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Abstract

In this paper, a new measurement to compare two large-scale graphs based on the theory of quantum

probability is proposed. An explicit form for the spectral distribution of the corresponding adjacency

matrix of a graph is established. Our proposed distance between two graphs is defined as the

distance between the corresponding moment matrices of their spectral distributions. It is shown

that the spectral distributions of their adjacency matrices in a vector state includes information not

only about their eigenvalues, but also about the corresponding eigenvectors. Moreover, we prove

that such distance is graph invariant and sub-structure invariant. Examples with various graphs

are given, and distances between graphs with few vertices are checked. Computational results for

real large-scale networks show that its accuracy is better than any existing methods and time cost

is extensively cheap.

Keywords: comparing graphs, large-scale datasets, quantum probability, moment matrix

1. Introduction

Graph is one of the most common representations of complex data and plays an crucial role in

various research areas and many practical applications. Over the past several decades, enormous

breakthroughs have been made while many fundamental problems about graphs are remaining to be

solved. Comparing graphs is one of the most important problems with a very long history[45]. In

practice, the similarity measure of graphs (or equivalently dissimilairty) is widely applied in social

science, biology, chemistry, and many other fields. For instance, the similarity measure of graphs

can be used to classify ego networks[38], distinguish between neurological disorders[8], compare

diseases networks [9], identify physical designs of circuits[39], and discover molecules with similar
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properties[31, 3, 25]. In order to measure similarity between graphs effectively, several definitions

of distance or similarity have been proposed[26, 14, 13, 16, 15]. For example, graph edit distances

are the minimum cost for transforming one network to another by the distortion of nodes and

edges[21]. These definitions only pay attention to the similarities of the nodes and edges but lacks the

information of topological structures of the networks. For the purpose of addressing this limitation,

frequency subgraph mining algorithms[41], graph kernels[36], and methods based on moments[32]

have been proposed. Moreover, various distance between spectrums are used to measure similarity

of graphs[23, 43, 28, 12, 30, 1, 44]. However, practically it is almost impossible to find the spectrum

of a large-scale graph. Recently many different approaches are proposed for efficient algorithms

[35, 2, 37]. However, these methods are not scalable to large-scale graphs containing millions of

edges, which are common in today’s applications. As a result, effective and scalable methods for

large-scale graphs comparison are urgently needed.

In this paper, we propose a novel similarity measure for comparing large-scale graphs. We

consider the adjacency matrix of the graph as a real random variable on the algebraic probability

space with the proposed state. We show that the spectral distribution of a Hermitian matrix in a

given state can be expressed as a unique discrete probability measure. Then we propose an efficient

and scalable method to measure the similarity between large-scale graphs based on the spectral

distribution of the corresponding adjacency matrix in the given state. Specifically, we compute the

corresponding positive semidefinite moment matrix whose entries consist of the first few number

of moments of the spectrum distribution. Our proposed distance between graphs is obtained by

a distance between the moment matrices. We show that this distance is graph invariant and sub-

structure invariant. Moreover, it is scalable to extremely massive graphs and highly parallelable.

Numerical simulations demonstrate that our proposed distance not only has better performance

over the competing methods, but also outperforms the state-of-art method in collaboration network

classification.

2. Background and Preliminary

Denote N (resp. N+) the set of nonnegative (resp. positive) integer numbers. Let Mm×n :=

Mm×n(C) be a set of all m× n matrices with entries in the field C of complex numbers. We simply

denote as Mn := Mn×n. We equip on Mm×n with the inner product defined as

〈A,B〉 := tr(A∗B) =

m,n∑

i,j=1

aijbij ,

for A = [aij ], B = [bij ] ∈Mm×n, where A∗ = ĀT is a complex conjugate transpose of A. The inner

product naturally gives us an `2 norm, known as the Frobenius norm and Hilbert-Schmidt norm,

2



defined by

‖A‖2 = [tr(A∗A)]1/2.

The operator norm of A ∈Mn is defined as

‖A‖ := max
‖x‖2=1

‖Ax‖2.

Note that

‖A‖2 =

[
n∑

i=1

σ2
i (A)

]1/2
and ‖A‖ = σ1(A),

where σ1(A) ≥ · · · ≥ σn(A) are (non-negative) singular values of A in decreasing order.

2.1. Graph

Let V be the set of vertices, and let {x, y} denote the edge connecting two points x, y ∈ V . We

say that two vertices x, y ∈ V are adjacent if {x, y} ∈ E, denoted by x ∼ y. A graph G = (V,E) is

called finite if V is a finite set. Otherwise, it is called infinite. In general E may contain loops which

means that x = y. In this paper we consider a finite undirected graph with no loops. The degree of

a vertex x ∈ V is defined by deg(x) =
∣∣{y ∈ V : y ∼ x}

∣∣. Two graphs G = (V,E) and G′ = (V ′, E′)

are isomorphic if there is a bijection f : V −→ V ′ such that u ∼ v ⇐⇒ f(u) ∼ f(v), denoted by

G ∼= G′. For m ∈ N, a finite sequence of vertices x0, x1, . . . , xm ∈ V is called a walk of length m if

x0 ∼ x1 ∼ · · · ∼ xm, where some of x0, x1, . . . , xm may coincide. A graph G = (V,E) is connected if

every pair of distinct vertices x, y ∈ V (x 6= y) is connected by a walk. If there is a walk connecting

two distinct vertices x, y ∈ V , the graph distance between x and y is the minimum length of a walk

connecting x and y, denoted by ∂(x, y). For graphs Gi = (Vi, Ei), i = 1, 2 with V1 ∩ V2 = ∅, the

direct sum of G1 and G2 is defined as G = (V1 ∪ V2, E1 ∪ E2), denoted by G = G1 t G2. Without

loss of generality we assume that V = {1, 2, . . . , n}. The adjacency matrix of a graph G = (V,E) is

a n × n matrix A ∈ {0, 1}n×n where Aij = 1 if and only if {i, j} ∈ E for all i, j ∈ V . Any graph

G can be represented by an adjacency matrix. Every permutation π : {1, 2, . . . , n} −→ {1, 2, . . . , n}
is associated with a corresponding permutation matrix P . The matrix operator P left multiplied to

matrix A rearranges the rows according to π which right multiplication with P rearranges columns

of the matrix A. Given an adjacency matrix A, graphs corresponding to adjacency matrix A and

PAP> are isomorphic for any permutation matrix P , i.e., they represent the same graph structure. A

property of graph is called graph invariant if the property does not change under the transformation

of reordering of vertices. Note that the adjacency matrix of a graph includes the full information

about a graph. For x, y ∈ V and m ∈ N let Wm(x, y) denote the number of walks of length m

connecting x and y. Remark that W0(x, y) = 0 if x 6= y and W0(x, y) = 1 if x = y.
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Figure 1: Cospectral graphs: C4 ∪K1 and S5

Theorem 2.1. Let G = (V,E) be a graph and A the adjacency matrix. Then we have

(Am)ij = Wm(i, j)

for all i, j ∈ V and m ∈ N.

