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Abstract

Numerically obtaining the inverse of a function is a common task for many scientific problems,

often solved using a Newton iteration method. Here we describe an alternative scheme, based on

switching variables followed by spline interpolation, which can be applied to monotonic functions

under very general conditions. To optimize the algorithm, we designed a specific ultra-fast spline

routine. We also derive analytically the theoretical errors of the method and test it on examples

that are of interest in physics. In particular, we compute the real branch of Lambert’s W (y)

function, which is defined as the inverse of x exp(x), and we solve Kepler’s equation. In all cases,

our predictions for the theoretical errors are in excellent agreement with our numerical results, and

are smaller than what could be expected from the general error analysis of spline interpolation

by many orders of magnitude, namely by an astonishing 3 × 10−22 factor for the computation of

W in the range W (y) ∈ [0, 10], and by a factor 2 × 10−4 for Kepler’s problem. In our tests, this

scheme is much faster than Newton-Raphson’s method, by a factor in the range 10−4 to 10−3 for

the execution time in the examples, when the values of the inverse function over an entire interval

or for a large number of points are requested. For Kepler’s equation and tolerance 10−6 rad, the

algorithm outperforms Newton’s method for all values of the number of points N ≥ 2.
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I. INTRODUCTION

Many problems in science and technology require the inversion of a known nonlinear

function f(x). Widely studied examples include the inversion of elliptic integrals [1, 2], the

computation of Lambert W function [3, 4], and the solution of Kepler’s equation for the

orbital motion of a body in a gravitational field [5, 6].

In many cases, the inverse function cannot be found analytically, and numerical methods

must be used. Besides possible special procedures that may be found for specific forms of

f(x), the most popular numerical inversion schemes are those based on the Newton-Raphson

method for computing the zeros of a function [7] or some of its variants [8–11]. These schemes

are largely universal, i.e. they can be applied to a wide class of functions and converge very

rapidly, especially when the value of the inverse function at one given point is required,

rather than on an entire interval. However, they require a reasonably good first guess in

order to avoid problems of convergence, which may be a nontrivial issue in some cases, such

as in Kepler’s problem for values of the eccentricity close to one [12–14].

The rationale behind using the Newton-Raphson method is based on the fact that solving

the equation y = f(x) for x when the value of y is given is equivalent to the problem of

finding the zeros of the functions Fy(x) ≡ f(x) − y. If a good initial guess x0 of the true

value x = f−1(y) of the zero is available, the zeros of Fy can be computed by recursively

applying the equation xk+1 = xk − Fy(xk)

F ′
y(xk)

, i.e. xk+1 = xk +
y − f(xk)

f ′(xk)
.

Here, a Fast Switch and Spline Inversion (FSSI) scheme is described that does not require

an initial guess and can be applied under very general conditions provided the function f

is one-to-one. The basic idea underlying this method is remarkably simple, yet it can be

turned into a very powerful and accurate tool, as shall be demonstrated. Surprisingly, to

our knowledge, this scheme has not been explored in the published literature. Perhaps, this

may be due to an underappreciation of its rate of convergence, given the known bounds on

the precision of spline interpolation, and to the existence of standard alternatives such as

Newton’s method.

After describing the FSSI method, we derive theoretically a set of analytical expressions of

its error estimates, and show that they are much smaller than the limit that could be derived

by merely applying the existing spline analysis to this case. To optimize the algorithm,

we also designed a specific spline routine that makes the FSSI more accurate and much
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faster than using the known spline routines. We then test the scheme on several nonlinear

functions, and demonstrate that in all cases our theoretical predictions for the errors are in

excellent agreement with the numerical computations.

Based upon this error analysis and on the numerical computations, the FSSI is shown to

be a valid alternative to the Newton-Raphson method (and similar quasi-Newton minimiza-

tion methods) for computing values of inverse functions, especially if a good first approxima-

tion is difficult to obtain. Moreover, the FSSI is shown to be superior to Newton-Raphson

when the values f−1(y) of the inverse function are required for many different y points, or

over an entire interval. In the case of Kepler’s equation for orbital motion, FSSI is faster

than Newton and quasi-Newton methods when the position of the orbiting body must be

known at more than a few different instants, depending on the eccentricity e and the re-

quested precision. For example, for e = 0.8 and accuracy ∼ 10−6 rad, the FSSI algorithm

is already faster than Newton’s even when the computation is done at N = 2 points, and

∼ 2000 times faster for large N .

II. THE FAST SWITCH AND SPLINE INVERSION (FSSI) SCHEME

In what follows the FSSI method is described. Let f(x) be the input function, which is

presumed to be single valued (monotonic) in a given domain x ∈ [xmin, xmax]. The function

f(x) is assumed to be given analytically, but the case when it is known at discrete points

shall also be considered. The goal of the method is to obtain a numerical approximation for

the inverse function g(y) = f−1(y) in the co-domain.

