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Abstract

We consider existence of positive solutions for a difference equation with continuous time, variable
coefficients and delays

x(t+ 1)− x(t) +
m
∑

k=1

ak(t)x(hk(t)) = 0, ak(t) ≥ 0, hk(t) ≤ t, t ≥ 0, k = 1, . . . ,m.

We prove that for a fixed h(t) 6≡ t, a positive solution may exist for ak exceeding any prescribed
M > 0, as well as for constant positive ak with hk(t) ≤ t − n, where n ∈ N is arbitrary and
fixed. The point is that for equations with continuous time, non-existence of positive solutions
with inf x(t) > 0 on any bounded interval should be considered rather than oscillation. Sufficient
conditions when such solutions exist or do not exist are obtained. We also present an analogue
of the Grönwall-Bellman inequality for equations with continuous time, and examine the question
when the equation has no positive non-increasing solutions. Counterexamples illustrate the role of
variable delays.

Keywords: functional equations, difference equations with continuous time, oscillation,
non-oscillation, variable delays
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1. Introduction

For both delay differential

x′(t) +
m
∑

k=1

ak(t)x(hk(t)) = 0, ak(t) ≥ 0, k = 1, . . . ,m, t ≥ 0 (1.1)

and difference equations

x(n+ 1)− x(n) +

m
∑

k=1

ak(n)x(hk(n)) = 0, ak(n) ≥ 0, k = 1, . . . ,m, n ∈ N0 = 0, 1, . . . (1.2)

the following properties were used when studying oscillation.

1. If ak ≥ αk > 0, k = 1, . . . ,m, each non-oscillatory solution tends to zero: lim
t→∞

x(t) = 0.

2. Any non-oscillatory solution is eventually monotone: positive solutions are eventually non-
increasing, while negative solutions are non-decreasing.
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3. All positive solutions on any finite non-empty segment [a, b] satisfy min
t∈[a,b]

x(t) > 0, where in

the case of difference equations the segment contains integers only.

In the present paper, we illustrate that none of these properties, generally, is relevant for
difference equations with continuous time.

The main object of the present paper is the equation with several variable delays

x(t+ 1)− x(t) +
m
∑

k=1

ak(t)x(hk(t)) = 0, ak(t) ≥ 0, hk(t) ≤ t, t ≥ 0, k = 1, . . . ,m. (1.3)

Definition 1. A solution of (1.3) is oscillatory if for any t∗ there exist t1 > t∗ and t2 > t∗

such that x(t1) < 0 < x(t2). By a non-oscillatory we mean an eventually positive or an eventu-
ally negative solution. Equation (1.3) is non-oscillatory if it has a non-oscillatory solution and
oscillatory otherwise.

For equations (1.1) and (1.2) with one delay term (m = 1),

x′(t) + a(t)x(h(t)) = 0, a(t) ≥ 0, t ≥ 0, (1.4)

x(n+ 1)− x(n) + a(n)x(h(n)) = 0, a(n) ≥ 0, n = 0, 1, . . . (1.5)

the effect of non-monotonicity in variable delays leads to the conclusion that there is no A > 0

and B > 0 such that lim sup
t→∞

∫ t

h(t)
a(s) ds > A implies oscillation of (1.4) or lim sup

n→∞

n
∑

k=h(n)

a(k) > B

guarantees oscillation of (1.5), see [2, 6]. Some mistakes in the previous results were reported in [2].
However, if we replace h with g(t) = sups≤t h(s) and g(n) = supk≤n h(k), respectively, g becomes
a non-decreasing function, and any A > 1 or B > 1 in the above inequalities will imply oscillation
[8].

Some of oscillation and non-oscillation results for (1.1) and (1.2) were unified in the framework
of equations on time scales, see, for example, [5, 9, 10] and references therein.

