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Abstract

C-eigenvalues of piezoelectric-type tensors which are real and always ex-
ist, are introduced by Chen et al. [1]. And the largest C-eigenvalue for
the piezoelectric tensor determines the highest piezoelectric coupling con-
stant. In this paper, we give two intervals to locate all C-eigenvalues for
a given Piezoelectric-type tensor. These intervals provide upper bounds for
the largest C-eigenvalue. Numerical examples are also given to show the
corresponding results.
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1. Introduction

Piezoelectric-type tensors are introduced by Chen et al. in [1] as a sub-
class of third order tensors which have extensive applications in physics and
engineering [2, 3, 5, 6, 7, 9]. The class of Piezoelectric tensors, as the sub-
class of Piezoelectric-type tensors of dimension three, plays the key role in
Piezoelectric effect and converse Piezoelectric effect [1].

Definition 1. [1, Definition 2.1] Let A = (aijk) ∈ R
n×n×n be a third-order

n dimensional real tensor. If the later two indices of A are symmetric, i.e.,
aijk = aikj for all j ∈ N and k ∈ N where N := {1, 2 . . . , n}, then A is called
a piezoelectric-type tensor.
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To explore more properties related to piezoelectric effect and converse
piezoelectric effect in solid crystal, Chen et al. in [1] introduced C-eigenvalues
and C-eigenvectors for Piezoelectric-type tensors, and shown that the largest
C-eigenvalue corresponds to the electric displacement vector with the largest
2-norm in the piezoelectric electronic effect under unit uniaxial stress [1, 2, 8].

Definition 2. [1, Definition 2.2] Let A = (aijk) ∈ R
n×n×n be a piezoelectric-

type tensor. If there exist a scalar λ ∈ R, vectors x ∈ R
n and y ∈ R

n

satisfying the following system

Ayy = λx, xAy = λy, xTx = 1 and yTy = 1, (1)

where Ayy ∈ R
n and xAy ∈ R

n with the i-th entry

(Ayy)i =
∑

j,k∈N

aijkyjyk, and (xAy)i =
∑

j,k∈N

ajkixjyk,

respectively, then λ is called a C-eigenvalue ofA, x and y are called associated
left and right C-eigenvectors, respectively.

For C-eigenvalues and associated left and right C-eigenvectors of a piezoelectric-
type tensor, Chen et al. in [1] also provided several related results, such as:

Property 1. For a piezoelectric-type tensorA, there always exist C-eigenvalues
of A and associated left and right C-eigenvectors.

Property 2. Suppose that λ, x and y are a C-eigenvalue and its associated
left and right C-eigenvectors of a piezoelectric-type tensor A. Then

λ = xAyy,

where xAyy =
∑

i,j,k∈N

aijkxiyjyk. Furthermore, (λ, x,−y), (−λ,−x, y) and

(−λ,−x,−y) are also C-eigenvalues and their associated C-eigenvectors of
A.

Property 3. Suppose that λ∗ is the largest C-eigenvalue of a piezoelectric-
type tensor A. Then

λ∗ = max
{

xAyy : xTx = 1, yTy = 1
}

.

Property 2 and Property 3 provide theoretically the form to determine C-
eigenvalues or the largest C-eigenvalue λ∗ ofA, However, it is difficult to com-
pute them in practice because determining x and y is not easy. So, we in this
paper give some intervals to locate all C-eigenvalues of a piezoelectric-type
tensor, and then give some upper bounds for the the largest C-eigenvalue.
This can provide more information before calculating them out.
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2. Main results

In this section, we give two intervals to locate all C-eigenvalues of a
piezoelectric-type tensor. And the comparison of these two intervals are also
established.

Theorem 1. Let A = (aijk) ∈ R
n×n×n be a piezoelectric-type tensor, and λ

be a C-eigenvalue of A. Then

λ ∈ [−ρ, ρ] , (2)

where

ρ := max
i,j∈N

(

R
(1)
i (A)R

(3)
j (A)

)
1

2

,

R
(1)
i (A) :=

∑

l,k∈N

|ailk| and R
(3)
j (A) :=

∑

l,k∈N

|alkj|.

Proof. Suppose that x = (x1, x2, . . . , xn)
T and y = (y1, y2, . . . , yn)

T are left
and right C-eigenvectors corresponding to λ with xTx = 1 and yTy = 1. Let

|xp| = max
i∈N

|xi|, and |yq| = max
i∈N

|yi|.

