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Abstract

An integrable two-component nonlinear Schrödinger equation in 2+1 di-
mensions is presented. The singular manifold method is applied in order to
obtain a three-component Lax pair. The Lie point symmetries of this Lax
pair are calculated in terms of nine arbitrary functions and one arbitrary
constant that yield a non-trivial infinite-dimensional Lie algebra. The main
non-trivial similarity reductions associated to these symmetries are identi-
fied. The spectral parameter of the reduced spectral problem appears as a
consequence of one of the symmetries.

1. Introduction

Invariance of a differential equation under a set of transformations is
equivalent to the existence of symmetries. The study of symmetries repre-
sents a fundamental aspect related to the analysis of integrability of differen-
tial equations, since this invariance property may be used to achieve partial
or complete integration of such equations [1].

The basis of the theory of Lie symmetries lies in the invariance of differen-
tial equations under one-parameter transformations of their variables. These
transformations form a local group of transformations (Lie (point) symme-
tries), which depend on a continuous parameter, and project any solution of
the equation into another solution. Groups of transformations are fully char-
acterized by their infinitesimal generators, which will form the corresponding

Preprint submitted to Applied Mathematics and Computation June 15, 2021

http://arxiv.org/abs/1807.09039v1


Lie algebra. This method has been extensively investigated. Classical refer-
ences about this subject are the textbooks [1], [2], [3], [4].

A standard method to find solutions of a PDE (partial differential equa-
tion) can be implemented by using Lie symmetries: each Lie symmetry leads
to a similarity reduction for the PDE which allows us to reduce by one the
number of independent variables. These procedures, as well as its numerous
applications, have been widely studied [5].

As it is well known, a PDE is considered integrable when it can be derived
through the Lax equation associated to a spectral problem [6]. As mentioned,
Lie symmetries for PDEs are very popular in literature, however, the identi-
fication of Lie symmetries of the associated spectral problem of an integrable
system is much less frequent [7], [8]. Nevertheless, the determination of the
symmetries of the Lax pair has the benefit that the reduction associated to
each symmetry of the Lax pair provides not only the reduction of the fields,
but also the reductions of the eigenfunctions and the spectral parameter.

A different problem is the determination of the integrability of a nonlin-
ear partial differential equation, as well as the derivation of its Lax pair in
the case of integrability. The Painlevé property and the singular manifold
method derived from such property are extremely useful procedures in order
to prove the integrability and to derive the Lax pair of an integrable system
[9], [10], [11], [12].

This paper is devoted to the study of a multi-component nonlinear
Schrödinger (NLS) Equation in 2 + 1 dimensions and its associated linear
problem. In Section 2 the model is presented. We shall prove that the
system has the Painlevé property. The singular manifold method is suc-
cessfully applied in order to derive the singular manifold equations and a
three-component Lax pair.

In Section 3 we shall apply the classical Lie method to find Lie point
symmetries for the system and the associated spectral problem. These sym-
metries contain many arbitrary functions that yield non-trivial commutation
relations among the associated generators. These commutation relations are
carefully described in Section 4. In Section 5 we shall study the reductions
that arise from the symmetries, obtaining three relevant similarity reductions
where the spectral parameter emerges naturally as a result of the Lie method.
Finally, we close with a section of conclusions.
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2. The Singular manifold method

In this paper we will study a (2 + 1)-dimensional multi-component non-
linear Schrödinger equation

i~αt + ~αxx + 2mx ~α = 0,

−i~α†
t + ~α†

xx + 2mx ~α
† = 0,

(

my + ~α ~α†
)

x
= 0,

(1)

where ~α(x, y, t) =

(

α1(x, y, t)
α2(x, y, t)

)

and ~α† is the complex conjugate of ~α.

Besides that, m(x, y, t) is a real scalar function related to the probability
density ~α ~α† through the third of the equations (1).

The reduction x = y of (1) yields the Manakov system [13], which is
often also called vector NLS system [14]. Integrability properties of this
Manakov system and its Painlevé property are described in references [15],
[16]. Different generalizations of this Manakov system and their solutions
have been recently studied in [10], [11].