Obviously, for (1.5) the inequality lim sup
n→∞

a(n) > 1 leads to oscillation. In this note, we prove

that for a linear difference equation with continuous time and a variable argument

x(t+ 1)− x(t) + a(t)x(h(t)) = 0, h(t) ≤ t, t ≥ 0, (1.6)

no limitation lim sup
n→∞

a(n) > M guarantees oscillation. Though in (1.6) the coefficient is also

assumed to be variable, in the counterexamples we can even assume a constant a(t).
Sufficient oscillation conditions for the equation with constant delays and variable coefficients

x(t+ 1)− x(t) +

n
∑

k=1

ak(t)x(t− σk) = 0, t ≥ 0 (1.7)

claim that, for high enough lower bound for ak, all solutions oscillate [11, 12]. For the results on
oscillation of (1.7), its partial cases and some generalizations, see [11, 12, 14] and references therein.
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Lemma 1. [12] Let ak(t) be bounded, continuous, inf
t≥0

ak(t) ≥ ak ≥ 0 and either

n
∑

k=1

ak
(σk + 1)σk+1

σσk

k

> 1 (1.8)

or

n

(

n
∏

k=1

ak

)
1

n (σ + 1)σ+1

σσ
> 1, where σ =

1

n

n
∑

k=1

σk.

Then all solutions of (1.7) oscillate.

In particular, by (1.8) in Lemma 1, inf
t≥0

a(t) > 1 implies oscillation of the equation

x(t+ 1)− x(t) + a(t)x(t− σ) = 0, σ > 0, a(t) > 0 (1.9)

with a constant delay and a variable coefficient, for which the oscillation result can be stated as
follows.

Lemma 2. [13] Let a be continuous. If for t large enough the inequality

a(t) ≤
σσ

(σ + 1)σ+1
(1.10)

holds, (1.9) has a non-oscillatory solution.

Note that the result of Lemma 2 was proven as early as in 1997, see [16], under the additional
assumption that a(t) is Lipschitz continuous.

For (1.3) with constant delays hk(t) = t− τk, τk > 0, k = 1, . . . ,m, the main tool to study oscil-
lation was the Laplace Transform [11, 12], and solutions were assumed to be piecewise continuous.
Here we formally do not imply any smoothness requirements on solutions but in all the examples
we consider piecewise continuous solutions, following this tradition.

The paper is organized as follows. In Section 2 we illustrate first that no limitation on either
magnitude of the coefficients or delays guarantees oscillation of all solutions. However, if we intro-
duce an additional restriction that on each finite segment, a solution has a positive lower bound, it
is possible to obtain sufficient oscillation conditions. Section 3 contains sufficient conditions when a
non-oscillatory solution exists. In Section 4 we explore the problem of existence of a positive non-
increasing (or a negative non-decreasing) solution of (1.3). Finally, Section 5 involves discussion
and outlines some open problems.

2. Oscillation

First of all, let us note that a(t) ≥ a0 > 0 does not guarantee that all solutions of (1.6) tend to
zero.

Example 1. Consider (1.6) with a(t) =
1

2 + 0.5⌊t⌋−2
≥

1

4
> 0, h(t) = ⌊t⌋ − 0.5⌊t⌋ (1− {t}),

t ≥ 1, where ⌊t⌋ and {t} are the integer (the maximal integer not exceeding t) and the fractional

parts ({t} = t − ⌊t⌋) of t, respectively. Then x(t) =
(

1 + 0.5⌊t⌋
)

(1 − {t}) is a solution satisfying
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x(n) = 1+ 0.5⌊t⌋ > 1, thus x(t) does not tend to zero. To check that x is a solution, we notice that

⌊h(t)⌋ = ⌊t⌋ − 1, 1− {h(t)} = 0.5⌊t⌋(1− {t}), x(h(t)) =
(

1 + 0.5⌊t⌋−1
)

0.5⌊t⌋(1− {t}), and

x(t+ 1)− x(t) + a(t)x(h(t))

=
(

1 + 0.5⌊t⌋+1
)

(1− {t}) −
(

1 + 0.5⌊t⌋
)

(1− {t}) +
1

2 + 0.5⌊t⌋−2

(

1 + 0.5⌊t⌋−1
)

0.5⌊t⌋(1− {t})

=(1− {t})

(

1 + 0.5⌊t⌋+1 − 1− 0.5⌊t⌋ + 0.5⌊t⌋+1 1 + 0.5⌊t⌋−1

1 + 0.5⌊t⌋−1

)

=(1− {t})
(

−0.5⌊t⌋+1 + 0.5⌊t⌋+1
)

= 0.

Next, let us note that if we consider piecewise continuous solutions, no conditions on the mag-
nitude of a(t) > 0 or on the delay t − h(t) can exclude the possibility that a positive solution of
(1.6) exists.