The FSSI consists of a two step approach. First, when the input function is given an-

alytically, the values of f on a given grid of points xj, for j = 1, · · · , n, are computed to

obtain the matrix (xj, yj), where yj = f(xj). The matrix (yj, xj), obtained by switching the

arrays, gives then the exact values g(yj) = xj of the inverse function on the grid yj. From

this modified matrix, the cubic spline interpolant S(y) of (yj, g(yj)) is computed by using

a special routine that is designed in the next section. The resultant function S(y) is the

approximation of the inverse function.

FSSI can also be used when the function f(x) is specified on a grid by a set of tuples

(xj, yj). In a high-level programming language such as Python, this tuple array is represented

as (x, y), and the FSSI interpolant S(y) can be obtained by calling a cubic spline routine of
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the switched tuple array, S = CubicSpline(y, x). In this way, the object S in a high-level

computer language would act as a generator for points in the co-domain of f , giving the

inverse f−1.

Error

Domain of 
inverse:

Speed:

Output

Switch domains for spline

Evaluate on co-domain
on grid

analytic function 
and  

Vector values

Evaluate

Input

Calculate coefficients 
for spline of 

Build polynomial

Calculate breakpoints

OR

Figure 1: Flow diagram of the FSSI method for obtaining the function inverse f−1. The diagram

indicates the key steps of the method, as well as how it is interfaced to the input and output.

Figure 1 shows the flow of the FSSI algorithm, that could be implemented in any high-

level computer language. The central dotted box shows the two-step procedure of FSSI,

while the outer boxes show possible interfacing between input and output. In particular,

the input interface could accept two types of data: (1) a pointer to the analytic function

f(·) and its derivative f ′(·), together with a grid of n+ 1 points x, or (2) the discrete tuple

arrays (x, y), for the case when the function or its derivative are not known explicitly. At the

output, the procedure returns a generating function, whose precision as an approximation

of f−1 is determined by the number of points n + 1 of the input grid, and which is used

for sampling N points {Y1, · · · , YN} in the function’s co-domain. In subsequent sections, we

show that the FSSI algorithm has an error bound proportional to |k∆x|4, for k a constant

(described in the text), and with a maximal time complexity of O(1)+εO(N), where, beyond

some value of N , the second term dominates.

III. DESIGN OF A SPECIFIC ULTRA-FAST SPLINE FOR THE FSSI SCHEME

In many problems, the function f to be inverted is known analytically, along with its

derivative f ′. This is the case for Kepler’s equation and for all the other examples that we
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will consider hereafter. Therefore, we can profit from the knowledge of f ′ to design a specific

cubic spline S(y) interpolant for the FSSI algorithm.

The resulting spline makes the FSSI algorithm more accurate and much faster than calling

the spline routines that are currently available, which do not make use of the derivatives

of the input function. This huge difference in speed is due to the fact that most spline

routines require the numerical solution of a system of 4n coupled equations to compute the

4n coefficients of the spline [7], where n is the number of grid intervals. An exception is

Akima’s cubic spline [15, 16], which is fast, diagonal and regular.

The specific spline that is designed here is based on a similar idea to Akima’s, but it

is significantly more accurate than the latter, usually by three orders of magnitude in the

examples that we shall consider, and it is also faster. Its superior performance is due to

the fact that it uses the derivative f ′ as an input, unlike Akima’s. Of course, the usual

applications of splines are not meant for cases in which the function to be interpolated and

its derivative are given analytically. However, the situation is completely different in the

problem of the inversion of a function f(x). In this case, the derivatives g′(yj) = 1/f ′(xj)

can be given on a grid, while the values g(y) are not known.

Let us build the specific spline S(y) piecewise in each interval, S(y) = Sj(y) for yj < y <

yj+1, where j takes the values j = 0, · · · , n− 1. If we define the arrays y0 ≡ (y0, · · · , yn−1)

and y1 ≡ (y1, · · · , yn), obtained by removing the last and the first point of the y array,

respectively, then the j-th interval can also be written as y0j < y < y1j . In this interval, the

cubic spline can be defined as

Sj(y) =
3∑
q=0

cqj
(
y − y0j

)q
, (1)

where for each value of q = 1, · · · , 4 the coefficients cqj can also be thought as the n compo-

nents of an array cq.

Since the values of the derivative f ′(xj) of the input function are known on the grid

points, we can construct an array d whose n components are the derivatives of the inverse

function g on the points yj = f(xj),

dj ≡ g′(yj) =
1

f ′(xj)
, for j = 0, · · · , n. (2)

As we did for y, which was used to generate the arrays y1 and y2 by removing one end

point, it is convenient to define similar arrays of n components also from x and d, namely
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x0 ≡ (x0, · · · , xn−1), x1 ≡ (x1, · · · , xn), d0 ≡ (d0, · · · , dn−1), and d1 ≡ (d1, · · · , dn). With

this convention, we have to choose the spline coefficients that lead to the best approximation

of the inverse function g(y). The most natural choice is to force Sj to coincide with the known

values of the inverse function, x0j and x1j , at the end points, and to ask the same for the

derivatives d0j and d1j . In other words, the conditions to be imposed in each interval are,

Sj(y0j) = x0j , Sj(y1j) = x1j , S ′j(y0j) = d0j , S ′j(y1j) = d1j , (3)

where Sj(y) is given by equation 1.