Let A (G) be the unital algebra generated by A (the algebra generated by A and the identity

matrix I = A0 ), i.e.,

A (G) = {f(A) : f ∈ C[x]},

where C[x] is the set of all polynomials with complex coefficients. Moreover, the involution is defined

by (cAm)∗ = c̄Am for c ∈ C. Then A (G) becomes a unital ∗-algebra. We call A (G) adjacency

algebra of G.

Lemma 2.2. Let G = (V,E) be a graph and A the adjacency matrix. If there is a pair of vertices

x, y ∈ V such that ∂(x, y) = d ≥ 0, then I, A, . . . , Ad are linearly independent and dim A (G) ≥ d+1.

For a finite connected graph G = (V,E) the diameter is defined by

diam(G) = max {∂(x, y) : x, y ∈ V }.

Proposition 2.3. For a connected graph G = (V,E) we have

dim A (G) ≥ diam(G) + 1.

Proposition 2.4. For a finite graph G let s(G) denote the number of distinct eigenvalue of G. Then

we have s(G) = dim A (G).

Corollary 2.5. For a connected finite graph G we have

s(G) = dimA (G) ≥ diam(G) + 1.

It is clear that if G ∼= G′ then the corresponding eigenvalues of the adjacency matrices are

identical. However, in general the converse is not true.

Cospectral graphs, also called isospectral graphs, are graphs that share the same graph spectrum.

The smallest pair of cospectral graphs is the graph union C4 ∪ K1 and star graph S5, illustrated
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in Figure 1. This is known that it is a unique pair of cospectral graphs among 34 non-isomorphic

graphs on 5 vertices. Both have a common characteristic polynomial, x3(x − 2)(x + 2). For more

examples for small graphs, see [42] and for more information about cospectral graphs see [7, 24, 20].

There are many attempts to distinguish cospectral graphs by means of another matrices.

2.2. Quantum Probability

For proof of each theorem and proposition, see [33] and references therein. To measure distance

between two graphs we propose to compare the spectrums of their adjacency matrices. Since the

computational cost of finding all eigenvalues for large-scale graphs is very expensive, an alternative

approach is brought by the idea of spectral distribution based on quantum probability theory.

Definition 2.6. Let A be a unital ∗-algebra over the complex number field C with the multiplication

unit 1A . A function ϕ : A −→ C is called a state on A if

(i) ϕ is linear; (ii) ϕ(a∗a) ≥ 0; (iii) ϕ(1A ) = 1.

The pair (A , ϕ) is called an algebraic probability space.

Proposition 2.7. A state ϕ on a unital ∗-algebra A is a ∗-map, i.e., ϕ(a∗) = ϕ(a).

Definition 2.8. Let (A , ϕ) be an algebraic probability space. An element a ∈ A is called an

algebraic random variable or a random variable for short. A random variable a ∈ A is called real

if a = a∗.

For a random variable a ∈ A the quantity of the form:

ϕ(aε1aε2 · · · aεm), ε1, ε2, . . . , εm ∈ {1, ∗},

is called a mixed moment of order m. Statistical properties of an algebraic random variable are

determined by its mixed moments. For a real random variable a in A the mixed moments are

reduced to the moment sequence:

ϕ(am), m = 0, 1, 2, . . . ,

where ϕ(am) is called the m-th moment of a. By definition ϕ(a0) = 1.

For a real random variable a = a∗, a moment matrix with degree n is defined as

Mn :=




ϕ(a0) ϕ(a1) · · · ϕ(an)

ϕ(a1) ϕ(a2) · · · ϕ(an+1)
...

...
. . .

...

ϕ(an) ϕ(an+1) · · · ϕ(a2n)



. (2.1)
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Definition 2.9. Two algebraic random variables a in (A , ϕ) and b in (B, ψ) are moment equivalent,

denoted by a $ b, if their mixed moments coincide, i.e., if

ϕ(aε1aε2 · · · aεm) = ψ(bε1bε2 · · · bεm)

for all ε1, ε2, . . . , εm ∈ {1, ∗} and m ∈ N.

Remark that for real random variables a and b it holds that a $ b if and only if ϕ(am) = ψ(bm)

for all m ∈ N0.

Let B(R) denote the set of all probability measures having finite moments of all orders.

Theorem 2.10. Let (A , ϕ) be an algebraic probability space. For a real random variable a = a∗ ∈ A

there exists a probability measure µ ∈ B(R) such that

ϕ(ak) =

∫

R
xkdµ(x) for all k ∈ N0. (2.2)

Such µ is called the spectral distribution of a in ϕ.

It is noted that Mn with the usual operators is a unital ∗-algebra. Recall that a matrix ρ ∈Mn

is called a density matrix if it is positive semidefinite and tr ρ = 1.

Definition 2.11. For A = [aij ] ∈Mn, the following are states on Mn, implying that (Mn, ϕ) is an

algebraic probability space.

(1) (Normalized trace) The normalized trace is defined by

ϕtr(A) =
1

n
tr(A) =

1

n

n∑

i=1

aii.

(2) (Vector state) For a unit vector ξ ∈ Cn, we define

ϕξ(A) = 〈ξ, Aξ〉, A ∈Mn,

where 〈·, ·〉 is the usual inner product in Cn. Such a state is called a vector sate with the state

vector ξ.

(3) (Density matrix state) For each density matrix ρ ∈Mn we define

ϕρ(A) = tr(ρA), A ∈Mn.

Such a state is called a density matrix sate with the density matrix ρ.

Proposition 2.12. For any state ϕ on Mn there exists a unique density matrix ρ such that ϕ = ϕρ.
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3. Main results

This following is the well-known result.

Lemma 3.1. Let A ∈Mn have distinct eigenvalues λ1, λ2, . . . , λs and let

q(t) = (t− λ1)(t− λ2) · · · (t− λs).

Then A is diagonalizable if and only if q(A) = 0.

Theorem 3.2. Let {sk} be a real sequence and let

Hn =




s0 s1 · · · sn

s1 s2 · · · sn+1

...
...

. . .
...

sn sn+1 · · · s2n



. (3.1)

be the Hankel matrix. If det (Hn) > 0 for all n < s and det (Hn) = 0 for all n ≥ s. Then there

exists unique discrete measure, µ, with s number of point mass such that there exists unique discrete

measure, µ, with s number of point mass such that

sk =

∫

R
xkdµ for all k ∈ N.

Proof. See [4, Theorem 1.1].