Theorem 1. For any M > 0, there exist a(t) > 0 and h(t) ≤ t such that (1.6) has a non-oscillatory
solution, where a(t) ≥ M for any t ≥ 0. For a fixed a(t) ≡ a > 0 and any n ∈ N, there exists
h(t) ≤ t− n such that (1.6) has a non-oscillatory solution.

Proof. First, let M > 0 be given. We can always find k ∈ N such that 2k ≥ M . Let a(t) ≡ 2k.
Denote

h(t) = ⌊t⌋ − 2−k−2(1− {t}) < t. (2.1)

Then ⌊h(t)⌋ = ⌊t⌋ − 1, {h(t)} = 1− 2−k−2(1− {t}). It is easy to check that

x(t) = 2−⌊t⌋(1− {t}) (2.2)

is positive and satisfies (1.6) with h(t) as in (2.1) and a(t) ≡ 2k.
Next, let us fix a(t), say a(t) ≡ a = 1

4 and choose an arbitrary n ∈ N. Denote

h(t) = ⌊t⌋ − n− 2−n(1− {t}) < t− n, (2.3)

then ⌊h(t)⌋ = ⌊t⌋−n−1, {h(t)} = 1−2−n(1−{t}), and x(t) defined in (2.2) is positive and satisfies
(1.6) with h(t) as in (2.3) and a(t) ≡ 1

4 , which concludes the proof.
Thus, to study non-oscillation, we will only consider solutions that satisfy

inf
t∈[c,d]

x(t) > 0 for any finite c < d. (2.4)

For equation (1.3), we introduce lower and upper sequences

ak(n) = inf
s∈[n,n+1)

ak(s), hk(n) = sup
s∈[n,n+1)

⌊hk(s)⌋ , n ∈ N, k = 1, . . . ,m. (2.5)

Theorem 2. Let ak(t) ≥ 0, k = 1, . . . ,m. Assume that all solutions of the difference equation

y(n+ 1)− y(n) +
m
∑

k=1

ak(n)y
(

hk(n)
)

= 0 (2.6)

oscillate. Then there is no positive solution of (1.3) satisfying (2.4).
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Proof. Assume the contrary that x is a non-oscillatory solution of (1.3) satisfying (2.4). First,
let x be positive. Denote the sequence

y(n) = inf
s∈[n,n+1)

x(s) > 0. (2.7)

Let us note that, due to (2.4), this is a positive decreasing sequence. If (2.4) fails, like in Example 1
and in the proof of Theorem 1, it can be a zero sequence.

In (2.5), for t ∈ [n, n+ 1) we have ak(t) ≥ ak(n) and hk(t) < hk(n), leading to

x(hk(t)) ≥ y
(

hk(n)
)

> 0, t ∈ [n, n+ 1),

and the solution x satisfies

x(t+ 1) = x(t)−
m
∑

k=1

ak(t)x(hk(t)) ≤ x(t)−
m
∑

k=1

ak(n)y
(

hk(n)
)

, t ∈ [n, n+ 1).

By the definition of y in (2.7), this implies y(n+ 1) ≤ y(n)−
m
∑

k=1

ak(n)y
(

hk(n)
)

, or

y(n+ 1)− y(n) +

m
∑

k=1

ak(n)y
(

hk(n)
)

≤ 0. (2.8)

However, the existence of a positive solution of (2.8) is equivalent to the existence of a positive
solution of (2.6), see, for example, [1, Theorem 3.1]. The case of a negative solution is considered
similarly, as the existence of a negative solution of the difference equation

y(n+ 1)− y(n) +

m
∑

k=1

ak(α, n)y
(

hk(n)
)

≥ 0

implies the existence of a non-oscillatory solution to (2.6) [1, Theorem 3.1]. The contradiction
shows that all solutions of (1.3) satisfying (2.4) oscillate.

Corollary 1. Let ak(t) ≥ 0, k = 1, . . . ,m. Assume that

ak(t) ≥ bk(n) > 0, hk(t) ≤ gk(n) ≤ n, t ∈ [n, n+ 1), k = 1, . . . ,m,

and all solutions of the difference equation

y(n+ 1)− y(n) +

m
∑

k=1

bk(n)y (gk(n)) = 0

oscillate. Then there is no positive solution of (1.3) satisfying (2.4).