For every fixed value of j, these conditions give a system of four equations for the four

unknown coefficients c0j , c1j , c2j and c3j , which is decoupled from the similar systems of

equations corresponding to different values of j. As we have mentioned above, this is an

important advantage, as compared with most of the other cubic spline interpolation methods,

which must solve systems of 4n coupled equations to compute the coefficients [7], with the

exception of Akima’s. We can expect that this will make the FSSI algorithm using this

spline much faster than using the alternative ones, and this is also what we have found

numerically.

In fact, the system of equations (3) for a fixed j can be solved analytically in a straight-

forward way, and then implemented numerically in a completely diagonal form. In order

to write the solution in a compact form, we will use a convention for vector arrays that is

common in computer languages like python: an equation for arrays is interpreted in terms

of components in such a way that an equality like, e.g., u = v∗w+2∗z
s

between vectors having

the same number of elements represents the equations uj =
vjwj+2zj

sj
for every j. With this

convention, equations (3) give the solution

c0 = x0,

c1 = d0,

c2 =
(2 ∗ d0 + d1) ∗ (y0 − y1)− 3 ∗ (x0 − x1)

(y0 − y1)2
,

c3 =
(d0 + d1) ∗ (y0 − y1)− 2 ∗ (x0 − x1)

(y0 − y1)3
. (4)

This result can be used when the function f(x) and his derivative are known on the

whole interval in which the inversion is required. If the second derivative is also known, by

adding the additional conditions S ′′j (y0j) = d0j and S ′′j (y1j) = d1j to equation (3) we can also

6



design a diagonal quintic spline, and if also the third derivatives are known the additional

conditions S ′′′j (y0j) = d0j and S ′′′j (y1j) = d1j allow for the construction of a septic spline. We

have done this in both cases for the FSSI algorithm, and checked in the examples that, for

a given accuracy, the resulting versions of the method perform slightly worse than with the

cubic spline as designed above. Therefore, the latter will be taken as the optimal specific

spline for FSSI.

IV. COMPUTATION OF THE THEORETICAL ERROR

In this section, the predicted theoretical error of the FSSI is developed for the case of

an input function f that is continuous and having continuous derivatives up to at least the

fifth degree.

Note that this error analysis not only works for the cubic spline that we have designed

in the previous section, but also holds when the FSSI method is implemented with most

known cubic spline routines. The main differences between the use of a cubic spline routine

or the other are the speed and the accuracy very close to the end points of the y domain.

In both these aspects, the FSSI performs better with the spline of section III than with the

others.

A. Derivation of an upper bound on the error of the FSSI by using the known

analysis of cubic spline interpolation

Following Ref. [7, 17], we can compute an upper bound for the error of the cubic spline

S(y), used to interpolate the function g(y), from the formula

|g(y)− S(y)| ≤ 1

384
M µ, (5)

where M = max
ymin≤y≤ymax

∣∣g(4)(y)
∣∣, and µ = max

0≤j≤n−1
(yj+1 − yj)4.

In our case, g(y) is the inverse of the input function f(x), therefore it is convenient to

express this error in terms of f(x) and its derivatives. The M term becomes,

M = max
x0≤x≤xn

∣∣∣∣−15f ′′(x)3

f ′(x)7
+

10f (3)(x)f ′′(x)

f ′(x)6
− f (4)(x)

f ′(x)5

∣∣∣∣ . (6)

Equations (5) and (6), along with the definition of µ, can be used to obtain an upper

limit on the error. As shown in examples below, the actual errors are several orders of
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magnitude smaller than this upper bound. In other words, the method converges much

more rapidly than expected. Therefore, it is of great interest to obtain a more accurate,

albeit approximate, analytical estimate of the error of FSSI , and check its consistency in

examples. This is done in the next subsection.

B. Ab initio derivation of an improved estimation of the error for the FSSI

Let us assume that the function g(y) is infinitely differentiable. Thus, it can be expanded

in a Taylor series g(y) =
∑∞

q=0
g(q)(yj)

q!
(y−yj)n around one of the points of the grid yj = f(xj),

chosen to be the closest grid point to y, so that |y−yj| ≤ |y−yj+1| and |y−yj| ≤ |y−yj−1|.

We also assume that the cubic spline interpolation is made in such a way so that it is

equivalent to the first terms of this Taylor expansion, expanded around the same point and

truncated beyond cubic order, S(y) =
∑3

q=0
g(q)(yj)

q!
(y − yj)q . Therefore, the difference is

|g(y)− S(y)| =

∣∣∣∣∣
∞∑
q=4

g(q)(yj)

n!
(y − yj)n

∣∣∣∣∣ =

∣∣∣∣g(4)(ȳj)

4!
(y − yj)4

∣∣∣∣ ≈ ∣∣∣∣g(4)(yj)

4!
(y − yj)4

∣∣∣∣ , (7)

where ȳj is an unknown intermediate point between y and yj, and the last approximation is

expected to hold for sufficiently small values of |y− yj|, which is the case when a sufficiently

high number of grid points is chosen.

On one hand, the exact equality in equation (7) can be translated in the following bound,

|g(y)− S(y)| ≤ max
ymin≤ȳ≤ymax

∣∣∣∣g(4)(ȳ)

4!