Furthermore (1) is the multi-component generalization of a system that
has been discussed by several authors [17], [18], [19] and whose lump solutions
have been studied in [9], [20].

2.1. Painlevé Property

It is easy to check whether or not (1) has the Painlevé property. The
existence of such property requires that all the solutions of (1) are single-
valued in the initial conditions. This requirement means that the fields should
be expanded as

α1(x, y, t) =

∞
∑

j=0

aj(x, y, t) [φ(x, y, t)]
j−1

,

α2(x, y, t) =
∞
∑

j=0

bj(x, y, t) [φ(x, y, t)]
j−1

,

m(x, y, t) =

∞
∑

j=0

cj(x, y, t) [φ(x, y, t)]
j−1

, (2)

where φ(x, y, t) = 0 is the manifold of movable singularities. Substitution of
(2) in (1) provides five polynomials in φ whose coefficients should be 0. It
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results in five recursion relations for the coefficients. The calculation can be
easily performed with the assistance of a symbolic package such as MAPLE.
We omit here the details for the benefit of the reader, but the result is that
the recursion relations present four resonances in j = 1, 3, 4, 6, which are
identically satisfied. Therefore we can conclude that (1) has the Painlevé
property (PP).

The relation between integrability and Painlevé property is an extremely
interesting question. The existence of a Lax pair is usually considered as
the best proof of the integrability of a nonlinear PDE. The problem of the
identification of the Lax pair for a PDE which has the PP is a non-trivial
problem which can be approached through the singular manifold method
(SMM) [21]. The SMM is based on the truncation of equation (2) at the
constant level. It means that this truncation can be considered as an auto-
Bäcklund transformation of the form:

α̂1 = α1 + A1
φx

φ
, α̂

†
1 = α

†
1 + A

†
1

φx

φ
,

α̂2 = α2 + A2
φx

φ
, α̂

†
2 = α

†
2 + A

†
2

φx

φ
,

m̂ = m+
φx

φ
, (3)

where {α1, α2, m} are the seed fields and {α̂1, α̂2, m̂} the iterated ones. Be-
sides that, φ is the singular manifold for the seed solution. Truncation means
that A1, A2 and φ should obey some equations which are known as the sin-
gular manifold equations.

2.2. Singular manifold equations

Substitution of (3) in (1) yields five polynomials in φ. Each coefficient of
these polynomials should be 0. The cumbersome calculations can be handled
with MAPLE and they allow us to write the seed fields in terms of the singular
manifold in the following form:

α1 = −A1

(

(A1)x
A1

+
v + ir

2

)

,

α2 = −A2

(

(A2)x
A2

+
v + ir

2

)

,

mx = −
1

4

(

vx +
v2 + r2

2
+

∫

rt dx

)

. (4)
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We have introduced for convenience the useful definitions:

v =
φxx

φx
, r =

φt

φx
, q =

φy

φx
, (5)

whose cross-derivatives trivially yield

vt = (rx + r v)x , (6a)

vy = (qx + q v)x . (6b)

Furthermore, the equations to be satisfied for A1, A2 and φ can be listed as

− i
(A1)t
A1

=
(A1)xx
A1

+ vx + i rx + 2mx,

− i
(A2)t
A2

=
(A2)xx
A2

+ vx + i rx + 2mx, (7)

and

q = A1A
†
1 + A2A

†
2, (8)

∫

ry dx = −q r + i
[

(A1)x A
†
1 − A1 (A1)

†
x

]

+ i
[

(A2)xA
†
2 − A2 (A2)

†
x

]

. (9)

2.3. Lax pair

Equations (4) can be linearized through the introduction of three-complex
functions {ψ, χ, η} such that

A1 =
χ

ψ
, A2 =

ρ

ψ
, (10a)

v =
ψ†
x

ψ†
+
ψx

ψ
, r = i

(

ψ†
x

ψ†
−
ψx

ψ

)

. (10b)

Spatial part of the Lax pair

Substitution of the definitions (10a)-(10b) in equation (8) yields for q the
expression

q =
χχ† + ρ ρ†

ψ ψ†
, (11)

