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Abstract

C-eigenvalues of piezoelectric-type tensors which are real and always ex-
ist, are introduced by Chen et al. @] And the largest C-eigenvalue for
the piezoelectric tensor determines the highest piezoelectric coupling con-
stant. In this paper, we give two intervals to locate all C-eigenvalues for
a given Piezoelectric-type tensor. These intervals provide upper bounds for
the largest C-eigenvalue. Numerical examples are also given to show the
corresponding results.
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1. Introduction

Piezoelectric-type tensors are introduced by Chen et al. in @] as a sub-
class of third order tensors which have extensive applications in physics and
engineering @, , B, , B, ] The class of Piezoelectric tensors, as the sub-
class of Piezoelectric-type tensors of dimension three, plays the key role in
Piezoelectric effect and converse Piezoelectric effect [1].

Definition 1. @, Definition 2.1] Let A = (a;;;) € R™™*™ be a third-order
n dimensional real tensor. If the later two indices of A are symmetric, i.e.,
a;j = air; for all j € N and k € N where N := {1,2...,n}, then A is called
a piezoelectric-type tensor.
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To explore more properties related to piezoelectric effect and converse
piezoelectric effect in solid crystal, Chen et al. in [1] introduced C-eigenvalues
and C-eigenvectors for Piezoelectric-type tensors, and shown that the largest
C-eigenvalue corresponds to the electric displacement vector with the largest
2-norm in the piezoelectric electronic effect under unit uniaxial stress [1, 2, [g].

Definition 2. |1, Definition 2.2] Let A = (a;;) € R™*™*™ be a piezoelectric-
type tensor. If there exist a scalar A € R, vectors x € R" and y € R"
satisfying the following system

Ayy =z, 2 Ay =Ny, vz =1 and yTy =1, (1)
where Ayy € R" and x Ay € R™ with the i-th entry

(Ayy); Z aijrYiYe, and (vAy); Z i Yk
J,k€EN j,kEN
respectively, then A is called a C-eigenvalue of A, x and y are called associated
left and right C-eigenvectors, respectively.

For C-eigenvalues and associated left and right C-eigenvectors of a piezoelectric-
type tensor, Chen et al. in [1] also provided several related results, such as:

Property 1. For a piezoelectric-type tensor A, there always exist C-eigenvalues
of A and associated left and right C-eigenvectors.

Property 2. Suppose that A\, z and y are a C-eigenvalue and its associated
left and right C-eigenvectors of a piezoelectric-type tensor A. Then
A =z Ayy,
where zAyy = > a;jp%iy;yk. Furthermore, (A, z, —y), (—\, —z,y) and
ij, k€N
(=\, —x, —y) are also C-eigenvalues and their associated C-eigenvectors of

A.

Property 3. Suppose that \* is the largest C-eigenvalue of a piezoelectric-
type tensor A. Then

A" = max {:EAyy cale=1,yTy = 1} )

Property 2 and Property [3l provide theoretically the form to determine C-
eigenvalues or the largest C-eigenvalue \* of A, However, it is difficult to com-
pute them in practice because determining x and y is not easy. So, we in this
paper give some intervals to locate all C-eigenvalues of a piezoelectric-type

tensor, and then give some upper bounds for the the largest C-eigenvalue.
This can provide more information before calculating them out.



2. Main results

In this section, we give two intervals to locate all C-eigenvalues of a
piezoelectric-type tensor. And the comparison of these two intervals are also
established.

Theorem 1. Let A = (a;;) € R™™ " be a piezoelectric-type tensor, and \
be a C-eigenvalue of A. Then

A E [_pa p]? (2)

where

p = max (R§1>(A)R(.3’ (A)) :

i,jJEN J

REI)(A) = > |aqx| and R§-3)(.A) = > |l

1LkeN LkeN

Proof. Suppose that x = (11, 2s,...,2,)" and y = (y1,99,...,yn)T are left
and right C-eigenvectors corresponding to A with 272 = 1 and yTy = 1. Let

[p] = max [z,], and Jy,| = max|y,|.