Making a shift from n ∈ N to n+ α for some α ∈ [0, 1), we generalize Theorem 2.
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Theorem 3. Let ak(t) ≥ 0, k = 1, . . . ,m. Assume that for some α ∈ [0, 1), all solutions of the
difference equation

y(n+ 1)− y(n) +

m
∑

k=1

ak(α, n)y
(

hk(α, n)
)

= 0

oscillate, where ak(α, n) = inf
s∈[α+n,α+n+1)

ak(s), hk(α, n) = sup
s∈[α+n,α+n+1)

⌊hk(s)⌋ , n ∈ N, k =

1, . . . ,m.
Then there is no positive solution of (1.3) satisfying (2.4).

Example 2. Consider the equation

x(t+ 1)− x(t) +

10
∑

k=1

(0.03 + 0.003 cos(kt))x(t− 2.1 + 0.1 sin(kt)) = 0. (2.9)

Here ak and hk(n) introduced in (2.5) are ak(n) ≥ 0.027, hk(n) ≤ n − 1, n ∈ N, k = 1, . . . , 10

and
10
∑

k=1

ak(n) ≥ 0.27. Since 0.27 >
1

4
=

11

22
, the equation

x(n+ 1)− x(n) + 0.27x(n − 1) = 0

is oscillatory [8, Theorem 7.2.1]. By Corollary 1, there are no positive solutions of (2.9) satisfying
(2.4).

3. Existence of positive solutions

Further, consider existence of non-oscillatory (positive) solutions. To this end, extend the
definitions in (2.5) to lower and upper sequences for both coefficients and arguments

ak(n) = inf
s∈[n,n+1)

ak(s), ak(n) = sup
s∈[n,n+1)

ak(s), n ∈ N, k = 1, . . . ,m (3.1)

hk(n) = inf
s∈[n,n+1)

⌊hk(s)⌋ , hk(n) = sup
s∈[n,n+1)

⌊hk(s)⌋ , n ∈ N, k = 1, . . . ,m. (3.2)

First of all, let us notice that existence of a positive solution of (1.9), even with a constant
coefficient

x(t+ 1)− x(t) + qx(t− σ) = 0, σ > 0 (3.3)

does not imply that the solution of the equation

x(t+ 1)− x(t) + qx(h(t)) = 0, t− σ ≤ h(t) ≤ t (3.4)

with the same initial conditions is positive.

Example 3. The equation

x(t+ 1)− x(t) +
1

4
x(t− 1) = 0

6



has a positive solution x(t) = 2−t. Consider

x(t+ 1) − x(t) +
1

4
x(h(t)) = 0, h(t) =







t, t ∈ [n, n+ 1
2 ), n ∈ N,

t− 1, t ∈ [n+ 1
2 , n+ 1), 1 ≤ n ≤ 5, n ∈ N,

t− 1
2 , t ∈ [n+ 1

2 , n + 1), n ≥ 6, n ∈ N,

with the initial condition x(t) = 2−t, t ∈ [−1, 1). The solution on [0, 6.5) is

x(t) =

{

(32 )
n2−t, t ∈ [n, n+ 1

2), t < 6.5,

2−t, t ∈ [n+ 1
2 , n+ 1), t < 6,

while on t ∈ [6.5, 7) we have x(t) = 2−t+1 −
1

4

(

3

2

)5

2−t+ 3

2 < 0, t ∈ [6.5, 7).

Further, we present sufficient conditions for existence of a positive solution of (1.3) satisfying
(2.4). Similar conditions can be obtained for a negative solution with a negative supremum on any
finite segment.

Theorem 4. Suppose that there exist positive non-increasing sequences u(n) and V (n) for n ∈ Z

such that
u(n) ≤ V (n), n ≥ 0, (3.5)

u(n+ 1) ≤ u(n)−
m
∑

k=1

ak(n)V
(

hk(n)
)

, n ≥ 0, (3.6)

V (n+ 1) ≥ V (n)−
m
∑

k=1

ak(n)u
(

hk(n)
)

, n ≥ 0. (3.7)

Then there exists a positive solution x(t) of (1.3) satisfying (2.4). Moreover, there is x(t) for which

u(n) ≤ x(t) ≤ V (n), t ∈ [n, n+ 1). (3.8)

Proof. Let us consider the solution of (1.3) with the initial function x(t) = ϕ(⌊t⌋), t < 1, where
u(n) ≤ ϕ(n) ≤ V (n) for n ≤ 0. In fact we are going to verify u(n) ≤ x(t) ≤ V (n), t ∈ [n, n + 1),
which would imply (3.8) and the statement of the theorem.

