the spatial discretization
and there is no CFL condition.

However, this discretization is only exact in the case of a linear transport equation. In
the case F (u) nonlinear additional interpolation needs to be employed. Then, due to the
Lagrangian nature of the scheme, the spatial resolution and the temporal is coupled through
the interpolation.

3.2 Derivation of adjoint equations for the control problem

We will derive the adjoint BDF schemes for the previous discretization and we compare the
discrete adjoint equations with the formal continuous adjoint equation to the conservation
law (11). In order to simplify notations, we denote the spatial variable in the kinetic and
Lagrangian frame also by x (instead of y). Furthermore, in view of generalizations to the case
of systems with a larger number of velocities, we introduce the velocities v1 = a, v2 = −a as
well as the kinetic variables f1 = f and f2 = g and the corresponding equilibrium as E1 = Ef
and E2 = Eg.

Then, the hyperbolic relaxation approximation is given by the kinetic transport equation
for j = 1, 2

f jt + vjf
j
x =

1

ε

(
Ej(u)− f j

)
, (20a)

f j(0, x) = f j0 (x), (20b)

with u(t, x) =
∑

j f
j(t, x). We recall that the local equilibrium states have the property∑

j Ej(u) = u that will be used in the differential calculus later on.

As before, we define the Lagrangian variables f as f
j
(t, x) = f(t, x+ vjt) and the macro-

scopic quantity u as u(t, x) =
∑

j f
j
(t, x− vjt). Then, equation (20) is equivalent to the ODE

system (21) and initial data f
j
(0, x) = f j0 (x).

∂tf
j
(t, x) =

1

ε

(
Ej(u(t, x+ vjt))− f

j
(t, x)

)
. (21)

Consider the integral form of (21) on the time interval [s, t]. Since f j(t, x) = f
j
(t, x− vjt) we

have for all s < t and all x ∈ R:

f j(t, x)− f j(s, x− vj(t− s)) =
1

ε

∫ t

s
Ej(u(τ, x− vj(t− τ))− f j(τ, x− vj(t− τ))dτ

9



Upon summation on j we have for s < t we have

u(t, x) =
∑
j

f j(s, x− vj(t− s)).

We are interested in initial conditions f j0 (·) minimizing a cost function J depending on

the macroscopic variables u0 = 1
N

∑
j f

j
0 (x) as well as u(T, x) at some given point T > 0. The

dynamics of u is approximated by the BGK formulation (20).

min
fj0 (x),j=1,2

∫
J(u(T, x), u0)dx subject to (20). (22)

It is straightforward to derive the formal optimality conditions including the formal adjoint
equations for the variables λj(t, x). Those are defined up to a constant and therefore we state
the adjoint equation in the re-scaled variables 1

2λ
j(t, x) for j = 1, . . . , N as follows

−λjt − vjλjx = −1

ε

(
λj −

∑
k

λkE′k(u(t, x))

)
,

λj(T, x) + Ju(u(T, x), u0) = 0.

(23)

The adjoint multipliers and the optimal control u0 are then related according to

−λj(0, x) + Ju0(u(T, x), u0) = 0.

The property of the local equilibrium implies
∑

j E
′
j(u) = 1 and therefore,∑

j

E′j(u)
(
−λjt − vjλjx

)
= 0.

In the formal limit ε→ 0 we obtain that λj =
∑

k λ
kE′k(u) = λ and therefore λj is independent

of j.

Lemma 3.1 Up to O(ε2) the equations (23) are a viscous approximation to the linearized
adjoint equation to equation (11) given by

−pt − F ′(u)px = 0.

Proof. For the local equilibrium Ej it holds E1(u) + E2(u) = u and additionally E1(u) −
E2(u) = F (u)/a, for all u ∈ R, and therefore, E′1(u) − E′2(u) = F ′(u)/a. We denote by
λ± = λ1,2. We obtain for the sum and the difference of λ± ± λ∓ the following equations

−(λ+ + λ−)t − a(λ+ − λ−)x =
1

ε

(
F ′(u)/a

)
(λ+ − λ−),

−(λ+ − λ−)t − a(λ+ + λ−)x = −1

ε
(λ+ − λ−).