A Hermitian matrix A ∈Mn can be regarded as a real random variable in the algebraic probabil-

ity space (Mn, ϕξ) with a vector state ϕξ, by Theorem 2.10 it follows that there exists the spectral

distribution of A in ϕξ such that

ϕξ(A
k) = ξ∗Akξ =

∫

R
xkdµ(x) for all k ∈ N. (3.2)

In the following theorem we provide an explicit form of such measure.

Denote the Dirac measure at λ as δλ. (i.e., δλ(S) = 1 if λ ∈ S and δλ(S) = 0 if λ /∈ S). The

support of measure, µ, is denoted by supp(µ). A measure µ is called a measure with n0 mass point

if
∣∣supp(µ)

∣∣ = n0.

Theorem 3.3. Let (Mn, ϕξ) be the algebraic probability space with a vector state ϕξ and let A ∈Mn

be a Hermitian matrix whose all eigenvalues are distinct, λ1, . . . , λn. There exists a unique probability

discrete measure µ such that

ϕξ(A
k) =

∫

R
xkdµ(x) for all k ∈ N. (3.3)
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Furthermore, the measure has an explicit form µ =
∑n
i=1 ωiδλi . Conversely, for a probability discrete

measure µ =
∑n
i=1 ωiδλi

, there exists a Hermitian matrix A ∈Mn with eigenvalues λ1, . . . , λn such

that A holds the equality (3.3).

Proof. (=⇒) Let A ∈ Cn×n be a Hermitian matrix. By Spectral Theorem, A can be diagonalized

by a unitary matrix U . That is, A = UDU∗. Put v = U∗ξ = [v1, . . . , vn]> ∈ Cn, ωi = |vi|2 for all

i = 1, . . . , n, and µ =
∑n
i ωiδλi

. Then the kth moment of A is

ϕξ(A
k) = ξ∗Akξ = v∗Dkv =

n∑

i=1

ωiλ
k
i =

∫

R
xkdµ.

Since it holds that ∫

R
dµ =

n∑

i=1

ωi =

n∑

i=1

v∗v =

n∑

i=1

ξ∗UU∗ξ = 1,

the measure µ is a probability measure.

(⇐=) Let µ =
∑n
i=1 ωiδλi

with ωi ≥ 0 and λi ∈ R for all i ∈ N, and
∑
i=1 ωi=1. Let D be the

n × n diagonal matrix whose diagonal entries are λ1, λ2, . . . , λn. Let v = [
√
ω1 . . .

√
ωn]>. Since v

and ξ both are unit vectors, there exists a unitary matrix U such that Uv = ξ. Take A = UDU∗.

Then A holds the equality (3.3).

Note that 〈ui, ξ〉 = cos θi such that θi is the angle between ui and ξ, where ui is ith column

vector of U . Since
∑
ωi = 1, it holds that

∑ | cos θi|2 = 1. So, cos θi are the direction cosines of

ξ with respect to orthonormal eigenvectors, u1, u2, . . . , un. Especially, if ξ = ui, then the spectral

distribution is µ = δλi
.

Corollary 3.4. Let (Mn, ϕtr) be the algebraic probability space with the normalized trace state ϕtr

and let A ∈ Mn be a Hermitian matrix whose all eigenvalues, λ1, . . . , λn, are distinct. An explicit

form of the unique probability discrete measure µ such that ϕtr(A
k) =

∫
R x

kdµ(x) for all k ∈ N is

µ = 1
n

∑n
i=1 δλi

.

Remark that while the spectral distribution of a Hermitian matrix A in the normalized trace

state includes only information about eigenvalues for A, the spectral distribution of A in the vector

state includes information about the corresponding eigenvectors as well as eigenvalues for A.

Now we generalize for any Hermitian matrices.

Theorem 3.5. Let (Mn, ϕξ) be the algebraic probability space with a vector state ϕξ and let A ∈Mn

be a real random variable. Let λ1, λ2, . . . , λs with respective multiplicities n1, . . . , ns, and let Λ =

λ1In1 ⊕· · ·⊕λsIns . Supposed that U = [U1 U2 · · · Us] ∈Mn is unitary matrix such that A = UΛU∗

and for each i = 1, 2, . . . , s,

Ui = [u
(i)
1 u

(i)
2 · · · u(i)ni

] ∈Mn×ni
,
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where u
(i)
1 , . . . , u

(i)
ni are the corresponding unit eigenvectors of λi. Then there uniquely exists a prob-

ability discrete measure, µ =
∑s
i=1 ωiδλi

, such that

ϕξ(A
k) =

∫

R
xkdµ(x) for all k ∈ N. (3.4)

Furthermore, ωi =
∑ni

j=1

∣∣ cos θ
(i)
j

∣∣2 where θ
(i)
j is the angle between u

(i)
j and ξ.

Proof. Note that since A is a Hermitian matrix, by Spectral Theorem, A can be diagonalized by an

unitary matrix. Let ωi =
∑ni

j=1

∣∣〈u(i)j , ξ〉
∣∣2 and µ =

∑s
i=1 ωiδλi . Then it follows that for each k ∈ N

ϕξ(A
k) = ξ∗UΛkU∗ξ = ξ∗U1λ

k
1In1U

∗
1 ξ ⊕ · · · ⊕ ξ∗UsλksInsU

∗
s ξ =

s∑

i=1

ωiλ
k
i =

∫

R
xkdµ(x).

Since it holds that

∫

R
dµ =

s∑

i=1

ωi =

s∑

i=1

ni∑

j=1

∣∣〈u(i)j , ξ〉
∣∣2 =

s∑

i=1

|U∗i ξ|2 = ξ∗UU∗ξ = 1

the measure µ is a probability measure. Since u
(i)
j for all i, j is a unit vector and ξ is also a unit

vector, it follows that

ωi =

ni∑

j=1

∣∣〈u(i)j , ξ〉
∣∣2 =

ni∑

j=1

∣∣ cos θ
(i)
j

∣∣2,

where θ
(i)
j is the angle between u

(i)
j and ξ.

(Uniqueness) (To apply Theorem 3.2, we have to show that det(Mj) is nonnegative.) For the

moment sequence {ϕξ(Ak)}k, the corresponding moment matrix Mj with degree j is defined as

Mj :=




ϕξ(A
0) ϕξ(A

1) · · · ϕξ(A
j)

ϕξ(A
1) ϕξ(A

2) · · · ϕξ(A
j+1)

...
...

. . .
...

ϕξ(A
j) ϕξ(A

j+1) · · · ϕξ(A
2j)




=




ξ∗Iξ ξ∗Aξ · · · ξ∗Ajξ

ξ∗Aξ ξ∗A2ξ · · · ξ∗Aj+1ξ
...

...
. . .

...

ξ∗Ajξ ξ∗Aj+1ξ · · · ξ∗A2jξ



.