We prove (3.8) by induction. We have ϕ(n) = u(n) = x(t) = V (n) for any t ∈ [n, n+ 1), where
n ≤ 0. Further, for t ∈ [0, 1) and t+ 1 ∈ [1, 2), we have by (3.6)

x(t+ 1) = x(t)−
m
∑

k=1

ak(t)x(hk(t)) = ϕ(0)−
m
∑

k=1

ak(t)ϕ(⌊hk(t)⌋)

≥ u(0)−
m
∑

k=1

ak(t)V (⌊hk(t)⌋ ≥ u(0)−
m
∑

k=1

ak(t)V (hk(0)) ≥ u(1),

and by (3.7)

x(t+ 1) = x(t)−
m
∑

k=1

ak(t)x(hk(t)) = ϕ(0) −
m
∑

k=1

ak(t)ϕ(⌊hk(t)⌋)

≤ V (0)−
m
∑

k=1

ak(t)u(⌊hk(t)⌋) ≤ V (0) −
m
∑

k=1

ak(t)u(hk(0)) ≤ V (1).
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Thus u(0) ≤ x(t) ≤ V (0) for t ∈ [1, 2).
Further, let us assume that u(n) ≤ x(t) ≤ V (n) for t ≤ n + 1. Then, for t ∈ [n, n + 1),

t+ 1 ∈ [n+ 1, n + 2), by (3.7) we have

x(t+ 1) = x(t)−
m
∑

k=1

ak(t)x(hk(t)) ≤ V (n)−
m
∑

k=1

ak(n)u
(

hk(n)
)

≤ V (n+ 1),

while (3.6) implies

x(t+ 1) = x(t)−
m
∑

k=1

ak(t)x(hk(t)) ≥ u(n)−
m
∑

k=1

ak(n)V
(

hk(n)
)

≥ u(n+ 1),

therefore u(n + 1) ≤ x(t) ≤ V (n + 1), t ∈ [n + 1, n + 2), which concludes the induction step and
the proof.

Consider (1.3) with piecewise constant coefficients and arguments.

Corollary 2. Suppose that ak(t) ≡ ak(n), t ∈ [n, n + 1), hk(n) = hk(n) = θk(n) for any n ∈ N,
and the difference equation

z(n+ 1)− z(n) +
m
∑

k=1

ak(n)z(θk(n)) = 0 (3.9)

has a positive solution. Then there exists a positive solution x(t) of (1.3) satisfying (2.4).

Proof. Let z(n) be a positive solution of (3.9). The sequence z(n) satisfies (3.5) with ϕ(n) =
z(n) for n ≤ 0, and u(n) = z(n), V (n) = z(n), n ≥ 0 satisfy (3.6),(3.7) with the equality signs.
The application of Theorem 4 concludes the proof.

Let us also note that under the conditions of the corollary, the positive solution of (1.3) discussed
in the proof is piecewise constant. Also, in Theorem 4, the initial point t = 1 can be substituted
with any t0.

Example 4. For the equation

x(t+ 1)− x(t) + 0.5⌊t⌋+2x
(

⌊t⌋ − 1− 0.8 cos t
)

= 0 (3.10)

h(n) = n− 2, h(n) = n, a(n) = a(n) = 0.5n+2. Denote V (n) = 1, u(n) = 0.5 + 0.5n+1, n ≥ 0 and
u(n) = V (n) = 1, n < 0. Then (3.7) is obviously satisfied, while (3.6) has the form

u(n)− u(n+ 1) = 0.5 + 0.5n+1 −
(

0.5 + 0.5n+2
)

= 0.5n+2 ≥ 0.5n+2 · 1 = a(n)V (h(n)),

which is also true. Thus (3.10) has a positive solution satisfying (2.4).