Denote by λ = λ+ + λ− and by φ := λ+ − λ−. Then, the equations are equivalent to

−λt − aφx =
1

εa
F ′(u)φ, −φt − aλx = −1

ε
φ.

10



Hence, φ = ε(aλx) +O(ε2) and therefore, −λt − F ′(u)λx = εa2λxx. �
Next, we discuss BDF discretization of the adjoint equations. The adjoint variables λj are

transported backwards in space and time. In order to derive a semi–Lagrangian description
we define

λ
j
(t, x) = λ(t, x+ vjt)

and define the terminal data as λ
j
(T, x) = −Ju(u(T, x + vjT ), u0(x + vjT )). The semi–

Lagrangian formulation of the adjoint equation is

− ∂tλ
j
(t, x) = −1

ε

(
λ
j
(t, x)−

∑
k

λk(t, x+ vjt)E
′
k(u(t, x+ vjt))

)
, (24)

or upon integration from s to t with s < t

λ
j
(s, x)− λj(t, x) = −1

ε

∫ t

s

(
λ
j
(τ, x)−

∑
k

λk(τ, x+ vjτ)E′j(u(τ, x+ vjτ))

)
dτ.

A BDF integrator with s−stages applied to this equation yields the discretized equation

λ
j
(tn−1, x) +

s−1∑
i=0

aiλ
j
(tn+i, x) = −∆tb−1

ε

(
λ
j
(tn−1, x)− Z(tn−1, x+ vjtn−1)

)
(25)

where the source term is given by

Z(t, y) :=
∑
k

λk(t, y)E′k(u(t, y)).

Similarly to the forward equations we evaluate Z without knowledge on λk(t, y) using the
integral formulation of the problem above. We show this relation in the time–discrete case.

Denote the discretize Eulerian adjoint variables by λ
j
(tn+i, x−vjtn−1) = λj(tn+i, x+vjtn+i−

vjtn−1) where tn+i = tn−1 + (i+ 1)∆t, i = 0, 1 . . . , s− 1. Then,

λj(tn−1, x) +

s−1∑
i=0

aiλ
j(tn+i, x+ vj(i+ 1)∆t) = −∆tb−1

ε

(
λj(tn−1, x)− Z(tn−1, x)

)
.

After multiplication with E′j(u) and summation on j we obtain

Z(tn−1, x) +
∑
j

s−1∑
i=0

E′j(u(tn−1, x))aiλ
j(tn+i, x+ vj(i+ 1)∆t) =

−∆tb−1

ε

Z(tn−1, x)−
∑
j

E′j(u(tn−1, x))Z(tn−1, x)

 = 0.

The equation for λj(tn−1, x) is explicit since Z(tn−1, x) depends only on λj(tn+i, ·) for i ≥ 0.
Equation (25) is equivalent to

λj(tn−1, x)
ε+ ∆tb−1

ε
= −

s−1∑
i=0

aiλ
j(tn+i, x+ vj(i+ 1)∆t) +

∆tb−1

ε
Z(tn−1, x),

11



where

∆tb−1

ε
Z(tn−1, x) = −∆tb−1

ε

∑
j

s−1∑
i=0

E′j(u(tn−1, x))aiλ
j(tn+i, x+ vj(i+ 1)∆t).

Therefore the adjoint BDF discretization of the continuous adjoint equations in Eulerian
coordinates is given by

λj(tn−1, x) = − ε

ε+ ∆tb−1

s−1∑
i=0

aiλ
j(tn+i, x+ vj(i+ 1)∆t)− (26a)

∆tb−1

ε+ ∆tb−1

∑
j

s−1∑
i=0

E′j(u(tn−1, x))aiλ
j(tn+i, x+ vj(i+ 1)∆t). (26b)

We observe that the limit ε→ 0 exists and it is independent of λj as in the continuous case.
Further, for ε > 0 and ∆t→ 0 we obtain the interpolation property of BDF methods, i.e.,

λj(tn−1, x) = −
s−1∑
i=0

aiλ
j(tn+i, x).