Since for any n

Mn =
[
Iξ Aξ . . . Ajξ

]∗ [
Iξ Aξ . . . Ajξ

]
,

Mn is positive semidefinite and det(Mj) ≥ 0.

Let λ1, λ2, . . . , λs be the distinct eigenvalues of A and

q(t) = (t− λ1)(t− λ2) · · · (t− λs) =
s∑

j=1

cjt
j

9
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u1u2

ξ
λ1

λ2

θ1
θ2

Figure 2: For a symmetric matrix A ∈M2×2(R) and a unit vector ξ ∈ R2, there exists the probability discrete measure

µ = cos2 θ1δλ1
+ cos2 θ2δλ2

such that ξ>Aξ =
∫
R x

kdµ for all k ∈ N.

Since A is a Hermitian matrix, by Lemma 3.1 it follows that q(A) =
∑s
j=1 cjA

j = 0. Then it follows

that

0 = 〈ξ, q(A)ξ〉 = ξ∗
s∑

j=1

cjA
jξ =

s∑

j=1

cjϕξ(A
j).

So, it is clear that det(Mj) = 0 for j ≥ s and det(Mj) > 0 for j < s. By Theorem 3.2, there exists a

unique discrete measure with s number of point mass. Therefore, µ is a unique probability discrete

measure.

Example 3.6. Consider 2× 2 symmetric matrix A ∈M2 as

A =

[
2 1

1 2

]
=

[
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

][
3 0

0 1

][
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
.

Let ξ = [ξ1 ξ2]> be a unit vector in R2. Then by Theorem 3.3, there exists a unique probability

measure µ = ω1δλ1
+ ω2δλ2

such that

ϕξ(A
k) = ξ>Akξ =

∫

R
xkdµ(x) for all k ∈ N.

It is easy to check a closed form of the measure is µ = (1/2 + ξ1ξ2)δ3 + (1/2− ξ1ξ2)δ1. The weights

ω1, ω2 depends on ξ. Especially, when ξ = [1/
√

2 1/
√

2 ]>, the spectral distribution of A is µ = δ3.

When ξ = [−1/
√

2 1/
√

2 ]>, the spectral distribution of A is µ = δ1 (see Figure 2).

Remark that the spectral distribution includes information not only about the eigenvalues of

A, but also about the corresponding eigenvectors. Since ωi depends on ξ for all i, the spectral

10



distribution of a given Hermitian matrix A ∈Mn depends on a unit vector ξ ∈ Cn. However, since

the eigenvalues do not change, the Dirac measures δλi
do not change. The only weights ωi depends

on a unit vector ξ ∈ Cn.

Lemma 3.7. Let A be a n × n Hermitian matrix and ξ be a unit column vector in Cn. Then

ϕξ(A
k) = λk for all k ∈ N if and only if Aξ = λξ.

Proof. (⇐=) Since Aξ = λξ implies Akξ = λkξ for all k ∈ N, it follows that ξ∗Akξ = ξ∗λkξ = λk.

(=⇒) Since ϕξ(A
k) = λk, by definition ξ∗Akξ = λk. Then by Theorem 3.5 it follows that

∑s
i=1 ωiλ

k
i = λk for all k ∈ N, where λ1, . . . , λs are the distinct eigenvalues of A. By the uniqueness

of the spectral distribution, λ = λ` for some 1 ≤ ` ≤ s. The following linear system




1 1 · · · · · · 1

λ1 λ2 · · · · · · λs

λ21 λ22 · · · · · · λ2s
...

...
. . .

. . .
...

λs−11 λs−12 · · · · · · λs−1s







ω1

ω2

ω3

...

ωs




=




1

λ1`

λ2`
...

λs`




has a unique solution ωi = 0 for all i 6= ` and ω` = 1. Thus, ξ is the corresponding eigenvector of

λ`.

Lemma 3.8. If Hermitian matrices A, Ã ∈Mn hold that ϕtr(A
k) = ϕtr(Ã

k) for all k = 1, 2, . . . , n,

then A and Ã have same spectrums.

Proof. Recall that a monic polynomial is a univariate polynomial in which the leading coefficient

(the nonzero coefficient of highest degree) is equal to 1. Let λi, λ̃i be eigenvalues of A, Ã, respectively.

Let f and f̂ be degree m monic polynomial functions whose roots consist of eigenvalues of A and

Ã, respectively. Since
∑
i(λi)

k =
∑
i(λ̃i)

k, k = 1, 2, . . . , n, by Newton’s identities it follows that

the coefficients of two polynomials f and f̂ are identical. Thus, the roots of f and f̂ are identical.

Therefore, λi = λ̃i for all i.

Theorem 3.9. The following statement are equivalent.

(i) There exists a unique discrete measure µ with n0 mass points such that mk =
∫
xkdµ for all

k ∈ N;

(ii) There is a Hermitian matrix A ∈ Cm×m with n0 distinct eigenvalues and a unit vector ξ ∈ Cm

such that mk = ξ∗Akξ for all k ∈ N;

(iii) Mn ≥ 0 for all n ∈ N, and Mn > 0 if and only if n < n0.
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Proof. (i) ⇒ (ii) Let µ =
∑n0

i=1 ωiδλi with ωi ≥ 0 and λi ∈ R for all i ∈ N, and
∑n0

i=1 ωi=1

and ξ be a unit vector in Cn. Let D be the n × n diagonal matrix whose diagonal entries are

λ1, λ2, . . . , λn0
, 0, . . . , 0. Let v = [

√
ω1 · · · √ωn0

0 · · · 0]>. Since v and ξ both are unit vectors, there

exists a unitary matrix U such that Uv = ξ. Let A = UDU∗. Then it follows that mk = ξ∗Akξ for

all k ∈ N.

(ii) ⇒ (iii) Let c = [c0, c1, . . . , cn]∗ be a vector in Cn+1. Then

c∗Mnc =
n∑

i,j=0

mi+jc
∗
i cj =

n∑

i,j=0

(e∗Ai+je)c∗i cj =

∥∥∥∥
n∑

i=0

ciA
ie

∥∥∥∥
2

≥ 0.

Since c ∈ Cn+1 is arbitrary, Mn is positive semidefinite for all n ∈ N. Since A is Hermitian,

the minimal polynomial is q(x) := (x − λ1)(x − λ2) · · · (x − λn0
) were λi are all eigenvalues. So,

∑n0

i=1 qiA
i = 0, implying ‖∑n0

i=0 qiA
ie‖ = 0. Thus Mn is singular for n ≥ n0. Suppose that there

exists a polynomial r(x) :=
∑m
i rix

i with m < n0 such that r(A)e = 0. Since n0 is the degree of

minimal polynomial, r(x) is a zero function.

(iii) ⇒ (i) See [4, Theorem 1.1].