4. Existence of positive non-increasing solutions

Finally, consider the problem of existence of positive non-increasing and negative non-decreasing
solutions. Here we consider variable and, generally, non-monotone arguments hk(t), however, we
introduce non-decreasing functions

gk(t) = sup
s≤t

hk(s), k = 1, . . . ,m, g(t) = max
1≤k≤m

gk(t). (4.1)
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For any two real numbers s ≤ t we introduce two functions, each describing a finite set of numbers

N (s, t) = {s+ j| j = 0, 1, 2, s+ j ≤ t− 1} , M(s, t) = {t− j| j ∈ N, t− j ≥ s} . (4.2)

Obviously, if t = s+ n, n ∈ N, these sets coincide N (s, t) = M(s, t) = {s, s+ 1, . . . s+ n− 1}. For
example, if t = s + n + 0.6, n ∈ N, we have N (s, t) = {s, s + 1, . . . s + n − 1}, while M(s, t) =
{s + 0.6, s + 1.6, . . . s + n − 0.4}. Further, we assume that the sum with no terms equals zero,
while the product with no factors is one. The following lemma evaluates the rate of the minimal
decay of positive solutions. It can be treated as an analogue of the Grönwall-Bellman inequality
for equations with continuous time.

Lemma 3. Let x(t) be a positive non-increasing solution of (1.3). Then, for any 0 ≤ s < t < ∞,

x(t) ≤ x(s)
∏

rj∈N (s,t)

(

1−
m
∑

k=1

ak(rj)

)

, x(t) ≤ x(s)
∏

rj∈M(s,t)

(

1−
m
∑

k=1

ak(rj)

)

. (4.3)

Proof. First, let us note that for 0 ≤ s < t < s + 1, under the assumption that x is non-
increasing, the inequalities in (4.3) take an obvious form x(t) ≤ x(s). Further, since hk(s) ≤ s and
x is non-increasing, we have

x(s+ 1) = x(s)−
m
∑

k=1

ak(s)x(hk(s)) ≤ x(s)−
m
∑

k=1

ak(s)x(s) = x(s)

(

1−
m
∑

k=1

ak(s)

)

.

For any t ∈ [s+ 1, s+ 2), the set N consists of r1 = s only, therefore

x(t) ≤ x(s+ 1) ≤ x(s)
∏

rj∈N (s,t)

(

1−
m
∑

k=1

ak(rj)

)

.

Next, let us proceed to the induction step, assuming that the first inequality in (4.3) holds for
t ∈ [s+ n− 1, s+ n). For t ∈ [s+ n, s+ n+ 1),

x(t) ≤ x(s+ n) = x(s+ n− 1)−
m
∑

k=1

ak(s+ n− 1)x(hk(s+ n− 1))

≤ x(s+ n− 1)−
m
∑

k=1

ak(s+ n− 1)x(s+ n− 1)

= x(s+ n− 1)

(

1−
m
∑

k=1

ak(s + n− 1)

)

≤ x(s)
∏

rj∈N (s,s+n−1)

(

1−
m
∑

k=1

ak(rj)

)(

1−
m
∑

k=1

ak(s+ n− 1)

)

= x(s)
∏

rj∈N (s,s+n)

(

1−
m
∑

k=1

ak(rj)

)

= x(s)
∏

rj∈N (s,t)

(

1−
m
∑

k=1

ak(rj)

)

,

by the definition of N in (4.2).
The proof of the second inequality in (4.3) is similar, starting from t− ℓ ∈ [s, s + 1) for ℓ ∈ N

and proceeding further to t− ℓ, t− ℓ+ 1, . . . , t by induction.
Estimate (4.3) allows to prove the main result of this section.
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Theorem 5. Let

lim sup
t→∞

∑

uℓ∈N (g(t),t)

m
∑

k=1

ak (uℓ)
∏

rj∈N (hk(uℓ),g(t))

(

1−
m
∑

k=1

ak(rj)

)

> 1, (4.4)

where g is defined in (4.1). Then (1.3) has no positive non-increasing (negative non-decreasing)
solutions.