Summarizing, the adjoint equation (23) can be solved efficiently using any BDF scheme
in the formulation (26).

Lemma 3.2 Consider the the adjoint equation (23) for the unknown adjoint variables λ1 and
λ2. Then, the scheme given by (26) is a discretization of the adjoint equation using a linear
multi–step scheme of the family of BDF schemes. In the limit ∆t → 0 and for ε > 0 this
discreitzation is consistent with the interpolation property of BDF schemes.

3.3 Generalization to systems of conservation laws

The approach here described can be extended to general one-dimensional hyperbolic relax-
ation systems and kinetic equations of the form [5, 26]

f jt + vjf
j
x =

1

ε

(
Ej(u)− f j

)
, j = 1, . . . , N (27a)

f j(0, x) = f j0 (x), (27b)

where now u is a n-dimensional vector with n < N , such that there exists a constant matrix
Q of dimension n × N and Rank(Q) = n which gives n independent conserved quantities
u = Qf , f = (f1, . . . , fN )T . Moreover, we assume that there exist a unique local equilibrium
vector such that QE(u) = u, E(u) = (E1(u), . . . , EN (u))T .

From the properties of Q, using vector notations, we obtain a system of conservation laws
which is satisfied by every solution of (27)

Qft +QV fx = 0, (28)

where V = diag{v1, . . . , vN}. For vanishing values of the relaxation parameter ε we have
f = E(u) and system (27) is well approximated by the closed equilibrium system

ut + F (u)x = 0, (29)

with F (u) = QVE(u). Using these notations, the control problem detailed in this Section
corresponds to N = 2, n = 1 and Q = (1, 1).

12



Table 1: Number of discretization points in time N , error in L∞(0, T ) for the approach
discretize–then–optimize (Lemma 2.1) is shown in L∞p with corresponding rate (Rate) and
error in L∞(0, T ) for the approach optimize–then–discretize (Lemma 2.2) is shown in L∞p
with corresponding rate (Rate). We report from top to bottom different schemes: Explicit
Euler, Adams–Bashforth(3), and Adams-Moulton(4).

N L∞p Rate L∞p(t) Rate

E
x
p
li
ci
t–

E
u
le
r

40 0.0203478 2.11057 0.0203478 2.11057
80 0.00490164 2.05354 0.00490164 2.05354
160 0.00120324 2.02634 0.00120324 2.02634
320 0.000298097 2.01307 0.000298097 2.01307
640 7.41889e-05 2.00651 7.41889e-05 2.00651

N L∞p Rate L∞p(t) Rate

A
d
a
m
s–

B
a
sh
fo
rt
h
(3
)

40 9.46513e-05 4.24563 9.46513e-05 4.24563
80 5.42931e-06 4.12378 5.42931e-06 4.12378
160 3.25127e-07 4.06169 3.25127e-07 4.06169
320 1.9892e-08 4.03074 1.9892e-08 4.03074
640 1.2301e-09 4.01534 1.2301e-09 4.01534

N L∞p Rate L∞p(t) Rate

A
d
a
m
s–

M
o
u
lt
o
n
(4
)

40 2.91401e-08 6.39089 2.91401e-08 6.39089
80 3.99048e-10 6.1903 3.99048e-10 6.1903
160 5.84258e-12 6.09381 5.84258e-12 6.09381
320 8.86503e-14 6.04234 8.86503e-14 6.04234
640 1.41997e-15 5.96419 1.41997e-15 5.96419

4 Numerical results

We prove numerically previous results for BDF, Adams–Bashforth/Moulton integrators, for
ODEs systems and relaxation systems, presenting order of convergence and qualitatively
results. We refer to Appendix A for a detailed definition of BDF, Adams–Bashforth/Moulton
integrators.