5



and substitution of (10a)-(10b) in (4) trivially results in

χx = −α1 ψ ⇒ χ†
x = −α

†
1 ψ

†, (12a)

ρx = −α2 ψ ⇒ ρ†x = −α
†
2 ψ

†. (12b)

Furthermore, from equations (9) and (6b) we have

ψ†
y

ψ†
+
ψy

ψ
+ α1

χ†

ψ†
− α

†
1

χ

ψ
+ α2

ρ†

ψ†
− α

†
2

ρ

ψ
= 0, (13)

i

[

ψ†
y

ψ†
−
ψy

ψ
+ α1

χ†

ψ†
+ α

†
1

χ

ψ
+ α2

ρ†

ψ†
+ α

†
2

ρ

ψ

]

= 0, (14)

which can be combined in order to obtain

ψy = −α
†
1 χ− α

†
2 ρ, ψ†

y = −α1 χ
† − α2 ρ

†. (15)

Therefore, the spatial part of the Lax pair is




∂y ψ

∂x χ

∂x ρ



 =





0 −α
†
1 −α

†
2

−α1 0 0
−α2 0 0









ψ

χ

ρ



 , (16)

and its complex conjugate.

Temporal part of the Lax pair

Substitution of (10a)-(10b) in (4) and (6a) yields

ψ
†
t

ψ†
+
ψt

ψ
− i

(

ψ†
xx

ψ†
−
ψxx

ψ

)

= 0, (17)

ψ
†
t

ψ†
−
ψt

ψ
− i

(

ψ†
xx

ψ†
+
ψxx

ψ
− 4mx

)

= 0, (18)

which can be combined as

ψt = −i ψxx − 2 imx ψ, ψ
†
t = i ψ†

xx + 2 imx ψ
†. (19)

From (7), we have

χt = −i (α1)x ψ + i α1 ψx, χ
†
t = i (α1)

†
x ψ

† − i (α1)
†
ψ†
x, (20a)

ρt = −i (α2)x ψ + i α2 ψx, ρ
†
t = i (α2)

†
x ψ

† − i (α2)
†
ψ†
x. (20b)
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It allows us to write the temporal part of the Lax pair as





∂t ψ

∂t χ

∂t ρ



 = i





−∂xx − 2mx 0 0
−∂x α1 + α1 ∂x 0 0
−∂xα2 + α2 ∂x 0 0









ψ

χ

ρ



 , (21)

and its complex conjugate.
Equations (16) and (21) (and their complex conjugates) are a three-com-

ponent Lax pair for (1). The relation between the singular manifold φ and
the eigenfunctions {ψ, χ, η} can be easily established by combining (5), (10b),
and (11) as the exact derivative:

dφ = ψ ψ† dx+
(

χχ† + ρ ρ†
)

dy + i
(

ψ ψ†
x − ψ† ψx

)

dt. (22)

3. Classical Lie symmetries

In this section, the Lie symmetry analysis is performed for the Lax pair
given in equations (16) and (21) by applying the classical Lie method [22],
[23].

Let us consider a one-parameter Lie group of infinitesimal transformations
of the independent variables {x, y, t}, the three fields {α1, α2, m} and the
eigenfunctions {ψ, χ, ρ}, given by:

x̃ = x+ ε ξ1(x, y, t, α1, α2, m, ψ, χ, ρ) +O(ε2),

ỹ = y + ε ξ2(x, y, t, α1, α2, m, ψ, χ, ρ) +O(ε2),

t̃ = t+ ε ξ3(x, y, t, α1, α2, m, ψ, χ, ρ) +O(ε2),

α̃1 = α1 + ε η1(x, y, t, α1, α2, m, ψ, χ, ρ) +O(ε2),

α̃2 = α2 + ε η2(x, y, t, α1, α2, m, ψ, χ, ρ) +O(ε2),

m̃ = m+ ε η3(x, y, t, α1, α2, m, ψ, χ, ρ) +O(ε2),

ψ̃ = ψ + ε φ1(x, y, t, α1, α2, m, ψ, χ, ρ) +O(ε2),

χ̃ = χ+ ε φ2(x, y, t, α1, α2, m, ψ, χ, ρ) +O(ε2),

ρ̃ = ρ+ ε φ3(x, y, t, α1, α2, m, ψ, χ, ρ) +O(ε2),

(23)

where ε is the group parameter and ξi, ηi, φi, i = 1, ..., 3 are the components
of the related vector field