Proof. Let x(t) be a positive non-increasing solution. By (4.4), there is an infinite number of t
such that the expression under lim sup in (4.4) exceeds one, and t can be chosen arbitrarily large.
Let us assume that t is such a number, and all hk(hj(s)) > 0 for any s > t. Assume that d ∈ N0 is
the largest number such that g(t) + d ≤ t. By the choice of t

d−1
∑

ℓ=0

m
∑

k=1

ak (g(t) + ℓ)
∏

rj∈N (hk(g(t)+ℓ),g(t))

(

1−
m
∑

k=1

ak(rj)

)

> 1. (4.5)

Rewriting (1.3) at all the points t = g(t), g(t) + 1, . . . , t = g(t) + d− 1, t ∈ N (g(t), t), we get

x(g(t)) = x(g(t) + 1) +

m
∑

k=1

ak(g(t))x(hk(g(t))),

x(g(t) + 1) = x(g(t) + 2) +
m
∑

k=1

ak(g(t) + 1)x(hk(g(t) + 1)), . . . ,

x(g(t) + d− 1) = x(g(t) + d) +

m
∑

k=1

ak(g(t) + d− 1)x(hk(g(t) + d− 1))

(4.6)

By Lemma 3,

x (hk(g(t)) + ℓ) ≥ x(g(t))
∏

rj∈N (hk(g(t)+ℓ),g(t))

(

1−
m
∑

k=1

ak(rj)

)

, ℓ = 0, . . . , d− 1. (4.7)

Summing up the d equalities in (4.6) and substituting inequalities (4.7), we obtain, as g(t) + d ≤ t
and x(g(t) + d) ≥ x(t),

x(g(t)) − x(t) ≥ x(g(t)) − x(g(t) + d) =
d−1
∑

ℓ=0

m
∑

k=1

ak (g(t) + ℓ) x (hk(g(t) + ℓ))

≥ x(g(t))

d−1
∑

ℓ=0

m
∑

k=1

ak (g(t) + ℓ)
∏

rj∈N (hk(g(t)+ℓ),g(t))

(

1−
m
∑

k=1

ak(rj)

)

> x(g(t)),

which by (4.5) immediately implies x(t) < 0. This contradicts to the assumption that x(t) > 0,
hence there is no positive non-increasing solution. The case of negative non-decreasing solutions is
considered similarly.

Remark 1. In (4.4), we can use M instead of N , getting another oscillation condition.

10



5. Discussion

Let us note that existence of a positive solution is not sufficient for existence of a positive
non-increasing solution.

Example 5. The equation

x(t+ 1)− x(t) +

(

1

2
−

1

2
{t}

)

x(t) = 0 (5.1)

can be rewritten as x(t+ 1) =
(

1
2 +

1
2{t}

)

x(t). Obviously

x(t) = 1, t ∈ [0, 1], x(t) =

(

1

2
+

1

2
{t}

)⌊t⌋

=

(

1

2
+

1

2
{t}

)n

, t ∈ [n, n+ 1).

is a positive piecewise continuous solution of (5.1). Note that it is a simple case of an equation with
continuous time and integer delay, existence of positive solutions for such equations was studied in
detail in the recent paper [7] in terms of the generalized characteristic equation, which in the case

of (5.1) has the solution λ(t) =
1

2
+

1

2
{t}.

On the other hand, equation (5.1) has no positive non-increasing solutions. Let us assume the
contrary that x(t) is a positive non-increasing solution, and denote the ratio by α := x(0)/x(0.5),

α ∈ [1,∞). Take n >
lnα

ln 1.5
, then

x(n)

x(n+ 1
2)

=
α0.5n

0.75n
=

α

1.5n
< 1, and x(n + 1

2 ) > x(n) for

n >
lnα

ln 1.5
large enough, which contradicts to the assumption that x(t) is non-increasing.

The results of the present paper give rise to the following questions.

1. According to Example 5, existence of a positive solution of the generalized characteristic
equation [7] guarantees existence of a positive, but not necessarily positive non-increasing
solutions. Is it possible to develop sufficient conditions, in similar terms, for existence of
positive non-increasing solutions of (1.3)?

2. Can the results of [15], where a linearized oscillation theory is developed for constant delays
and coefficients, be extended to the equation

x(t+ 1)− x(t) +

m
∑

k=1

ak(t)fk(x(hk(t))) = 0, ak(t) ≥ 0, hk(t) ≤ t, k = 1, . . . ,m, t ≥ 0,

where ufk(u) > 0, u 6= 0 and lim
u→0

fk(u)

u
= 1, k = 1, . . . ,m?

3. Will sharper than in (4.3) estimates of the rate of decay of x, using the iterative procedure
similar to [3, 4], lead to a substantial improvement of (4.4)?
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