4.1 Convergence order for BDF and Adams–Bashfort/Moulton integrators

In this section we verify the implementation of BDF and Adams–Bashfort/Moulton integra-
tors for the adjoint equation (3b). As discussed in Lemma 2.1 to Lemma 2.3 the derived
adjoint schemes might be different depending on the approach taken in Figure 1. However, in
the special case fy = cst both approaches yield the same discretization scheme and we do not
expect any loss in the order of approximation. To illustrate we consider fy = 1 and terminal
data p(T ) = 0. Then, the exact solution to equation (3b) is given by

p(t) = exp((T − t)).

The error is measured with respect to the exact solution. The results are given in Table 1.
The expected convergence order is numerically observed for all tested methods. We only show
the Adams–Bashfort and Adams–Moulton simulations.
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Table 2: Number of discretization points in time N , error in L∞(0, T ) for the approach
discretize–then–optimize (Lemma 2.1) is shown in L∞p with corresponding rate (Rate) and
error in L∞(0, T ) for the approach optimize–then–discretize (Lemma 2.2) is shown in L∞p
with corresponding rate (Rate). We report from top to bottom different schemes: Explicit
Euler, BDF(4), and Adams-Moulton(4).

N L∞p Rate L∞p(t) Rate

E
x
p
li
ci
t–

E
u
le
r

40 0.0358346 2.12096 0.00497446 1.76334
80 0.00856002 2.06567 0.00144543 1.78305
160 0.00209021 2.03397 0.000380452 1.92571
320 0.00051634 2.01725 9.71555e-05 1.96935
640 0.00012831 2.00869 2.45239e-05 1.98611

N L∞p Rate L∞p(t) Rate

B
D
F
(4
)

40 4.79238e-05 4.74597 4.79238e-05 4.74597
80 1.35856e-06 5.1406 1.35856e-06 5.1406
160 3.90305e-08 5.12133 3.90305e-08 5.12133
320 1.16026e-09 5.07209 1.16026e-09 5.07209
640 3.52961e-11 5.03879 3.52961e-11 5.03879

N L∞p Rate L∞p(t) Rate

A
d
a
m
s–

M
o
u
lt
o
n
(4
)

40 0.0220741 2.1699 7.60885e-07 7.26615
80 0.00518945 2.0887 6.02869e-09 6.97969
160 0.00125739 2.04515 6.24648e-11 6.59266
320 0.000309428 2.02275 9.69648e-13 6.00944
640 7.67471e-05 2.01142 1.69123e-14 5.84132

4.2 Loss of convergence order for Adams–Moulton integrators

Compared to (4.1) we modify the adjoint equation by assuming

fy(y, u) = y(t), y(t) = t2.

Terminal data for p is again p(T ) = 0. The exact solution of the adjoint equation is explicitly
known in this case and given by p(t) = exp((T 3 − t3)/3). Errors are measured with respect
to the exact solution. In view of Lemma 2.3 we expect only the BDF scheme to retain
the high–order. The Adams–Moulton integrators have bi 6= 0 for i ≥ 0 and therefore the
approach discretize–then–optimize leads to inconsistent discretization of the adjoint equation
(3b), see Lemma 2.1. We show three different schemes: an explicit Euler, BDF(4) and Adams–
Moulton(4). For each scheme we implement both versions, i.e., discretize–then–optimize and
optimize–then–discretize. Clearly, in the case of the BDF method there is no difference as
expected due to Lemma 2.3. Also, for first–order methods there is no difference since b0 = 0.
However, for the Adams–Moulton method we observe the decay in approximation order in
the case discretize–then–optimize. The results are given in Table 2. Obviously, we expect the
same decay for Adams–Bashfort formulas. Those numerical results are skipped for brevity.
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4.3 Results on the discretization of the full optimality system

We consider the discretization of the full optimality system (1) and equations (3), respectively.
Note that the example proposed in [19] and also investigated in [23] is not suitable to highlight
the difference between the approaches in Figure 1 since fy = cst. Therefore, we propose the
following problem:

min
y,u

1

2

(
y(T )− 1

1− T

)2

+
α

2

∫ 1

0
u2ds,

subject to y′ = y2 + u, y(0) = 1,

(30)

where we chose α > 0 as regularization parameter, and we remark that the exact solution for
u ≡ 0 is given by

y(t) =
1

1− t
.