X = ξ1
∂

∂x
+ξ2

∂

∂y
+ξ3

∂

∂t
+η1

∂

∂α1
+η2

∂

∂α2
+η3

∂

∂m
+φ1

∂

∂ψ
+φ2

∂

∂χ
+φ3

∂

∂ρ
. (24)

7



This infinitesimal transformation induces a well known one in the deriva-
tives of the fields [1], [3], and it must leave invariant the set of solutions of
(16)-(21). This procedure yields an overdetermined system of PDEs for the
infinitesimals called the determining equations, whose solutions (the calcula-
tions are routinary and have been handle with MAPLE) provide the desired
Lie symmetries. The result is:

ξ1 = 4 K̇1(t) x+ 2K2(t),

ξ2 = 2C1(y),

ξ3 = 8K1(t),

η1 =
[

i
(

K̈1(t) x
2 + K̇2(t) x+K3(t) + C2(y)

)

− 2 K̇1(t)− C ′
1(y)

]

α1,

+ [C4(y) + i C5(y)]α2,

η2 =
[

i
(

K̈1(t) x
2 + K̇2(t) x+K3(t) + C3(y)

)

− 2 K̇1(t)− C ′
1(y)

]

α2,

− [C4(y)− i C5(y)]α1,

η3 = − 4 K̇1(t)m+
1

6

...
K1(t) x

3 +
1

4
K̈2(t) x

2 +
1

2
K̇3(t) x+ δ(y, t),

(25a)
and

φ1 =
[

−i
(

K̈1(t) x
2 + K̇2(t) x+K3(t)

)

− 2 K̇1(t) + λ
]

ψ,

φ2 = [i C2(y)− C ′
1(y) + λ]χ+ [C4(y) + i C5(y)]ρ,

φ3 = [i C3(y)− C ′
1(y) + λ] ρ− [C4(y)− i C5(y)]χ,

(25b)

where we have used the convection ˙= d
dt

and ′ = d
dy
.

These Lie symmetries depend on a set of nine arbitrary functions and one
arbitrary constant, listed as,

• Three arbitrary real functions Kj(t), j = 1...3, which depend exclu-
sively on the temporal coordinate t.

• Five arbitrary real functions Cj(y), j = 1...5, which depend on the
coordinate y.

• An arbitrary real function δ(y, t).

• Furthermore, these symmetries include an arbitrary constant λ. We
shall prove later that this constant which will play the role of the spec-
tral parameter in the (1 + 1)-reductions of the Lax pair.
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Lie symmetries for the Lax pair (16)-(21) generalize, extend and include all
the Lie symmetries obtained for the multi-component NLS (1). Symme-
tries given in (25a) can be analogously derived by implementing a similar
procedure over the starting system of PDEs (1), whereas symmetries (25b)
correspond to the transformation of the eigenfunctions of the Lax pair. It
is also worthwhile to remark that the only additional symmetry that corre-
sponds strictly to the Lax pair itself is the one associated with the arbitrary
constant λ.

4. Commutation relations

In this section, we will analyze the commutation relations among the
infinitesimal generators associated to the Lie symmetries for the Lax pair
obtained in the previous section.

The infinitesimal generators associated to each symmetry are listed below.

• We shall denote as X
[j]
{Kj(t)}

, j = 1...3, the generators associated to the

three arbitrary functions of t.

• Let Y
[l]
{Cl(y)}

, l = 1...5, be the generators associated to the arbitrary func-
tions of y.

• The generators associated to the arbitrary function δ(y, t) is denoted
as Z{δ(y,t)}.

• Finally, we have defined as Λ{λ} the infinitesimal generator related to
the arbitrary constant λ.