Then 0 < |xp| ≤ 1 and 0 < |yq| ≤ 1 because xTx = 1 and yTy = 1.
By considering the p-th equation of Ayy = λx in (1), we have

λxp =
∑

j,k∈N

apjkyjyk, (3)

and

|λ||xp| ≤
∑

j,k∈N

|apjk||yj||yk|

≤
∑

j,k∈N

|apjk||yq||yq|

≤
∑

j,k∈N

|apjk||yq|. (by |yq| ≤ 1)

Hence
|λ||xp| ≤ R(1)

p (A)|yq|. (4)
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On the other hand, by considering the q-th equation of xAy = λy in (1),
we have

λyq =
∑

i,j∈N

aijqxiyj, (5)

and

|λ||yq| ≤
∑

i,j∈N

|aijq||xi||yj|

≤
∑

i,j∈N

|aijq||xp||yq|

≤
∑

i,j∈N

|aijq||xp|. (by |yq| ≤ 1)

Hence
|λ||yq| ≤ R(3)

q (A)|xp|. (6)

Multiplying (4) with (6)yields

|λ|2|xp||yq| ≤ R(1)
p (A)R(3)

q (A)|xp||yq|,

consequently,

|λ| ≤
(

R(1)
p (A)R(3)

q (A)
)

1

2 . (7)

Note the facts that λ is a C-eigenvalue of A if and only if −λ is a C-
eigenvalue of A, and that a C-eigenvalue is real. Then

λ ∈
[

−
(

R(1)
p (A)R(3)

q (A)
)

1

2 ,
(

R(1)
p (A)R(3)

q (A)
)

1

2

]

⊆ [−ρ, ρ].

The conclusion follows.

From Theorem 1, we can obtain easily the following upper bound for the
largest C-eigenvalue of a piezoelectric-type tensor.

Corollary 1. Let A = (aijk) ∈ R
n×n×n be a piezoelectric-type tensor, and

λ∗ be the largest C-eigenvalue of A. Then

λ∗ ≤ ρ.
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Next we give another interval to locate all C-eigenvalues of a piezoelectric-
type tensor. Before that some notation are given. For a subset S ofN , denote

∆S := {(i, j) : i ∈ S or j ∈ S}

and
∆S := {(i, j) : i /∈ S and j /∈ S}.

Given a piezoelectric-type tensor A = (aijk) ∈ R
n×n×n, let

R
∆S ,(3)
j (A) =

∑

(l,k)∈∆S

|alkj|, R
∆S ,(3)
j (A) =

∑

(l,k)∈∆S

|alkj|,

where R
∆S ,(3)
j (A) = 0 if S = ∅, and R

∆S ,(3)
j (A) = 0 if S = N . Obviously,

R
(3)
j (A) = R

∆S ,(3)
j (A) +R

∆S ,(3)
j (A) for each j ∈ N .

Theorem 2. Let A = (aijk) ∈ R
n×n×n be a piezoelectric-type tensor, and λ

be a C-eigenvalue of A. And let S be a subset of N . Then

λ ∈ [−ρS , ρS], (8)

where

ρS := max
i,j∈N

1

2

(

R
∆S ,(3)
j (A) +

(

(R
∆S ,(3)
j (A))2 + 4R

(1)
i (A)R

∆S ,(3)
j (A)

)
1

2

)

.

Furthermore,

λ ∈ [−ρmin, ρmin], (9)

where ρmin := min
S⊆N

ρS.

Proof. Similarly to the proof of Theorem 1, (4) and (5) hold. Furthermore,
by (5) we have

|λ||yq| ≤
∑

i,j∈N

|aijq||xp||yq|

= R(3)
q (A)|xp||yq|

=
(

R∆S ,(3)
q (A) +R∆S ,(3)

q (A)
)

|xp||yq|

≤ R∆S ,(3)
q (A)|yq|+R∆S ,(3)

q (A)|xp|
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Hence
(

|λ| −R∆S ,(3)
q (A)

)

|yq| ≤ R∆S ,(3)
q (A)|xp|. (10)

Multiplying (4) with (10) yields

|λ|
(

|λ| −R∆S ,(3)
q (A)

)

|xp||yq| ≤ R(1)
p (A)R∆S ,(3)

q (A)|xp||yq|,

consequently,

|λ|
(

|λ| − R∆S ,(3)
q (A)

)

≤ R(1)
p (A)R∆S ,(3)

q (A). (11)

Solving (11) for |λ| gives

|λ| ≤
1

2

(

R∆S ,(3)
q (A) +

(

(R∆S ,(3)
q (A))2 + 4R(1)

p (A)R∆S ,(3)
q (A)

)
1

2

)

.

By an analogous way of Theorem 1, we have

λ ∈ [−ρS , ρS]. (12)

Furthermore, since (12) holds for any S ⊆ N , it follows that

λ ∈
⋂

S⊆N

[−ρS, ρS ] =

[

−min
S⊆N

ρS, min
S⊆N

ρS

]

= [−ρmin, ρmin].