The adjoint equations (3b) and optimality conditions (3c) are given by

p′ = 2yp, p(T ) = y(T )− 1

1− T
, p+ αu = 0.

Clearly, for u = 0 we obtain p ≡ 0. In order to avoid loss of accuracy due to inexact initial-
ization we initialize the forward problem (3a) using the exact solution at time t ≤ 0 and the
adjoint equation according to the conditions (7c). We show the convergence results for the
adjoint state p as well as the state y for different BDF methods in Table 3.

4.4 BDF discretization for the relaxation system and adjoint

In this section we consider the discretized relaxation system (21) being the forward problem
as well as the corresponding discretized adjoint equation given by equation (26).

Forward system. We study numerically the evolution of the macroscopic quantity u(t, x) =
1
N

∑
j fj computed using BDF discretization of equation (21). We consider the case N = 2

and v1 = −v2 = a = 2.1 and two different test cases of pure advection, F (u) = u, and

Burger’s equation F (u) = u2

2 . The initial data is u0(x) = exp(−(x− 3)2) and terminal time is
T = 1 on a domain x ∈ [0, 6] with periodic boundary conditions for both cases. We considered
Nx = 640 grid points for the space discretization, and the temporal grid is chosen according
to the CFL condition, such that ∆t = ∆x, the value of ε is kept fixed at ε = 10−2.

We present the numerically solutions in Figure 2 for the linear and non-linear transport
case. Here, higher-order successfully reduces the numerical diffusion and yields qualitatively
better results.
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Table 3: BDF(4): Number of discretization points in time N , error in L∞(0, T ) for the
approach optimize–then–discretize (Lemma 2.2) is shown in L∞p with corresponding rate
(Rate). Also, shown is the L∞ error in the state y in the second column as well as its rate
(Rate). We report from top to bottom different schemes: BDF(3), BDF(4), BDF(6).

N L∞y Rate L∞p Rate

B
D
F
(3
)

40 0.0720175 2.94884 3.47941 3.44822
80 0.0107919 2.73839 0.498712 2.80257
160 0.00153707 2.8117 0.0705343 2.82181
320 0.000207256 2.8907 0.00950082 2.8922
640 2.6974e-05 2.94177 0.00123634 2.94198
1280 3.44239e-06 2.97009 0.000157777 2.97011

N L∞y Rate L∞p Rate

B
D
F
(4
)

40 0.0237103 3.32788 1.25952 3.56845
80 0.00224529 3.40054 0.117177 3.42611
160 0.000182662 3.61966 0.00951526 3.6223
320 1.32309e-05 3.78719 0.000689121 3.78741
640 8.93826e-07 3.88778 4.65535e-05 3.8878
1280 5.81525e-08 3.94208 3.02878e-06 3.94208

N L∞y Rate L∞p Rate

B
D
F
(6
)

40 0.00451569 4.10057 0.27787 4.19135
80 0.000188028 4.58593 0.0115192 4.59229
160 5.42671e-06 5.11473 0.000332388 5.11503
320 1.20044e-07 5.49844 7.35271e-06 5.49845
640 2.2528e-09 5.7357 1.37984e-07 5.7357
1280 2.40865e-11 6.54735 1.4753e-09 6.54735
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F (u) = u F (u) = u2/2
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Figure 2: BDF integration of the system of ODEs (21) used as BGK approximation to
the conservation law (11). Two velocities are considered, N = 2. Left-hand side column
corresponds to pure transport situation F (u) = u, whether the right-hand side column depict
the solution of the Burger flux function, F (u) = u2/2. Top row show initial data u0(x) as
well as the numerical result at terminal time T = 1, bottom row shows the density u(x, t)
in the space-time frame [0, 6] × [0, 1]. Each test has been produced using a BDF(3) scheme
with Nx = 640 space points and ∆t = 4.47127 × 10−3, and with fixed relaxation parameter
ε = 0.01.
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Figure 3: The BDF(2) integration of the system of (26) has been implemented for the linear
transport F (u) = u. Two velocities are considered, with Nx = 640 space points and ∆t =
4.47127 × 10−3. From left to right we show different values of ε, with ε ∈ {1, 0.1, 0.0001}.
In the top row the terminal data pT (x), T = 1, as well as the numerical result at initial
time p(0, x) are reported for the different values of ε. Bottom row depict the density p(t, x) =
λ1(t, x)+λ2(t, x) for the different value of ε. Note that for small ε the pure transport equation
is obtained.