∣∣∣∣ max
0≤j≤n−1

∣∣∣∣yj+1 − yj
2

∣∣∣∣4 =
1

384
M µ, (8)

which does not use the information that g is the inverse function of f , and coincides with

the limit of equations (5) and (6). The factor 2 dividing the interval yj+1 − yj is due to the

fact that yj was chosen as the closest grid point to y, so that |y − yj| ≤
∣∣yj+1−yj

2

∣∣.
On the other hand, equation (7) can be elaborated further and expressed in terms of the

function f(x),

|g(y)− S(y)| ≈ 1

4!

∣∣∣∣[−15f ′′(xj)
3

f ′(xj)7
+

10f (3)(xj)f
′′(xj)

f ′(xj)6
− f (4)(xj)

f ′(xj)5

]
[f ′(xj)(x− xj)]4

∣∣∣∣ ,
where x = g(y) and y − yj ≈ f ′(xj)(x − xj). The last approximation is expected to be

accurate over the entire interval provided the following condition

max
0≤j≤n−1

|xj+1 − xj| max
x0≤x≤xn

∣∣∣∣ f ′′(x)

2f ′(x)

∣∣∣∣� 1 (9)
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is satisfied.

Assuming that the point xj is the one closest to x, so that |x− xj| ≤ max
0≤j≤n−1

∣∣xj+1−xj
2

∣∣,
the following estimation is obtained

|g(y)− S(y)| / 1

384
max

0≤j≤n−1
|xj+1 − xj|4× (10)

max
x0≤x≤xn

∣∣∣∣−15f ′′(x)3

f ′(x)3
+

10f (3)(x)f ′′(x)

f ′(x)2
− f (4)(x)

f ′(x)

∣∣∣∣ .
As described in the next section, this error approximation is usually much smaller, pos-

sibly by many orders of magnitude, than the limit of equations (5) and (6) that we derived

using existing literature on cubic spline interpolation. In fact, equation (10) can be expected

to be a good approximation if the number of grid points n is large enough and it satisfies

the condition (9). The examples in the next section show that this is indeed the case.

Finally, we note that, for an equally spaced xj grid, we can substitute

max
0≤j≤n−1

|xj+1 − xj| = xn−x0
n

in the condition (9), and max
0≤j≤n−1

|xj+1 − xj|4 = (xn−x0)4

n4 in the

estimation of the error (10). Not only is this the simplest choice, if the grid is not given

otherwise, but it is usually also the best option. In fact, when |xj+1 − xj|4 = (xn−x0)4

n4 for

every j, the grid values of the inverse function, where g is known exactly, are also equally

spaced. As a result, the error is distributed uniformly across the entire interval (as seen in

the examples below).

V. EXAMPLES

Here, the FSSI is applied to examples of interest involving nonlinear functions f(x),

defined over a domain x0 ≤ x ≤ xn. For the numerical computation, we developed a python

code that implements the FSSI as well as other Newton-based function inverse solvers.

Once the numerical interpolation S(y) of the inverse function is obtained, the numerical

errors are computed by evaluating S(y) − S(f(S(y))). In the first example, in which the

exact inverse function g(y) is known, we also provide an additional evaluation of the error by

computing the difference S(y)− g(y). In both cases, we use a grid Yk that contains 10 times

as many points as the original grid yj = f(xj). In fact, by construction S(y) is exactly equal

to g(y)–within machine errors–over the original grid yj, so it is important to ensure that

S(y) is compared with g(y) in between the grid points yj. It is true that even if they were

equal in number the points Yk, chosen to be equally spaced, would not coincide in general
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with the yj, whose spacing is variable and roughly proportional to f ′(g(y)); however, the

election of ten times more points is more conservative. In this way, if the number of original

grid points is large enough, a reasonable evaluation of the error is guaranteed. In fact, the

examples show that when the exact analytic inverse function g(y) is known, the difference

S(y) − g(y) has the same behaviour and magnitude of oscillations as S(y) − S(f(S(y))).

Moreover, the estimates are also in excellent agreement with the theoretical predictions for

the error from equation (10).

In all the examples, we use an equally spaced input grid in x, which is expected to be

the best choice in most cases, as we have discussed in the previous section. The spline

routine used to implement the FSSI scheme is the specific one we have designed in section

III. However, we have also checked that similar results are obtained by calling other splines

routines that do not take the derivatives of f as an input, such as Scipy cubic spline routines

[18, 19]. The errors in the bulk of the y interval with most of those routines are very similar

to each other, except very close to the boundary points, where they can be larger by an

order of magnitude than those obtained using our specific spline. An exception is Akima

routine [16], which is less accurate by three orders of magnitude in the bulk of the interval.

This is an additional reason for preferring our specific spline, besides the fact that it is the

fastest one.

A. Exponential

The first function considered is f(x) = exp(x). Of course, in this case the exact inverse

function is known analytically, g(y) = ln(y), thereby serving as a validation check of our

scheme.