Denote the set of n × n permutation matrices as S. Denote the identity matrix as I and the

matrix whose all entries are 1 as J .

Definition 3.10. Let (Mn, ϕ) be an algebraic probability space. A state ϕ is called permutationally

invariant on Mn if

ϕ(A) = ϕ(P>AP ) for all A ∈Mn, P ∈ S. (3.5)

Lemma 3.11. A necessary and sufficient condition that ϕ is permutationally invariant is that there

exists a density matrix ρ such that ϕ(A) = tr(ρA) satisfying

ρ = pI + qJ, n(p+ q) = 1, p ≥ 0, p+ qn ≥ 0. (3.6)

Proof. Recall that for any state ϕ on Mn there exists a unique density matrix ρ such that ϕ = ϕρ.

(=⇒) If ρ = pI + qJ , then tr(ρP>AP ) = tr(P>ρPA) = tr(ρA) for all A ∈Mn, P ∈ S.

(⇐=) Let ρ = [ρij ] be a density matrix. Since tr(ρP>A>P ) = tr(ρA>) for all

A =




a11 a12 0 . . . 0

a21 a22 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 · · · 0



∈Mn,
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it holds ρ11a11 + ρ12a12 + ρ21a21 + ρ22a22 = ρiia11 + ρija12 + ρjia21 + ρjja22 for all i, j. Since

a11, a12, a21, a22 are arbitrary, ρii = ρjj for all i, j and ρij = ρk` for all i 6= j, k 6= `. So, ρ

is of the form ρ = pI + qJ . Note that the eigenvalues of pI + qJ are p and p + qn. Since

tr(pI + qJ) = 1 and pI + qJ ≥ 0, it follows that n(p+ q) = 1, p ≥ 0, and p+ qn ≥ 0.

Theorem 3.12. Let A be the adjacency matrix of a given graph G. Then the k-th moment of A in

a permutationally invariant state is a graph invariant.

Let A be the adjacency matrix of a given graph G. By Theorem 2.1, it is easy to check that

ϕtr(A
k) is the average of closed walks of length k in G. Denote the n dimensional all-ones column

vector by 1n, and denote 1n/‖1n‖ by e. From now on, the vector state with the state vector ξ = e

will be mainly used to compare two graphs. Specifically, the state ϕe : Mn → C is defined by

ϕe(A) = 〈e,Ae〉 (3.7)

for all A ∈ Mn. Then it is clear that ϕe is a state on Mn, implying that (Mn, ϕe) is an algebraic

probability space. Note that it holds

ϕe(A
k) =

1

n
〈1n, Ak1n〉 = E[Ak1n],

where E(v) =
1

n

∑n
i=1 vi is the average of entries of vector v. Since the value of (Ak)i,j is equal to

the number of walks of length k from vertex i to vertex j and Ak1n is the column vector whose i-th

entry is equal to the sum of the number of all walks of length k from the vertex i, ϕe(A
k) is the

average of the the sum of the number of all walks of length k from each vertex.

Proposition 3.13. If ϕtr(A) = ϕtr(B) and ϕe(A) = ϕe(B) for all k ∈ N, then ϕ(A) = ϕ(B) for all

permutationally invariant state ϕ.

Proof. Note that ϕtr(A) = 1
n tr(IA) and ϕe(A) = 1

n tr(JA) for all A ∈Mn.

In other words, if the averages of closed walks and all walks of length k in two graphs are idetical

for all k, then their adjacency matrices are moment equivalent in (Mn, ϕ) for any permutationally

invariant state ϕ. Especially, if two Hermitian matrices A,B ∈ Mn have distinct eigenvalues,

respectively, and ϕe(A
k) = ϕe(B

k) for all k ∈ N, then for all permutation invariant state ϕ, we have

ϕ(Ak) = ϕ(Bk) for all k ∈ N.

ϕe has more properties

Proposition 3.14. Let A ∈ Mn be an adjacency matrix of a given graph. Then the following are

true.
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(1) ϕe(A) ≤ 1
n

∑n
i=1 deg(i)k for all k ≥ 1,

(2) ϕe(A
k) ≤ 4k for all k ≥ 1 and ϕe(A

k) ≤ 2ϕe(A)4k−1 for all k ≥ 2,

(3) (ϕe(A))k ≤ ϕe(Ak) for all k ∈ N,

(4) ϕe(A
2a+b)ϕe(A

b) ≤ ϕe(A2a+2b) for all a, b ∈ N,

(5) ϕe(A
a+b)ϕe(A

a+b) ≤ ϕe(A2a)ϕe(A
2b) for all a, b ∈ N,

where 4 is the maximum degree.

Proof. For (1) see [19]. For (2) see [10, Theorem 2]. For (3)–(5) see [40, Theorem 1-3].

Since ϕe is a permutationally invariant state, the k-th moment of A in ϕe is a graph invariant.

Then it holds the following.

Theorem 3.15. Let A be the adjacency matrix of a given graph G. Then the moment matrix Mn

is a graph invariant.

Hence, we will henceforth denoteMn asMn(G) if a graph G is given. Mn(G) is an informative

representation for the given graph G. Indeed, Mn(G) includes information about the spectral

properties of the adjacent matrix of G. E[Ae] is equal to 2|E|/|V |. E[A2e] is equal to 2|E| + 2P2

where P2 is the total number of distinct simple paths of length 2 (see [38, Lemma 1]). Remark that

the variance V[Ae] = E[A2e]− (E[Ae])2.

Remark that the spectral distribution includes information not only about the eigenvalues of the

adjacency matrix A, but also about the corresponding eigenvectors. To measure similarity between

two large-scale graphs, we compare the spectral distributions of their adjacency matrices. There are

various distances and divergences between two distributions such as Kullback-Leibler divergence,

Bhattacharyya distance, etc (see [11, 29]). However, since large-scale graphs in real world have rich

spectrums, to reconstruct the spectral distributions is impossible in practice. Instead, we can use

moments of the distributions. In general, all the moments up to infinity are required to obtain a

perfect reconstruction. However, the first few moments are only sufficient if the class of functions

in which the reconstruction is sought is restricted appropriately. It has been mentioned in the

literature that the most of the information about the measure is contained in the first few moments,

and the higher-order ones providing only little additional information [18, 27, 22]. Since the moment

matrix has sufficient information about the distribution, a distance between moment matrices can

be calculated to measure a distance between two spectral distributions.
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For two graphs G and G̃, we propose new distance between G and G̃ as a distance between the

corresponding moment matrices, i.e.,

d(G, G̃) := δ(Mm(G),Mm(G̃)),

where m ∈ N is fixed and δ(·, ·) is a distance between positive definite matrices.