We do not present convergence tables for the forward equation since equation (21) requires
to evaluate the local equilibrium at gridpoints x + vjt that are in general not aligned with
the numerical grid. Therefore, an interpolation is required. Hence, the temporal and spatial
resolution are not independent and the observed convergence is limited to the interpolation
of the solution.

Adjoint system. A similar behavior is observed for the discretization of the adjoint equa-
tion (23). In order to illustrate the results we only show the BDF(2) method applied to (26) in
the case of F (u) = u. We use the same parameters as above for the forward system, but now
the data u0(x) is prescribed at terminal time T = 1, in the following way λj(T, x) = u0(x)/N ,
with N = 2. Then, the adjoint variables are evolved according to the derived scheme (26).
For illustration purposes the solutions p(t, x) = λ1(t, x) + λ2(t, x) are reported for different
values of the scaling term ε in Figure 3, in the top row we represent the adjoint equation at
time zero jointly with the terminal conditions pT (x), in the bottom row the density p(t, x) in
the domain [0, 6]× [1, 0]. Compared with the Figure 3 we observe that the profile moves over
time in the opposite direction, when ε is small enough. This is precisely as expected by the
limiting equation −pt − F ′(u)px = 0, where p =

∑
j λ

j .
Finally, we study the dependence of the adjoint equation on the parameter ε. Note that

for equation (21) a similar study has been performed in [18]. For each fixed value of ε we
compute the average converge rate on the numerical grid given above. We also record the
minimal error as well as the minimal used time step. The study is done for the BDF(2)
scheme and the results are reported in Table 4.
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Table 4: BDF integration of the system of ODEs (23). Two velocities are considered and
the L2 error of p = λ1 + λ2 at initial time is reported. Various values of ε are considered.
The mean convergence rate on given grid is reported as well as the finest temporal grid size
considered.

ε ∆t = ∆x L2p Rate

1 0.00447127 8.75403e-06 2.74404
1.000000e-01 0.00447127 6.63095e-06 2.68572
1.000000e-02 0.00447127 1.77628e-05 2.62852
1.000000e-03 0.00447127 2.08908e-05 2.6135
1.000000e-04 0.00447127 2.12566e-05 2.61174

4.5 Optimal control of hyperbolic balance laws

We finally show the quality of our approach by two applications to the optimal control of
hyperbolic balance laws. For further references, and example about optimal control problems
governed by conservation laws we refer to [9, 22].

4.5.1 Jin-Xin relaxation system

We consider the Jin-Xin relaxation model, [26] which results in the two velocities model (13),
as follows

f
(1)
t + af (1)

x =
1

ε

(
E1(u)− f (1)

)
, f (1)(x, 0) = f (1)(x)

f
(2)
t − af (2)

x =
1

ε

(
E2(u)− f (2)

)
, f (2)(x, 0) = f (2)(x)

(31)

where the equilibrium states E1 and E2 are given by

E1(u) =
1

2a
(au+ F (u)) , E2(u) =

1

2a
(au− F (u)) ,

with total density u = f (1) +f (2) and velocity in the limit ε→ 0 such that v = a(f (1)−f (2)) =
F (u). In particular we choose as an example the flux F (u) = u2/2 associated to the inviscid
Burger equation. Thus we have that the characteristic speed a has to satisfy the condition
a ≥ maxx∈R |u0(x)|. We consider the following optimal control problem, firstly proposed in

[22], where here we seek for minimizers f
(j)
0 (x), with j = 1, 2 of

J(u(·, T ), ud(·)) =
1

2

∫
Ω
|u(x, T )− ud(x)|2 dx (32)