For this case, the quantities M and µ, from the bounds expressions of (5) and (6), can

be readily computed. The results are,

M = max
x0≤x≤xn

6e−4x = 6e−4x0 , (11)

and

µ =

(
xn − x0

n

)4

max
x0≤x≤xn

e4x =

(
xn − x0

n

)4

e4xn , (12)

so that the bound on the error as computed from equations (5) and (6) is

|g(y)− S(y)| ≤ 6

384

(
xn − x0

n

)4

e4(xn−x0). (13)
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On the other hand, the analytic estimation we derived in Equation (10) gives

|g(y)− S(y)| / 6

384

(
xn − x0

n

)4

. (14)

Therefore, this analytic error approximation of FSSI is smaller by a factor e−4(xn−x0) as

compared to the limit that was derived in equation (13) by applying the standard cubic spline

error bound. For example, if xn − x0 = 10, then our error estimation is a factor exp(−40),

i.e. 17 orders of magnitude, smaller than what could be expected from the literature. In

order to benefit by this accuracy improvement, the grid must be chosen in such a way that

the condition (9) is satisfied, i.e.

xn − x0

n

∣∣∣∣ f ′′(x)

2f ′(x)

∣∣∣∣ =
xn − x0

2n
� 1. (15)

If this condition on the number of grid points n is met, our improved estimation of the

error (14) can be expected to be a good approximation. For instance, if x ∈ [0, 10], the

condition becomes n� 5, so that values of n of the order of 50 or larger could be sufficient.

This is also what we have observed by performing numerical computations for different

values of n. In general, for n & 50, equation (14) gives a correct estimate for the error over

the entire interval.

Figure 2 shows the result of the FSSI for the inversion of f(x) = exp(x) over the domain

x ∈ [0, 10] using n = 102 grid points. In this case, our theoretical prediction of Equation

(14) gives |g(y) − S(y)| / 1.6 × 10−6, which is in excellent agreement with the numerical

computation over the entire interval. The results for this case also confirm the theoretical

prediction that FSSI is 17 orders of magnitude more accurate than what could be expected

by naively applying the general results for cubic splines, as in equation (13). An important

feature of Figure 2 is that the error is distributed uniformly across the interval. As discussed

previously, this is a consequence of choosing an equally spaced grid for x.

B. Lambert W function

Let f(x) = x exp(x), whose inverse function g(y) in the real domain is the principal

branch of Lambert’s W function, W (y) [3, 4]. In this case, the FSSI interpolation S(y) can

be compared with the values of W (y) that are computed with other methods. The values
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Figure 2: Result of the FSSI applied to the function f(x) = exp(x) (top left) over the domain

x ∈ [0, 10]. The FSSI interpolant S(y) is shown for n = 102 grid points (top right), together with

two independent evaluations of the numerical errors: i) |S(y) − f−1(y)|, where f−1(y) = ln(y)

(bottom left); ii) |S(y)− S(f(S(y)))| (bottom right).

of M and µ from equations (5) and (6) for the theoretical bound are,

M = max
x0≤x≤xn

∣∣∣∣∣−15 (exx+ 2ex)3

(exx+ ex)7 +
10 (exx+ 3ex) (exx+ 2ex)

(exx+ ex)6 − exx+ 4ex

(exx+ ex)5

∣∣∣∣∣ , (16)

which is a monotonically decreasing function for x > −1, and

µ =

(
xn − x0

n

)4

max
x0≤x≤xn

|exx+ ex|4 , (17)

which increases monotonically. Therefore, the bound (5) becomes

|g(y)− S(y)| ≤ 1

384
µ(x = xn)M(x = x0). (18)

For example, over the domain x ∈ [0, 10] this gives |g(y)− S(y)| / 5.7× 1020
(
xn−x0
n

)4
.

On the other hand, our analytical estimation from Equation (10) becomes

|g(y)− S(y)| / 1

384

(
xn − x0

n

)4

× (19)

max
x0≤x≤xn

∣∣∣∣∣−15 (exx+ 2ex)3

(exx+ ex)3 +
10 (exx+ 3ex) (exx+ 2ex)

(exx+ ex)2 − exx+ 4ex

exx+ ex

∣∣∣∣∣ .
12



The function to be maximized in equation (19) monotonically decreases for x > −1, so

that its maximum is achieved for x = x0. Thus, over the domain x ∈ [0, 10] our estimate of

the error (19) gives |g(y)− S(y)| / 0.17
(
xn−x0
n

)4
, which is 3× 10−22 times smaller than the

bound (18) that is obtained by applying the standard spline error analysis, as in equation

(5). In this case, the condition (9) for the applicability of our approximation (19) becomes

n� x0 − xn
2

max
x0≤x≤xn

∣∣∣∣x+ 2

x+ 1

∣∣∣∣ = 10, (20)

which is a surprisingly low value, for such a huge variation of f .

Figure 3: Numerical result of the FSSI applied to the function f(x) = x exp(x) (top left) over the

domain x ∈ [0, 10]. The FSSI interpolant S(y) is shown for n = 102 grid points (top right), together

with two independent evaluations of the numerical errors: i) |S(y)−f−1(y)|, where f−1(y) = WS(y)

as computed with scipy.special.lambertw routine (bottom left); ii) |S(y) − S(f(S(y)))| (bottom

right).