With this notation, we have the following ten generators:
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X
[1]
{K1(t)}

=
1

6
x3

...
K1

∂

∂m
+ i x2 K̈1

(

α1
∂

∂α1
+ α2

∂

∂α2
− ψ

∂

∂ψ

)

+ 2K̇1

(

2 x
∂

∂x
− α1

∂

∂α1

− α2
∂

∂α2

− 2m
∂

∂m
− ψ

∂

∂ψ

)

+ 8K1
∂

∂t
,

X
[2]
{K2(t)}

=
1

4
x2 K̈2

∂

∂m
+ i x K̇2

(

α1
∂

∂α1
+ α2

∂

∂α2
− ψ

∂

∂ψ

)

+ 2K2
∂

∂x
,

X
[3]
{K3(t)}

=
1

2
x K̇3

∂

∂m
+ iK3

(

α1
∂

∂α1
+ α2

∂

∂α2
− ψ

∂

∂ψ

)

,

Y
[1]
{C1(y)}

= −C ′
1

(

α1
∂

∂α1

+ α2
∂

∂α2

+ χ
∂

∂χ
+ ρ

∂

∂ρ

)

+ 2C1
∂

∂y
,

Y
[2]
{C2(y)}

= i C2

(

α1
∂

∂α1
+ χ

∂

∂χ

)

,

Y
[3]
{C3(y)}

= i C3

(

α2
∂

∂α2
+ ρ

∂

∂ρ

)

,

Y
[4]
{C4(y)}

= C4

(

α2
∂

∂α1

− α1
∂

∂α2

+ ρ
∂

∂χ
− χ

∂

∂ρ

)

,

Y
[5]
{C5(y)}

= i C5

(

α2
∂

∂α1
+ α1

∂

∂α2
+ ρ

∂

∂χ
+ χ

∂

∂ρ

)

,

Z{δ(y,t)} = δ
∂

∂m
,

Λ{λ} =

(

ψ
∂

∂ψ
+ χ

∂

∂χ
+ ρ

∂

∂ρ

)

.

(26)
According to [1], symmetry generators of PDEs can be classified in two

classes, the ones associated to the arbitrary constants and the ones associated
to the arbitrary functions. While those of the first type will give rise to a
Lie algebra, the infinitesimal generators that depend on arbitrary functions
do not, since we are dealing with an infinite-dimensional basis of genera-
tors. Nonetheless, it can be proved that the commutator of two symmetry
generators is also a generator of a symmetry.

Commutations relations among these operators may be performed. The
convention used is that each {j, l}-element of the table corresponds to the

operation
[

X
[j]
{κj}

,X
[l]
{κl}

]

, where X
[j]
{κj}

is the generator associated to a function

κj of its characteristic independent variables. The results are presented in
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two different tables for greater usability for the reader, but they should not
be interpreted separately:

X
[1]
{K1}

X
[2]
{K2}

X
[3]
{K3}

Z{δ}

X
[1]
{H1}

X
[1]

{8H1K̇1−8K1Ḣ1}
X

[2]

{8H1K̇2−4K2Ḣ1}
X

[3]

{8H1K̇3}
Z{8H1∂t(δ)+4δḢ1}

X
[2]
{H2}

−X
[2]

{8K1Ḣ2−4H2K̇1}
X

[3]

{2H2K̇2−2K2Ḣ2}
Z{H2K̇3}

0

X
[3]
{H3}

−X
[3]

{8K1Ḣ3}
−Z{K2Ḣ3}

0 0

Z{γ} −Z{8K1∂t(γ)+4γK̇1}
0 0 0

Z{δ} Y
[1]
{C1}

Y
[2]
{C2}

Y
[3]
{C3}

Y
[4]
{C4}

Y
[5]
{C5}

Z{γ} 0 −Z{2C1∂y(γ)} 0 0 0 0

Y
[1]
{J1}

Z{2 J1∂y(δ)} Y
[1]
{2J1 C′

1−2C1 J
′

1}
Y

[2]
{2J1C′

2}
Y

[3]
{2J1C′

3}
Y

[4]
{2J1C′

4}
Y

[5]
{2J1C′

5}

Y
[2]
{J2}

0 −Y
[2]
{2C1J

′

2}
0 0 −Y

[5]
{J2 C4}

Y
[4]
{J2C5}

Y
[3]
{J3}

0 −Y
[3]