Hence we fix the specific domain Ω = [−3, 3] with T = 3 and we want to prescribe the final
discontinuous data ud(x), as final data at time T of the Burger equation with initial data
defined as follows

ud(0, x) =

{
1.5 + x if − 1.5 ≤ x ≤ −0.5,

0 otherwise.
(33)

In order to solve numerically this optimal control problem we approximate it with the optimal
control (22)–(20), choosing N = 2 velocities and Nx = 120 space points, time step ∆t = 0.05
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Figure 4: Jin-Xin relaxation system. On the left-hand side we report the control at iteration

100, u
(100)
0 (--), compared with the initial data ud(0, x) (-.) used to compute the desired

final data ud(x) (-). The terminal solution u(T, x), (o), is reported and it is computed solving
system (31) using BDF(2) integration, with Nx = 120 space points, time step ∆t = 0.05, and
relaxation parameter ε = 10−2. On the right-hand side we show the decrease of the functional
J(u(k)).

and relaxation parameter ε = 10−2. In order to solve the time discretization we use BDF(2)
integration. The same choice of parameters is considered for the adjoint equation (23), which
is solved backward in time using a two velocities approximation of the terminal condition
λ(1)(T, x) + λ(2)(T, x) = p(T, x) = u(x, T ) − ud(x). Thus, we solve recursively the forward
approximated system (20) and the backward system (23), using as starting point the step

function u
(0)
0 (x) = 0.5χ[−1.5,−0.5](x), and introducing a filter F(·) to reduce the total variation

of the initial data u
(k)
0 following the approach in [22]. Then we update the initial data u

(0)
0 (x)

using a steepest descend method as follows

u
(k+1)
0 = u

(k)
0 − σkp

(k), m ≥ 0,

with σk updated with Barzilai-Browein step method [3].
We report in Figure 4 the final result after k = 30 iterations of the optimization process,

on the left-hand side plot we depict the initial data u
(100)
0 with the terminal data u(T, x) as

well as the desired data ud(x). On the right hand side we depict the decrease of J(u(k))given
by the optimization procedure.

4.5.2 Broadwell model

We consider the one-dimensional Broadwell model, [6], which describe the evolution of den-
sities f (1), f (2), f (3) relative to the velocities c,−c, 0, with c > 0, as follows

f
(1)
t + cf (1)

x =
1

ε

(
E1(ρ,m)− f (1)

)
, f (1)(x, 0) = f

(1)
0 (x),

f
(2)
t − cf (2)

x =
1

ε

(
E2(ρ,m)− f (2)

)
, f (2)(x, 0) = f

(2)
0 (x),

f
(3)
t =

1

ε

(
E3(ρ,m)− f (3)

)
, f (3)(x, 0) = f

(3)
0 (x).

(34)

20



Where the equilibrium quantities are defined as follows

E1(ρ,m, z) =
1

2
F (ρ,m) +

m

2c
,

E2(ρ,m, z) =
1

2
F (ρ,m)− m

2c
,

E3(ρ,m, z) = −F (ρ,m) + ρ

and the macroscopic quantities m, ρ, jointly with the flux F (ρ,m) are such that

ρ = f (1) + f (2) + 2f (3), m = c(f (1) − f (2)), F (ρ,m) =
m2

c2ρ
+ ρ. (35)

Indeed for ε → 0 system (34) converges to to the isentropic Euler model, [22], where ρ,m
represent respectively density, and momentum,ρt +mx = 0,

mt + c2
(
m2

c2ρ
+ ρ
)
x

= 0, (x, t) ∈ R× (0, T ]
(36)

We aim to minimize the functional

J(ρ(·, T ),m(·, T )) =
1

2

∫
Ω

(
|ρ(x, T )− ρd(x)|2 + |m(x, T )−md(x)|2

)
dx (37)

with respect to the initial data f j0 (x) for j = 1, 2, 3 taking in to account the relations (35).
To this end we compute the adjoint equation system associated to (34), and equivalently to
(23) we obtain the following

−λ(1)
t − cλ(1)

x = −1

ε

(
λ(1) −

∑
k

λ(k) (∂ρEk(ρ,m) + c∂mEk(ρ,m))