Figure 3 shows the numerical result of the FSSI inversion of f(x) = x exp(x) in the

domain x ∈ [0, 10] using n = 102 grid points. Two independent evaluations of the nu-

merical errors are given: i) |S(y) − f−1(y)|, where f−1(y) = WS(y) as computed with

scipy.special.lambertw routine; ii) |S(y) − S(f(S(y)))|. The fact that they agree with each

other provides confirmation concerning our treatments of the errors. Moreover, in this case

13



our theoretical prediction of Equation (19) gives |g(y) − S(y)| / 1.7 × 10−5, and the nu-

merical error not only agrees with it, but it is even much smaller, by almost an order of

magnitude, |g(y) − S(y)|numerical < 2.5 × 10−6 over the entire interval. In this case, FSSI is

more accurate by an astonishing factor 4 × 10−23 than what could be expected by naively

applying the general results for cubic splines, as in equation (18).

C. Kepler’s equation

Kepler’s equation for an elliptical orbital motion of eccentricity e can be written as

y = x− e sinx, (21)

where y and x represent the so-called mean and eccentric anomaly, respectively [5, 6]. The

former is the time elapsed since periapsis, as measured in radians, y = 2πt
T

, where T is the

period of the orbit. The eccentric anomaly x is related to the angle θ between the position

vectors at periapsis and at time t, with origin in the center of gravity, through the equation

θ = 2 arctan

(√
1 + e

1− e
tan

x

2

)
. (22)

A fundamental problem in orbital dynamics [5, 6] is to obtain the time dependence of the

angle θ describing the position of the orbiting body at time t, which requires the inversion of

the function y = f(x) ≡ x− e sinx. Taking into account that the orbit is periodic, and that

for x ∈ [π, 2π] we have f(x) = 2π − f(2π − x), it is sufficient to consider only the interval

x ∈ [0, π] to obtain the behavior for all values of x. The corresponding co-domain is then

y ∈ [0, π] [5, 6].

The inverse function x = g(y) will yield the eccentric anomaly as a function of the mean

anomaly, and thus the evolution θ(t) will be obtained. This is usually done in an efficient

way using Newton’s method with the first guess x0 = y + e/2 [5, 6, 8].

Here, FSSI is considered as an alternative to Newton-based methods for solving Kepler’s

equation. In this case, the values of M and µ in the theoretical bound of equations (5) and

(6) are

M = max
0≤x≤π

∣∣∣∣− 15e3 sin3 x

(1− e cosx)7
+

10e2 sinx cosx

(1− e cosx)6
+

e sinx

(1− e cosx)5

∣∣∣∣ (23)

and

µ =
(π
n

)4

max
0≤x≤π

|1− e cosx|4 . (24)
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As a concrete example, the case of e = 0.8 is considered. Thus, the maximum values

are M = 10275.1, which is obtained for x = 0.166, and µ = |1 + ec|4
(
π
n

)4
= 10.4976

(
π
n

)4
,

obtained for x = π. Therefore the bound (5) becomes

|g(y)− S(y)| . 2.7× 104

n4
. (25)

However, the expression from our analytic estimation from Equation (10) becomes

|g(y)− S(y)| / 1

384

(π
n

)4

max
0≤x≤π

∣∣∣∣− 15e3 sin3 x

(1− e cosx)3
+

10e2 sinx cosx

(1− e cosx)2
+

e sinx

1− e cosx

∣∣∣∣ . (26)

For e = 0.8, the expression in the | | bracket has a maximum value 21.586 obtained for

x=0.214657, therefore we obtain

|g(y)− S(y)| / 5.5

n4
. (27)

Thus, our estimation for the theoretical error (27) in this case is 2 × 10−4 smaller than

what could be expected by naively applying the known bounds on cubic spline interpolation.

Here, the condition (9) for the applicability of our approximation (27) becomes

n� π e

2
max

0≤x≤π

∣∣∣∣ sinx

1− e cosx

∣∣∣∣ ' 2. (28)

As a result, for Kepler problem, the FSSI method and the estimation (27) start to be reliable

for n as small as the order of ten.

Figures 4 and 5 show the result of the FSSI for the inversion of f(x) = x − 0.8 sinx

over the domain x ∈ [0, π] using n = 10 and n = 102 grid points, respectively. In these

cases, our theoretical prediction of Equation (27) gives |g(y)−S(y)| / 5.5× (10−4 or 10−8),

respectively, in excellent agreement with our numerical computation over the entire interval.

Again, we provide two independent numerical computations of the error, one obtained

by plotting the difference of the FSSI interpolation with the values of gN(y) obtained with

Newton’s method, and the other given by the difference S(y) − S(f(S(y))). The fact that

these evaluations of the error also agree with each other is a further confirmation of the

validity of our error analysis.

By comparing figures 4 and 5, we also see that the accuracy scales with n−4, as equation

(27) predicts, and that our estimation for the error is reliable even for just n = 10 grid

points.
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Figure 4: Numerical result of the FSSI applied to the function f(x) = x−0.8 sinx over the domain

x ∈ [0, π] (top left), corresponding to Kepler’s equation for an elliptical orbit of eccentricity 0.8. The

FSSI interpolant S(y) is shown for n = 10 grid points (top right), together with two independent

evaluations of the numerical errors: i) |S(y) − gN(y)|, where gN(y) is computed with Newton’s

method (bottom left); ii) |S(y)− S(f(S(y)))| (bottom right).