{2C1J
′

3}
0 0 Y

[5]
{J3C4}

−Y
[4]
{J3 C5}

Y
[4]
{J4}

0 −Y
[4]
{2C1J

′

4}
Y

[5]
{C2 J4}

−Y
[5]
{C3 J4}

0 −Y
[2]
{2 J4C5}

+ Y
[3]
{2 J4C5}

Y
[5]
{J5}

0 −Y
[5]
{2C1J

′

5}
−Y

[4]
{C2 J5}

Y
[4]
{C3 J5}

Y
[2]
{2C4J5}

− Y
[3]
{2C4J5}

0

Notice that the generator Λ{λ} = (ψ ∂ψ + χ ∂χ + ρ ∂ρ) commutes with all

other generators. Besides that,
[

X
[j]
{Kj(t)}

, Y
[l]
{Cl(y)}

]

= 0 for every value of

j = 1...3, l = 1...5. Indeed, it may be observed that every commutator of two
infinitesimal generators provides a non-trivial result, due to the presence of
arbitrary functions [3].

We should remark that, in general, these infinitesimal generators do not
form a Lie algebra, but it is possible to construct a finite-dimensional Lie
algebra by selecting special values for the arbitrary functions. Some relevant
works about this topic have been developed in [24], [25], where Kac-Moody
type algebras have been obtained through a polynomial dependence for the
arbitrary functions.

5. Similarity reductions

Similarity reductions may be achieved by solving the characteristic system

dx

ξ1
=
dy

ξ2
=
dt

ξ3
=
dα1

η1
=
dα2

η2
=
dm

η3
=
dψ

φ1

=
dχ

φ2

=
dρ

φ3

. (27)
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In the following, we shall summarize the notation used for the reduced
variables, reduced fields and reduced eigenfunctions:







x, y, t→ p, q,

α1(x, y, t) → F (p, q), α2(x, y, t) → H(p, q), m(x, y, t) → N(p, q),
ψ(x, y, t) → Φ(p, q), χ(x, y, t) → Σ(p, q), ρ(x, y, t) → Ω(p, q).

(28)
The symmetries that will yield non-trivial reductions are those related to

the arbitrary functionsK1(t),K2(t) and C1(y), present in the transformations
of the independent variables. The rest of the symmetries provide trivial
reductions. Several reductions may emerge for different values of K1, K2, C1,
raising three independent reductions.

We will introduce the following shorthand notation, which will be very
useful for the next calculations:

I0(t) =
1

4

∫

K2(t)

K1(t)
3
2

dt, I1(t) =
1

4

∫

K2(t)
2

K1(t)2
dt, I2(t) =

1

512

∫

K2(t)
3

K1(t)
5
2

dt.

(29)

5.1. K1(t) 6= 0, K2(t) 6= 0, C1(y) 6= 0

By solving the characteristic system (27), the following results have been
obtained

• Reduced variables

p =
x

K1(t)
1
2

− I0(t), q = 4

∫

dy

C1(y)
−

∫

dt

K1(t)
. (30)

• Reduced fields

α1(x, y, t) =
2F (p, q)

K1(t)
1
4 C1(y)

1
2

e

{

i
8

[

K̇1(t)
K1(t)

x2+
K2(t)
K1(t)

x−I1(t)
]}

,

α2(x, y, t) =
2H(p, q)

K1(t)
1
4 C1(y)

1
2

e

{

i
8

[

K̇1(t)

K1(t)
x2+

K2(t)

K1(t)
x−I1(t)

]}

,

m(x, y, t) =
x3

24K1(t)
1
2

[

K1(t)
1
2

]

tt
+

x2

32K1(t)
1
2

[

K2(t)

K1(t)
1
2

]

t

−
x

32
İ1(t) +

N(p, q) + I2(t)

K1(t)
1
2

,

(31)

12



where the subscript (·)t denotes the derivative with respect to the co-
ordinate t.