Then 0 < |z,| <1 and 0 < |y,| <1 because 7z =1 and y'y = 1.
By considering the p-th equation of Ayy = Az in (), we have

Aty = > iyt (3)
JkEN
and
Mlzpl <Y lagally;lyl
jkEN
< > lapiel[ygllydl
jkEN
< Y lapiellygl (by lygl < 1)
jkEN
Hence
IAl|zp] < R (A)y,l. (4)



On the other hand, by considering the ¢-th equation of x. Ay = Ay in (1),

we have
ANyq = Z QijqTiYy, (5)
ijEN
and
Mlyd <> lagllwilly|
ijEN
< Z |aijql|zp|[yq]
ijEN
< Z |ijgllzpl. (by lyql < 1)
ijEN
Hence
Alyql < R (A)|zy]. (6)

Multiplying (@) with (@])yields

IAPlapllyal < RV (AR (A)|lygl,

q
consequently,
Al < (RSV(A)RP(A))? . (7)

Note the facts that A is a C-eigenvalue of A if and only if —\ is a C-
eigenvalue of A, and that a C-eigenvalue is real. Then

re [~ (BPWRPW)E . (BOARPA)Y] < [0, ol
The conclusion follows. O

From Theorem [I], we can obtain easily the following upper bound for the
largest C-eigenvalue of a piezoelectric-type tensor.

Corollary 1. Let A = (a;j;) € R™™ " be a piezoelectric-type tensor, and
A* be the largest C-eigenvalue of A. Then

A <p.



Next we give another interval to locate all C-eigenvalues of a piezoelectric-
type tensor. Before that some notation are given. For a subset S of N, denote

Ag:={(@,j):1€SorjeS}
and o
Ag:={(i,j):1¢ S and j ¢ S}.
Given a piezoelectric-type tensor A = (a;j) € R™ ™" let
As, As,
Rj ° (3)(A) = Z |alkj|7Rj * (3)(A) = Z |awjl,
(Lk)eAs (l,k)EZS
where Rfs’(g)(A) =0if S =0, and RJ»ZS’(?’) (A) = 0if S = N. Obviously,
(3) _ pAs,(3) As,(3) .
R7(A) = R;*"(A) + Ry % (A) for each j € N.
Theorem 2. Let A = (a;;1) € R be a piezoelectric-type tensor, and A

be a C-eigenvalue of A. And let S be a subset of N. Then

A€ [—ps, ps) (8)

where
1 ( A, Ag, A, 3
ps = max 5 (Rj D) + (D) + 4R (AR (4)) ) .
Furthermore,
A S [—/Jmm, pmm]a (9>
where ppin = gngljr\} 0s-

Proof. Similarly to the proof of Theorem [, ({4]) and (&) hold. Furthermore,
by (B]) we have

lyal <D laiallzpllyal

i,jEN

= RY(A)lzylly,|

= (BPOA) + BFOA) [zl
< RSO (A)yyl + RO (A,
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Hence _
(IAl = R2 P (A)) lyg| < RSPV (A)|x,. (10)

Multiplying (@) with (IQ) yields
AL (A = R @A) [yl lygl < RV (AR (A)|, ]y,

consequently,

Al (Al = R25PI(A)) < RID(A)R @) (A). (11)

— P q

Solving (III) for |A| gives
1Al < % (RQAS’(?’)(A) + ((1%(?37(?’)(,4))2 +4RW (A) RS (A))E) :

By an analogous way of Theorem [I we have

AE [—ps, ps]. (12)

Furthermore, since (I2]) holds for any S C N, it follows that

A € ﬂ [_p57 /75] = [_ gg}&pSW g&%ﬂs} = [_pmm7 pmm]
SCN -

The conclusion follows. O

Note here that if S = (), then R]-AS’(?’) (A) =0 and R]-ZS’(?’) (A) = RY (A)
for any 7 € N, which implies

! (R.AS’(?’)(A) + (RS9 )2 + 4R§1)(A)R45’(3)(A)>%) — (R WEP (W)

2 J J J

consequently,
ps = p-
Hence,
Pmin g'nglﬁ pPs > p

This gives the comparison of the intervals in Theorem [Il and Theorem 2] as
follows.