VI. NUMERICAL COMPARISONS WITH NEWTON-BASED METHODS

Apart from the numerical calculations for error analysis, we carried out numerical com-

parisons between FSSI and Newton-based methods (as well as the scipy.lambertw, for the

case of Lambert W calculation) for calculating the inverse of single-valued functions. As

in the examples of the previous section, the FSSI and Newton-based methods were imple-

mented in the Python programming language, respecting standard practice of minimizing

loops and relying upon library function calls (that depend upon compiled code). When

possible, we also tested accelerating all methods with Numba JIT compilation, however we

found that no considerable difference in empirical execution times could be appreciated.

The algorithms 1 and 2 provide the steps of the FSSI method and the generalized Newton-

Raphson method, respectively, used in the benchmark comparisons. This simple version of

Newton-Raphson method has been shown to be almost as fast as more elaborate versions,
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Figure 5: Numerical result of the FSSI applied to the function f(x) = x−0.8 sinx over the domain

x ∈ [0, π] (top left), corresponding to Kepler’s equation for an elliptical orbit of eccentricity 0.8. The

FSSI interpolant S(y) is shown for n = 102 grid points (top right), together with two independent

evaluations of the numerical errors: i) |S(y) − gN(y)|, where gN(y) is computed with Newton’s

method (bottom left); ii) |S(y)− S(f(S(y)))| (bottom right).

the difference in the execution times being usually below ∼ 30% [11].
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Algorithm 1 Benchmark for FSSI

1: procedure bench FSSI(Y,x, f(x), f ′(x))

2: y = f(x)

3: d = 1
f ′(x)

4: c0 = x[: −1]

5: c1 = d[: −1]

6: d1 = d[1 :]

7: xx = c0 − x[1 :]

8: y0 = y[: −1]

9: y1 = y[1 :]

10: yy = y0− y1

11: yy2 = yy ∗ yy

12: yd1 = yy ∗ d1

13: yd0 = yy ∗ c1

14: c2 = 2∗yd0+yd1−3∗xx
yy2

15: c3 = yd0+yd1−2∗xx
yy2∗yy

16: call P: X = P((c3, c2, c1, c0),Y)

17: return X . =f−1(Y)

18: end procedure

Algorithm 2 Benchmark for Newton
1: procedure

bench Newton(Y, f(x), f ′(x), tol)

2: for Yk in Y do

3: Xk = g0(Yk)

4: ∆ =
∣∣∣Yk−f(Xk)

f ′(Xk)

∣∣∣
5: while ∆ > tol do

6: γ = Yk−f(Xk)
f ′(Xk)

7: Xk = Xk + γ

8: ∆ = |γ|

9: end while

10: end for

11: return X .=f−1(Y)

12: end procedure

In algorithm 2, we have called g0(Yk) the initial guess for Newton’s method as a function

of Y , which is to be chosen depending on the problem considered.

In algorithm 1, we have followed the conventions of section III for the arrays, which are

indicated in boldface. Accordingly, the operations involving them are to be understood to

be valid for the components, i.e. they run over {i = 0, n} or over {i = 1, n}, for lowercase

arrays, or over {i = 1, N}, for uppercase arrays. An exception are the expressions v[1 :] and

v[: −1], which mean the removal of the first or the last element from v, respectively.

In Python, the piecewise polynomial function P , corresponding to equation (1), can be

obtained in terms of the breakpoints and the coefficients cq using the subroutine PPoly

[20], so that P = PPoly. Another possibility is to write an explicit subroutine for com-

puting the polynomial, in which the insertion points j are located by binary search using
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scipy.searchsorted [21]. The two possibilities are shown below:

Subroutine P for FSSI PPoly in Python

1: function P((c3, c2, c1, c0), Y )

2: P = scipy.PPoly

3: end function

Subroutine P for FSSI Search in Python

1: function P((c3, c2, c1, c0),Y)

2: j = numpy.searchsorted(y1,Y)

3: P1 = Y − y0j

4: P2 = P1 ∗P1

5: S = coj
+c1j

∗P1+c2j
∗P2+c3j

∗P2∗P1

6: return S

7: end function

A discrete analysis of the algorithms 1 and 2 shows that the FSSI executes in constant

time O(1), because once the spline coefficients are obtained with a grid given by n points,

all subsequent N function evaluations are equivalent array access through the generating

function. However, when N is large, finite cache sizes and the search of the breakpoints

overtake this behavior, so that the algorithm follows a linear time dependence O(N) [22, 23].