• Reduced eigenfunctions

ψ(x, y, t) =
Φ(p, q)

2K1(t)
1
4

e

{

− i
8

[

K̇1(t)
K1(t)

x2+
K2(t)
K1(t)

x−I1(t)
]

+λ
8

∫

dt
K1(t)

}

,

χ(x, y, t) =
Σ(p, q)

C1(y)
1
2

e

{

λ
8

∫

dt
K1(t)

}

,

ρ(x, y, t) =
Ω(p, q)

C1(y)
1
2

e

{

λ
8

∫

dt
K1(t)

}

.

(32)

• Reduced spectral problem

By substituting the reductions in the (2 + 1)-Lax pair (16)-(21) we
obtain the following (1 + 1)-Lax pair:

Φpp +

(

2Np −
i

8
λ

)

Φ− i F †Σ− iH†Ω = 0,

Σp + F Φ = 0, (33)

Ωp +H Φ = 0,

Φq + F †Σ +H†Ω = 0,

Σq + i (F Φp − Fp Φ)−
λ

8
Σ = 0, (34)

Ωq + i (H Φp −HpΦ)−
λ

8
Ω = 0.

• Reduced Equations

The compatibility condition between (33)-(34) will provide the reduced
equations (and its complex conjugate)

iFq − Fpp − 2FNp = 0,

iHq −Hpp − 2HNp = 0,
(

Nq + FF † +HH†
)

p
= 0,

(35)

which prove to be a nonlocal multi-component NLS Equation in 1 + 1
dimensions, expressed for the complex conjugate fields {F † , H†} with

13



density of probability Nq. This reduction corresponds to the Manakov
system [13], [14].

We may remark that the same reductions for the Lax pair and consequently,
for the equations, will be obtained by performing the similarity reductions
for the case with K1(t) 6= 0, C1(y) 6= 0, K2(t) = 0, although the reductions
for the independent variables, fields and eigenfunctions are different.

5.2. K1(t) 6= 0, K2(t) 6= 0, C1(y) = 0

Integration of (27) provides the following results

• Reduced variables

p =
x

K1(t)
1
2

− I0(t), q = y. (36)

• Reduced fields

α1(x, y, t) =
F (p, q)

K1(t)
1
4

e

{

i
8

[

K̇1(t)
K1(t)

x2+
K2(t)
K1(t)

x−I1(t)
]}

,

α2(x, y, t) =
H(p, q)

K1(t)
1
4

e

{

i
8

[

K̇1(t)
K1(t)

x2+
K2(t)
K1(t)

x−I1(t)
]}

,

m(x, y, t) =
x3

24K1(t)
1
2

[

K1(t)
1
2

]

tt
+

x2

32K1(t)
1
2

[

K2(t)

K1(t)
1
2

]

t

−
x

32
İ1(t) +

N(p, q) + I2(t)

K1(t)
1
2

.

(37)

• Reduced eigenfunctions

ψ(x, y, t) =
Φ(p, q)

K1(t)
1
4

e

{

− i
8

[

K̇1(t)
K1(t)

x2+
K2(t)
K1(t)

x−I1(t)
]

+λ
8

∫

dt
K1(t)

}

,

χ(x, y, t) = Σ(p, q) e

{

λ
8

∫

dt
K1(t)

}

,

ρ(x, y, t) = Ω(p, q) e

{

λ
8

∫

dt
K1(t)

}

.

(38)
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• Reduced spectral problem

Φpp +

(

2Np −
i

8
λ

)

Φ = 0,

Σp + F Φ = 0, (39)

Ωp +H Φ = 0,

Φq + F †Σ+H†Ω = 0.

λΣ− 8 i (F Φp − FpΦ) = 0, (40)

λΩ− 8 i (H Φp −HpΦ) = 0.

The previous system of PDEs can be expressed equivalently to the
following scalar Lax pair in 1 + 1 dimensions

Φpp +

(

2Np −
i

8
λ

)

Φ = 0,

λΦq − 8 i
[(

F † Fp +H†Hp

)

Φ +Nq Φp
]

= 0.

(41)

• Reduced Equations

The compatibility condition between (41) yield the reduced equations
(and its complex conjugate)

Fpp + 2FNp = 0,

Hpp + 2HNp = 0,
(

Nq + FF † +HH†
)

p
= 0.