Theorem 3.16. For graphs G, G̃, Ĝ,

(a) (Nonnegativity) d(G, G̃) ≥ 0,

(b) (Identification) d(G, G̃) = 0 if G = G̃,

(c) (Symmetry) d(G, G̃) = d(G̃,G),

(d) (Triangle Inequality) d(G, Ĝ) ≤ d(G, G̃) + d(G̃, Ĝ).

Recall that Theorem 3.9 states that the moment matrix in (2.1) is positive semidefinite matrix

for all n ∈ N. However, the corresponding moment matrix Mn can possibly be a singular positive

semidefinite matrix, which is not a positive definite matrix. If Mm is positive definite for some m,

then it is a point on the Riemannian manifold of positive definite matrices (see [4, Theorem 1.1]).

Denote the set of all n× n positive definite matrices as Po. There are various distances between

two positive definite matrices such as Frobenius, Cholesky-Frobenius, J-divergence, Affine-invariant,

Log-Frobenius [6]. The Frobenius norm ‖ · ‖2 gives rise to the affine-invariant metric on Po given by

δ(A,B) = ‖ log(A−1/2BA−1/2)‖2 for any A,B ∈ Po. Then Po is a Cartan-Hadamard manifold, a

simply connected complete Riemannian manifold with non-positive sectional curvature. The geodesic

curve has a parametrization γ(t) = A1/2(A−1/2BA−1/2)tA1/2, 0 ≤ t ≤ 1, which is the unique

geodesic from A to B (see [5]).

The computational results showed that the geodesic distance is a little bit better than other

distances. In this paper, we use the geodesic distance. However, since the moment matrix for a

graph with few vertices can be possibly singular positive semidefinite, we use the Frobenius distance

instead. We remain which distance is the best in some sense for the future work.

Definition 3.17. A property of graphs is called sub-structure invariant if the property of G holds

for G tG t · · · tG.

Lemma 3.18. Let Gi = (Vi, Ei) be a graph, i = 1, 2 with V1 ∩ V2 = ∅. Then

Mn(G1 tG2) = αMn(G1) + (1− α)Mn(G2),

where α = |V1|/(|V1|+ |V2|).
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Figure 3: Graph G Figure 4: Graph G̃ = G tG tG tG tG

Two graphs have same sub-structure. Moreover, If A and Ã are considered as real algebraic random variables in

(A (G), ϕe) and (A (G̃), ϕe), then two algebraic random variables A and Ã are moment equivalent.

Using the fact that AKn×Kn = IK×K ⊗A the preceding result can be extended easily as follows.

Theorem 3.19. Let G1, G2, . . . , GK be given mutually disjoint graphs. Then

Mn(G1 t . . . tGK) =
K∑

j=1

αj
α
Mn(Gj)

where αj is the number of vertices in Gj and α = α1 + · · ·+ αK .

Remark that if m1 = m2 = · · · = mK , then

Mn(G1 t . . . tGK) =
1

K

(
Mn(G1) + · · ·+Mn(GK)

)
.

Especially,

Mn(G t . . . tG) =Mn(G) for all n ∈ N.

Specifically, k-th moments of adjacency matrices of G and G tG are same for each k ∈ N, so their

distributions are identical. If a graph consists of identical subgraphs, then the moment matrix of a

given graph is equal to one of its subgraph. In other words, a moment matrix of graph can preserve

information regardless of repetition of structure (see Figure 4). Thus, this property allows to use a

subgraph to calculate distance between two large-scale networks.

Corollary 3.20. Let A be the adjacency matrix of a given graph G. Then the k-th moment of A in

ϕ is sub-structure invariant.

4. Cospectral graphs and various examples

The smallest pair of cospectral graphs is the graph union C4 ∪K1 and star graph S5, illustrated

in Figure 1. While the corresponding adjacency matrices are different, both have the same graph
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Figure 5: (a) and (b) are spectral distributions of G1 and G2 for trace state. (c) and (d) are spectral distributions of

G1 and G2 for our proposed state. It shows that while (a) and (b) are identical, (c) and (d) are distinguishable.

spectrum, −2, 0, 0, 0, 2. Let A and Ã be the adjacency matrix of C4 ∪K1 and S5, respectively. If

A and Ã are considered as real algebraic random variables in (A (C4 ∪K1), ϕtr) and (A (S5), ϕtr),

then two algebraic random variables A and Ã are moment equivalent, since

ϕtr(A
k) =

1

n
tr(Ak) =

1

n
tr(Ãk) = ϕtr(Ã

k). (4.1)

That is, they have identical spectral distributions (see (a), (b) in Figure 5).

However, If A and Ã are considered as real algebraic random variables in (A (C4 ∪K1), ϕe) and

(A (S5), ϕe), then two algebraic random variables A and Ã are not moment equivalent. So, using

the state ϕe allows us to distinguish two graphs. Indeed, the moment matrices

M1(C4 ∪K1) =

(
1 1.6

1.6 3.2

)
, M1(S5) =

(
1 1.6

1.6 4

)

are different, implying that each spectral distributions are different (see (c), (d) in Figure 5).

Fig. 6 is introduced in [35]. Three graphs have the same number of vertices and edges. Table 1

shows distances between the graphs based on Hamming distance, graph edit distance, D-measure,

and our proposed distance. A good measure should return a higher distance value between N1 and

N3 than between N1 and N2. Hamming distance and graph edit distance do not capture relevant
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Figure 6: Three different networks with the same number of vertices and edges are shown in [35].

Dissimilarity H GED D-measure Proposed measure

d(G1, G2) 12 6 0.252 14.0844

d(G1, G3) 12 6 0.565 30.3974

d(G2, G3) 12 6 0.473 16.3209

Table 1: (i) H: Hamming distance; (ii) GED: graph edit distance; (iii) D-measure: a recent proposed method in [35];

(iv) our propose method.

Figure 7: Five different networks with the same number of vertices in [43].

topological differences. However, D-measure and our proposed measure perform a highly precise

comparison.

Five graphs G1, G2, G3, G4 and G5 = K18 on 18 vertices in Fig. 7 are considered in [43] to

measure dissimilarity between them. The difference between G1 and G2 is only one edge. There

is also only one edge difference between G1 and G3 but G3 is not connected. While considering

graphs as matrices or vectors, the distance between G1 and G2 is the same as between G1 and G3.

However, G3 is totally different as it is not connected. In [43] the following distance to compare

graphs is proposed

d(G,G′) =
∑

i,j

(λi − µj)2
λi + µj

|〈ui, vj〉|k for any k ∈ N,
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where λ1, . . . , λn and µ1, . . . , µn are eigenvalues of adjacency matrices of G,G′, respectively, and

u1, . . . , un and v1, . . . , vn are the corresponding eigenvectors.