Theorem 3. Let A = (a;;1) € RV be a piezoelectric-type tensor, and A
be a C-eigenvalue of A. Then

A € [=Pmin, Pmin) € [—p, Pl

where p is defined in Theorem [, and ppin is defined in Theorem [2.

Remark 1. Theorem Blshows that the interval [—ppin, Pmin] captures all C-
eigenvalues of a piezoelectric-type tensor precisely than the interval [—p, p,
although p,,;, needs more computations than p.

Similarly to Corollary [I, we can obtain easily the following upper bound
for the largest C-eigenvalue of a piezoelectric-type tensor by Theorem

Corollary 2. Let A = (a;j;) € R™™*" be a piezoelectric-type tensor, and
A* be the largest C-eigenvalue of A. Then

3. Numerical examples

In this section, we give some examples to show the results obtained above.
Consider the eight piezoelectric tensors in [1];
(I) The piezoelectric tensor Ay pesp |1, 4], with its entries

Q123 = Q213 = Gz12 = —3.68180677,

and other elements are zeros;
(IT) The piezoelectric tensor Ag,o, 1,12, 13], with its entries

111 = —Q192 = —0A912 = —013685, and 123 — —A213 — —0009715,

and other elements are zeros;
(III) The piezoelectric tensor Acy, agpios |1, 4], with its entries

123 — 213 — —022163, a113 — —QA9293 — 2608665,

asjp — —Aaszo2 — 0152485, and asip — —037153,

and other elements are zeros;



(IV) The piezoelectric tensor Agprao, |1, 4], with its entries
113 = 293 — —840955, 992 — —0A12 =— —A211 — —5412525,
311 = Q3292 — —43031, and a333 = —514766,

and other elements are zeros;
(V) The piezoelectric tensor Anqpis, |1, 4], with its entries

ay113 = —890808, 9223 — —000842, asi]p = —711526,
3929 = —06222, and a333 = —793831,

and other elements are zeros;
(VI) The piezoelectric tensor Ap;gip,0, [1, 4], with its entries

123 = 235682, ai12 = 034929, ag11 — 016101, 9229 — 012562,
9233 — 01361, 213 = —005587, a393 — 691074, and asig2 — 257812,

and other elements are zeros;
(VII) The piezoelectric tensor Agxpi,r, [1, 4], with its entries

a111 = 12.64393, aq92 = 1.08802, ai33 = 4.14350, aq23 = 1.59052,
a113 = 1.96801, aj12 = 0.22465, ag1; = 2.59187, agee = 0.08263,
ag33 = 0.81041, ages = 0.51165, ag3 = 0.71432, ag2 = 0.10570,
agn = 1.01254, asge = 0.68235, asss = —0.23019, ases = 0.19013,
az13 = 0.39030, and ago = 0.08381.
(VIII) The piezoelectric tensor Apanio, |1, 4], with its entries

113 = Q9223 = 0038385, a311 = azoe = 689822, and a333 = 274628,

and other elements are zeros.
We now use the intervals in Theorem [I] and Theorem [2] to locate all C-

eigenvalues of the eight tensors above, see Table 1. It is easy to see that for
any C-eigenvalue A,

A€ [_pmim Pmm] - [—p, p].

p
Pmin | 7.3636 | 0.2834 5.6606 23.5377 | 16.8548 | 12.3206 | 20.2351 | 35.3787
A* | 4.2514 | 0.1375 2.6258 12,4234 | 11.6674 7.7376 13.5021 | 27.4628

Table 1. The intervals [—p, p| and [—pmin, Pmin), and A* is the largest C-
eigenvalue.

AVFeSb ASiOQ ACTQAgBiOs ARbTaO3 ANaBiSQ ALiBiBQO;, AKBi2F7 ABaNiOg
7.3636 | 0.2882 5.6606 30.0911 | 17.3288 15.2911 22.6896 | 38.8162
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