The conclusion follows.

Note here that if S = ∅, then R
∆S ,(3)
j (A) = 0 and R

∆S ,(3)
j (A) = R

(3)
j (A)

for any j ∈ N , which implies

1

2

(

R
∆S ,(3)
j (A) +

(

(R
∆S ,(3)
j (A))2 + 4R

(1)
i (A)R

∆S ,(3)
j (A)

)
1

2

)

=
(

R
(1)
i (A)R

(3)
j (A)

)
1

2

consequently,
ρS = ρ.

Hence,
ρmin = min

S⊆N
ρS ≤ ρ.

This gives the comparison of the intervals in Theorem 1 and Theorem 2 as
follows.
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Theorem 3. Let A = (aijk) ∈ R
n×n×n be a piezoelectric-type tensor, and λ

be a C-eigenvalue of A. Then

λ ∈ [−ρmin, ρmin] ⊆ [−ρ, ρ],

where ρ is defined in Theorem 1, and ρmin is defined in Theorem 2.

Remark 1. Theorem 3 shows that the interval [−ρmin, ρmin] captures all C-
eigenvalues of a piezoelectric-type tensor precisely than the interval [−ρ, ρ],
although ρmin needs more computations than ρ.

Similarly to Corollary 1, we can obtain easily the following upper bound
for the largest C-eigenvalue of a piezoelectric-type tensor by Theorem 2.

Corollary 2. Let A = (aijk) ∈ R
n×n×n be a piezoelectric-type tensor, and

λ∗ be the largest C-eigenvalue of A. Then

λ∗ ≤ ρmin.

3. Numerical examples

In this section, we give some examples to show the results obtained above.
Consider the eight piezoelectric tensors in [1];

(I) The piezoelectric tensor AV FeSb [1, 4], with its entries

a123 = a213 = a312 = −3.68180677,

and other elements are zeros;
(II) The piezoelectric tensor ASiO2

[1, 2, 3], with its entries

a111 = −a122 = −a212 = −0.13685, and a123 = −a213 = −0.009715,

and other elements are zeros;
(III) The piezoelectric tensor ACr2AgBiO8

[1, 4], with its entries

a123 = a213 = −0.22163, a113 = −a223 = 2.608665,

a311 = −a322 = 0.152485, and a312 = −0.37153,

and other elements are zeros;
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(IV) The piezoelectric tensor ARbTaO3
[1, 4], with its entries

a113 = a223 = −8.40955, a222 = −a212 = −a211 = −5.412525,

a311 = a322 = −4.3031, and a333 = −5.14766,

and other elements are zeros;
(V) The piezoelectric tensor ANaBiS2

[1, 4], with its entries

a113 = −8.90808, a223 = −0.00842, a311 = −7.11526,

a322 = −0.6222, and a333 = −7.93831,

and other elements are zeros;
(VI) The piezoelectric tensor ALiBiB2O5

[1, 4], with its entries

a123 = 2.35682, a112 = 0.34929, a211 = 0.16101, a222 = 0.12562,

a233 = 0.1361, a213 = −0.05587, a323 = 6.91074, and a312 = 2.57812,

and other elements are zeros;
(VII) The piezoelectric tensor AKBi2F7

[1, 4], with its entries

a111 = 12.64393, a122 = 1.08802, a133 = 4.14350, a123 = 1.59052,

a113 = 1.96801, a112 = 0.22465, a211 = 2.59187, a222 = 0.08263,

a233 = 0.81041, a223 = 0.51165, a213 = 0.71432, a212 = 0.10570,

a311 = 1.51254, a322 = 0.68235, a333 = −0.23019, a323 = 0.19013,

a313 = 0.39030, and a312 = 0.08381.

(VIII) The piezoelectric tensor ABaNiO3
[1, 4], with its entries

a113 = a223 = 0.038385, a311 = a322 = 6.89822, and a333 = 27.4628,

and other elements are zeros.
We now use the intervals in Theorem 1 and Theorem 2 to locate all C-

eigenvalues of the eight tensors above, see Table 1. It is easy to see that for
any C-eigenvalue λ,

λ ∈ [−ρmin, ρmin] ⊆ [−ρ, ρ].

AV FeSb ASiO2
ACr2AgBiO8

ARbTaO3
ANaBiS2

ALiBiB2O5
AKBi2F7

ABaNiO3

ρ 7.3636 0.2882 5.6606 30.0911 17.3288 15.2911 22.6896 38.8162
ρmin 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 35.3787
λ∗ 4.2514 0.1375 2.6258 12.4234 11.6674 7.7376 13.5021 27.4628

Table 1. The intervals [−ρ, ρ] and [−ρmin, ρmin], and λ∗ is the largest C-
eigenvalue.
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