G1 G2 G3 G4 G5

G1 0 2.5325 2.8009 4.4449 11.3354

G2 2.5325 0 1.5889 4.2998 11.3355

G3 2.8009 1.5889 0 4.2473 11.3356

G4 4.4449 4.2998 4.2473 0 11.3363

G5 11.3354 11.3355 11.3356 11.3363 0

Table 2: To scale values of ‖M2(Gi)−M2(Gj)‖2 we alternatively use the value of log (‖M2(Gi)−M2(Gj)‖2 + 1).

Note that if d(·, ·) is a distance function, then so is ψ(d(·, ·)) for ψ(x) = log (x+ 1).
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(d) G5

Figure 8: Spectral distributions for graphs G1, G2, G3, G4, G5.

However, d(G1, G4) = d(G2, G4) = d(G3, G4) = d(G5, G4) = 18, which means that the graphs

G1, G2, G3, G5 are not distinguishable from G4. Table 2 shows that our proposed measure overcomes

such drawbacks. As shown in Fig. 8 the spectral distributions for the graphs G1, G2, G3, G4, G5
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2K1 K2 3K1 K3 P̄3 P3

2K1 0 2.8284 0 20.9762 1.8856 6.7659

K2 2.8284 0 2.8284 18.7617 0.9428 4.2164

3K1 0 2.8284 0 20.9762 1.8856 6.7659

K3 20.9762 18.7617 20.9762 0 19.4822 14.6211

P̄3 1.8856 0.9428 1.8856 19.4822 0 5.0332

P3 6.7659 4.2164 6.7659 14.6211 5.0332 0

Table 3: Dissimilarities between two graphs among non-isomorphic simple graphs with 2 or 3 vertices.

are all different. It shows that the distance between two graphs among them follows dissimilarities

between the distributions.

There are two non-isomorphic simple graphs with 2 vertices and four non-isomorphic simple

graphs with 3 vertices. The moment matrix distances ‖M2(G) −M2(G̃)‖2 between two graphs G

and G̃ among them are shown in Table 3. The spectral distributions of their adjacency matrices

for each graphs are shown as well. There are 11 non-isomorphic simple graphs with 4 vertices. The

spectral distributions of them are shown as well in Table 4. Table 5 gives their distances.

Denote J as the all-1’s matrix and I is the identity.

Example 4.1. (1) The complete graph Kn has an adjacency matrix equal to A = J − I. Note the

eigenvalues of Kn are n−1 with multiplicity 1 and −1 with multiplicity n−1. The corresponding

eigenvector of −1 is e. Thus , the spectral measure of Kn in ϕe is µ(Kn) = δn−1.

(2) Let G be a d-regular graph and A be a adjacency matrix of G. It is each to check that d is an

eigenvalue of A and the corresponding eigenvector is e. Thus , the spectral measure of G in

ϕe is µ(G) = δd.

(3) Let Kmn be the complete bipartite graph and A be a adjacency matrix of G. Note that the

eigenvalues of A consists of
√
mn,−√mn, 0. Then the moments mk is 1, 2mm

m+n , mn2

m+n , m2n
m+n .
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Name Graph Spectral distribution Name Graph Spectral distribution
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C4 = K2,2
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claw = K1,3
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Table 4: Spectral distributions of 11 non-isomorphic simple graphs with 4 vertices.

5. Complexity and Parallelism

Our proposed method has two steps. Consider the moment matrix with degree n whose size is

(n + 1) × (n + 1). The first step is to obtain the moment matrix Mn whose entries consist of the

moment sequence {mk}2nk=0. In the second step, we use Frobenius distance between positive definite
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4K1 K4 co-diamond diamond co-paw paw 2K2 C4 claw co-claw P4

4K1 0 90.9945 1.4142 49.8999 5.0744 26.2726 2.8284 20.9762 12.3693 15.7321 9.8742

K4 90.9945 0 90.0777 41.4970 86.6646 65.3854 89.1740 70.8802 79.4292 75.8650 82.0945

co-diamond 1.4142 90.0777 0 48.9081 3.7749 25.1942 1.4142 19.8494 11.1803 14.6116 8.6313

diamond 49.8999 41.4970 48.9081 0 45.3900 23.9322 47.9375 29.4279 38.0657 34.4891 40.7247

co-paw 5.0744 86.6646 3.7749 45.3900 0 21.5754 2.5981 16.1787 7.4666 10.9659 4.8734

paw 26.2726 65.3854 25.1942 23.9322 21.5754 0 24.1506 5.5000 14.1863 10.6184 16.8300

2K2 2.8284 89.1740 1.4142 47.9375 2.5981 24.1506 0 18.7617 10.0499 13.5462 7.4498

C4 20.9762 70.8802 19.8494 29.4279 16.1787 5.5000 18.7617 0 8.7750 5.2440 11.3798

claw 12.3693 79.4292 11.1803 38.0657 7.4666 14.1863 10.0499 8.7750 0 3.6742 2.7386

co-claw 15.7321 75.8650 14.6116 34.4891 10.9659 10.6184 13.5462 5.2440 3.6742 0 6.2450

P4 9.8742 82.0945 8.6313 40.7247 4.8734 16.8300 7.4498 11.3798 2.7386 6.2450 0

Table 5: The moment matrix distances ‖M2(G)−M2(G̃)‖2 between two graphs G and G̃ among them are shown.

matrices to compute the distance between two moment matrices. In the following, we will show the

time complexity, space complexity, and parallelism of each step and those of the overall algorithm.

5.1. Complexity

We consider comparing two graphs G1 and G2. Let |V1|, |E1| and |V2|, |E2| denote the num-

ber of nodes and edges of graph G1 and G2 respectively. Let |E| = max(|E1|, |E2|) and |V | =

max(|V1|, |V2|). The first step of the algorithm can be computed in O(n|E|) time and O(|E|) space

using sparse matrix-vector multiplication. The second step mainly involves eigenvalue decomposi-

tion, which can be computed in O(n3) time and O(n2) space. The time complexity of the total

algorithm is O(n|E|+n3) and space complexity is O(|E|+n2). However, n is relatively small, say 4

or 5, in practical problems because most of the information about a distribution is contained in the

first few moments[18, 27, 22]. Thus the time complexity and space complexity of proposed method

are both O(|E|).

5.2. Parallelism

As we discussed before, the first step is sparse matrix-vector multiplication. This operation can

be completely paralleled on CPU or GPU. As n is small, the second step takes much less time than

the first step. As a result, our algorithm can be paralleled efficiently.