)
,

−λ(2)
t + cλ(2)

x = −1

ε

(
λ(2) −

∑
k

λ(k) (∂ρEk(ρ,m)− c∂mEk(ρ,m))

)
,

−λ(3)
t = −1

ε

(
λ(3) −

∑
k

λ(k)∂ρEk(ρ,m)

)
,

(38)

complemented by the terminal conditions

λ(1)(T, x) = ∂ρJ(ρ,m)+c∂mJ(ρ,m), λ(2)(T, x) = ∂ρJ(ρ,m)−c∂mJ(ρ,m), λ(3)(T, x) = ∂ρJ(ρ,m).

We set up the control problem (36)–(37) defining as reference density, and momentum the
final state of system (36) at time Tf = 0.15 provided the following initial data

ρd(0, x) = 1, x ∈ [−2.5, 2.5], md(0, x) =

{
sin(πx), x ∈ [−1, 1]

0 otherwise.
(39)

and zero flux boundary conditions.
In order to solve numerically problem (34) –(38), we fix the relaxation parameter ε = 0.01.

We discretize the space domain with an uniform grid of Nx = 320 points, and with time step
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Figure 5: Broadwell model. We consider ε = 0.01, using Nx = 320 space points and ∆t =
1 × 10−2. Top row represents the initial and final time of the density ρ(t, x), comparing the
optimal control ρ(k) with respect to the reference ρd at initial (left plot) and final time (right
plot). Bottom row compares the momentum m(k)(t, x) at initial (left plot) and final time
(right plot) with respect to the reference solution md(x).

∆t = 0.01. In order to reduce the total variation of the initial data (ρ
(k)
0 ,m

(k)
0 ) we introduce

a filter F(·) following the strategy proposed in [22]. The optimization step is initialized using
as starting guess the following data

ρ(0)(0, x) = 1, m(0)(0, x) = 0, x ∈ [−2.5, 2.5]. (40)

Then at each iteration k = 0, 1, . . . the initial data ρ
(k)
0 (x),m

(k)
0 (x) is updated with gradient

method with Barzilai-Borwein descent step, [3].
We report in Figure 5 the result of the optimization process. Top row depicts the evolution

of the density, whereas bottom row refers to momentum evolution. On the left-hand side the

initial value (ρ
(0)
0 (x),m

(0)
0 (x)) is compared with the control (ρ

(k)
0 (x),m

(k)
0 (x)) obtained after

k = 70 iterations of the optimization process, and the true initial data defined by (39). The
right-hand side column depicts the density and momentum at final time T = 0.15 comparing
the reference solution (ρd(x),md(x)) with respect to (ρ(k)(T, x),m(k)(T, x)). Finally Figure 6
reports the decrease of the functional J(ρ,m) evaluated at each iteration of the optimization
process.
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Figure 6: Broadwell model. Decrease of the functional J(ρ,m) evaluated in ρ(k),m(k), at each
iteration k of the optimization process.

5 Conclusion

We analyze linear multi-step schemes for control problems of ordinary differential equations
and hyperbolic balance laws. In the case of ordinary differential equations we show theoreti-
cally and numerically that only BDF methods are consistent discretization of the correspond-
ing optimality systems up to high–order. The BDF methods may also be used as higher order
discretization of relaxation systems in combination with a Lagrangian scheme. We derive
the corresponding adjoint equations and we show that this system can again be discretized
by a BDF type method. The numerically observed convergence rates confirm the expected
behavior both for ordinary differential systems, as well as hyperbolic balance laws.

A Definition of BDF, Adams–Moulton and Adams–Bashfort
Formulas

In view of the scheme (4) each scheme is represented by two vectors a, b with a = (a0, . . . , as−1) ∈
Rs and b = (b−1, b0, . . . , bs−1) ∈ Rs+1 for an s−stage scheme. Only in the case of BDF schemes
we have b ∈ Rs+1, otherwise we have b ∈ Rs. For the schemes implemented in this paper we
use the following schemes.
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