(42)

5.3. K2(t) 6= 0, C1(y) 6= 0, K1(t) = 0

The following reductions arise from the integration of (27),

• Reduced variables

p =
x

K2(t)
−

∫

dy

C1(y)
, q =

∫

dt

K2(t)2
. (43)
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• Reduced fields

α1(x, y, t) =
F (p, q)

K2(t)
1
2 C1(y)

1
2

e

{

i
4

[

K̇2(t)
K2(t)

x2+2 p−q
]}

,

α2(x, y, t) =
H(p, q)

K2(t)
1
2 C1(y)

1
2

e

{

i
4

[

K̇2(t)

K2(t)
x2+2 p−q

]}

,

m(x, y, t) =
x3

24

K̈2(t)

K2(t)
+
N(p, q)

K2(t)
.

(44)

• Reduced eigenfunctions

ψ(x, y, t) =
Φ(p, q)

K2(t)
1
2

e

{

− i
4

[

K̇2(t)
K2(t)

x2− q
]

+λ
2

∫

dy

C1(y)

}

,

χ(x, y, t) =
Σ(p, q)

C1(y)
1
2

e

{

λ
2

∫

dy

C1(y)
+ i

p

2

}

,

ρ(x, y, t) =
Ω(p, q)

C1(y)
1
2

e

{

λ
2

∫ dy

C1(y)
+ i

p

2

}

.

(45)

• Reduced spectral problem

Φp −
(

F †Σ+H†Ω
)

−
λ

2
Φ = 0,

Σp + F Φ+
i

2
Σ = 0, (46)

Ωp +H Φ+
i

2
Ω = 0,

Φq +

(

iH†
p +

i λ+ 1

2
H†

)

Ω+

(

i F †
p +

i λ+ 1

2
F †

)

Σ

−i

(

FF † +HH† − 2Np −
λ2 + 1

4

)

Φ = 0,

Σq −

(

i λ+ 1

2
F − i Fp

)

Φ− i FF †Σ− i FH†Ω = 0, (47)

Ωq −

(

i λ+ 1

2
H − iHp

)

Φ− iHF †Σ− iHH†Ω = 0.

• Reduced Equations
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The compatibility condition between (46)-(47) will provide the follow-
ing system of PDEs

i Fq + (Fp + i F )
p
+ 2FNp = 0,

i Hq + (Hp + iH)
p
+ 2HNp = 0,

(

Np − FF † −HH†
)

p
= 0.

(48)

6. Conclusions

In this paper a multi-component Nonlinear Schrödinger Equation in 2+1
dimensions has been presented. This system constitutes a generalization of
the Manakov system to higher dimensions. The Painlevé test has been proved
to be a powerful technique to identify the integrability of this model. Fur-
thermore, the SMM has enabled us to derive a non-trivial three-component
Lax pair for this system.

We have determined the classical Lie symmetries for a multi-component
Nonlinear Schrödinger equation in 2+1 dimensions and its three-component
Lax pair. This procedure allows us to get the infinitesimals related to the
independent variables and fields, along with those associated to the eigen-
functions. The resulting symmetries include nine arbitrary functions of the
independent variables and a single arbitrary constant, which plays the role
of the spectral parameter when the spectral problem is reduced to 1 + 1
dimensions.

The commutation relations among the generators associated to each sym-
metry have been widely analyzed. Although the set of symmetries does not
form a Lie algebra (due to the presence of arbitrary functions), these rela-
tions are consistent and closed. Eventually, we could define the Lie algebra
associated to particular selections for the arbitrary functions.

Three non-trivial reductions to 1 + 1 dimensions have been derived. The
reduced equations and the reduced spectral problem have been simultane-
ously obtained. It is important to notice that the spectral parameter arises
naturally in the process of constructing the reductions, due to the symmetry
procedure itself.

Acknowledgements

This research has been supported by MINECO (Grant MAT2016-75955)
and Junta de Castilla y León (Grant SA045U16). P. Albares also acknowl-

17



edges a predoctoral grant supported by Junta de Castilla y León. We wish
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