6. Experiments

6.1. Clustering Networks

We first demonstrate the efficacy of our method and other methods utilizing moment via cluster-

ing random networks. Specifically, we generates four sets of Erdős-Rényi random graphs[17]. The
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Proposed Method Cov NCLM EIGS GK3 GK4

ACCURACY 1 1 1 0.76 0.5 0.5

Table 6: Accuracy for our proposed method and covariance method in random network clustering.

parameters are Θ1 = {|V | = 1000, |E| = 10000, ρ = 0.1}, Θ2 = {|V | = 1000, |E| = 20000, ρ = 0.1},
Θ3 = {|V | = 1000, |E| = 10000, ρ = 0.9}, Θ3 = {|V | = 1000, |E| = 20000, ρ = 0.9}, in which |V |
denotes the number of nodes, |E| denotes the number of edges, ρ denotes the rewiring probability,

i.e. randomness. For example, ρ = 0 the network is regular graph while ρ = 1 the network is

completely random network. For each parameter setting, we generate 25 networks and label the

networks according to their parameter settings.

The benchmark algorithms are as following:

• Cov [38]: Covariance method computes the computes the covariance matrix of the vector

[ Aie
|Aie| ]

n
i=1, in which A is the adjacency matrix and e is the vector of all ones. Then Bhattacharya

similarity between the corresponding covariance matrix is computed as the distance between

two graphs. According to their paper, we take the size of moment matrix n = 4, 5, 6 and

choose the best one as the benchmark.

• NCLM [32]: NCLM first computes the log moment sequence vector [log( tr(Ai)
ni )]7i=2 and uses

the Euclidean distance between two moment vectors as the distance between corresponding

networks.

• GK [36]: Graphlet kernel computes the distance between graphs by counting subgraphs with

k nodes. Here we use k = 3 and k = 4.

• EIGS-10: The eigenvalues of the adjacency matrix contains much information about the graph

and are graph invariant. As a result, we take the biggest 10 eigenvalues for each graph. Then

we employ Euclidean distance between the eigenvalues of corresponding adjacency matrices as

the distance between two graphs.

For NCLM, EIGS, Covariance and our proposed method, we first compute the distance matrix D,

in which Dij is the distance between the ith network and jth network. Then we construct the

kernel K = exp(−D). Finally we apply kernel k-means algorithm to get the clustering result. The

clustering performance is shown in Table. I.

We see that methods that involves moment, i.e. our proposed method, Covariance, and NCLM

perform best. GK3 and GK4 has trouble in separating the networks with the same number of nodes

and same number of edges but of different randomness. EIGS can not distinguish between the
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HEP Vs CM HEP Vs ASTRO ASTRO Vs CM Full

Proposed 0.991 0.913 0.904 0.905

EIGS-10 0.981 0.879 0.861 0.820

NCLM 0.982 0.850 0.865 0.804

Covariance 0.976 0.857 0.861 0.819

Covariance with SVM 0.987 0.889 0.887 0.849

Table 7: Accuracy for Proposed method and other benchmark methods in collaboration network classification. Best

results marked in bold.

parameter setting Θ3 and Θ4. This demonstrates that the methods based on moment are able to

capture the feature of edge distribution and randomness of the network.

6.2. Classifying Networks

We apply our method to classify networks. We follow the system setting of [38]. Specifically,

we classify one’s research area using the information of the graph structure of one’s collaboration

network. Because researchers in one area usually tightly connected with researchers in that area

compared to other areas, it is possible to determine to which area a researcher belongs consider-

ing one’s collaboration networks. This information can be used for recommendations such as job

recommendations and citation recommendations.

Three datasets from [34] are used: high energy physics collaboration network(HEP), condensed

matter collaboration network(CM), and astro physics collaboration network(ASTRO). In the net-

work, an undirected edge from u to v means that the author u and the author v are co-authored.

We use the method from [38] to generate subgraphs and obtain 415 subgraphs for CM and 1000 sub-

graphs for HEP and ASTRO respectively. Then we label each sub-graph according to the dataset

which it belongs to. The tasks are classifications between each two datasets and among three

datasets. For each task, we first split the dataset into 10 folds of the same size. We then combine 9

of the folds as the training set, the left 1 fold as the test set. We repeat this 10 times to compute

the average accuracy.

In the classification tasks, we use k-nearest-neighbor(KNN) classifier. We set the size of moment

matrix n from 2 to 7 and k in KNN from 1 to 10 and choose the best one. The first three benchmark

algorithms are Covariance, NCLM, and Top-10 eigenvalues(EIGS-10). In addition, we add the

state-of-art method in collaboration network classification, Covariance with SVM[38], which employs

SVM as the classifier, as the last benchmark algorithm. The performance of our method and the

benchmark algorithm is shown in Table 7.
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|V | |E| Proposed Cov EIGS-10 NCLM GK3

2000 2000000 7.31 7.32 18.92 39.92 99.63

5000 1000000 1.38 1.48 85.88 533 797

10000 2000000 3.9 4.7 353.5 27340 1757

50000 15000000 50 68 11687 N/A N/A

Table 8: Running time for computing pairwise distance among 100 random networks(in seconds). Fastest method

marked in bold.

From the table, we see that with KNN classifier, Covariance, EIGS, and NCLM have similar

performance in each task. We also notice that Covariance with SVM performs better than Covariance

with KNN. This shows that SVM classifier is more suitable to Covariance method. On top of that, our

proposed method not only outperforms various of benchmarks with KNN classifier, but also performs

better than Covariance with SVM, the state-of-art method in collaboration classification task in every

classification task. This demonstrates the effectiveness of proposed method. This also shows that

a few moments can provide enough information for collaboration classification. Besides, proposed

method has a significant improvement over the state-of-art method in three collaboration network

classification task. This shows proposed method is suitable to classification tasks for sophisticated

networks.

6.3. Time Comparison

In this section, we show the efficiency of our algorithm by comparing the running time of proposed

method and other methods via a set of experiments. Specifically, in each experiment, we generate 100

Erdős-Rényi random graphs with the same number of nodes and edges. Then we employ proposed

method and other methods to get pairwise distances among all possible pairs. For each method,

we run 10 times and take the average running time. The number of nodes, number of edges, and

the time consumed by different methods are shown in Table 8. Here, we use 4 × 4 moment matrix

in proposed method, 4× 4 covariance matrix in Covariance and 6 moments in NCLM. All of these

experiments are done in MATLAB on the server with an Intel Xeon 2.80 Ghz CPU and 64 GB

RAM.

As shown in the table, the time cost of proposed method is cheaper than all the comparing

methods. For example, it can compute pairwise distances of 100 random networks with 500000

nodes and 15000000 edges in 50 seconds, which has 1.36× speed up to Covariance method and 233×
speed up to EIGS-10. Besides, from the table, proposed method is almost linear in terms of the

number of edges. This demonstrates proposed method is scalable to massive networks.
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7. Conclusion

We considered the adjacency matrix of a graph as a real random variable and proposed a new

similarity measure for graphs with a distance between corresponding moment matrices of their spec-

tral distributions. Our proposed method demonstrated state-of-art results in collaboration network

classification and turned out to be scalable to large-scale graphs.
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