In other words, the execution time can be written as ∆tFSSI PPoly ' εN + η and

∆tFSSI Search ' βN + α, for the python implementations of FSSI with PPoly or Search-

sorted, respectively. As we show below, ∆tFSSI PPoly < ∆tFSSI Search for large N , typically

N & 104, and ∆tFSSI PPoly > ∆tFSSI Search for lower values of N . We can then merge the two

python routines for P, algorithms FSSI Search and FSSI PPoly, by choosing the fastest one

with an if statement, e.g. if N > 104 do PPoly, else do the routine with searchsorted. The

execution time for this combined routine is ∆t ' α+ εN , i.e. it behaves as O(1) + εO(N).

On the other hand, for the Newton minimization based methods, all evaluations of the

function inverse occur with an average number of iterations, m (as seen in the while loop of

lines 6-10), therefore, these algorithms have a lower bound linear time behavior O(mN) for

all values of N .

To obtain an empirical execution time comparison between methods, we ran the bench-

marks for two cases: the calculation of the Lambert W function, and the solution of Kepler’s

problem.

The details of the numerical comparison are as follows:

• Hardware: The numerical comparisons were carried out on a modest desktop computer
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(a 64 bit Intel i5-2400 CPU 3.10GHz, with 32GB memory, and with the Ubuntu/Linux

operating system with 4.13.16 kernel).

• Tolerance: For each case the same level as the error of the FSSI in this case: For the

Lambert W problem, we used a tolerance 2× 103/n4 for scipy.lambertw and Newton;

For the Kepler solution, we used a tolerance 6/n4 for Newton and Pynverse [24] quasi-

Newton method.

• For Lambert W, we chose the simplest first guess, g0(Yk) = x0+xn
2

= 5. Of course,

better choices may be found, but we want to use this case to compare FSSI and Newton

in the absence of a good first guess. On the other hand, we also penalize the FSSI

method by taking the tolerance for Newton-based methods equal to the theoretical

error of FSSI, which overestimates the numerical error by an order of magnitude as

shown in section V.

• In the case of Kepler’s equation, we take e = 0.8 and we use a very good first guess,

g0(Yk) = Yk + e
2
, as was mentioned in section V.

Figure 6 shows empirical execution time comparisons between different numerical algo-

rithms and FSSI for calculating Lambert W and for solving Kepler’s equation. The results

support the theoretical expectations described above. For the FSSI method, there is a wide

range of N values for which the O(N) behavior is negligible as compared with the O(1)

behavior; however for very large N , when the O(N) part dominates, the linear coefficient ε

is several orders of magnitude smaller than those of the other methods available.

In all the cases, Pynverse [24] (based on a quasi-newton optimization) is much slower

than the other methods considered, which is not a surprise since it is meant to be universal,

rather than fast. Therefore, we will limit our discussion to the comparison between FSSI

and Newton-Raphson methods. As we see from figure 6, FSSI is not only universal, but it

is also fast, and for large N it is the fastest method.

These results have been used to obtain linear fits to the data. For example, for Kepler’s

problem with n = 50, corresponding to tolerance 10−6 rad (which can be a sufficient accuracy

for orbit determination in many cases), we found ∆tFSSI PPoly ' 2.1 × 10−8N + 1.9 × 10−4

and ∆tFSSI Search ' 5.3 × 10−8N + 7.2 × 10−5. These values of the coefficients have been

obtained by separate fits to the low N data, for η and α, and to the high N data, for ε and
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Figure 6: Numerical comparisons of FSSI and other methods for the solution of Kepler’s equation

(top) and computation of the Lambert W function (bottom). FSSI p and FSSI s stand for the

algorithm using PPoly or Searchsorted subroutines, respectively.

β, in order to get the best estimates in these regimes, so that the approximation is slightly

worse for 103 . N . 104.

In any case, as shown in figure 6, FSSI PPoly is faster than FSSI Search for N & 104

and slower for N . 104. By choosing the best of the two variants with an if statement, we

obtain a combined behavior ∆tFSSI ' 2.1× 10−8N + 7.2× 10−5. This should be compared

with the execution time for Newton-Raphson method, ∆tNewton = 4.2×10−5N . We find that

∆tNewton > ∆tFSSI for every N ≥ 2, and that FSSI is ∼ 2×103 faster than Newton-Raphson

for large N .

Similarly, for Kepler’s problem with n = 104, corresponding to tolerance 6×10−16 rad, we

obtain a combined behavior ∆tFSSI ' 2.1×10−8N+1.1×10−3 while ∆tNewton = 5.0×10−5N .

We find that ∆tNewton > ∆tFSSI for every N & 20, and that FSSI is still ∼ 2 × 103 faster

than Newton-Raphson for large N .

For Lambert W with n = 50, corresponding to tolerance 3× 10−4, we obtain a combined

behavior ∆tFSSI ' 2.1 × 10−8N + 6.2 × 10−5 while ∆tNewton = 1.3 × 10−4N . We find that

∆tNewton > ∆tFSSI for every N , and that FSSI is ∼ 6×103 faster than Newton-Raphson for
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large N . This shows that, in the lack of a good first guess, FSSI can be better than Newton-

Raphson method for every value of N . Of course, for small N the specific, semi-analytic

routine scipy.lambertw [25], having ∆tscipy LambertW = 3.8 × 10−7N outperforms the FSSI,

but surprisingly the opposite is true in the large N regime, in which FSSI is ∼ 20 times

faster than scipy.lambertw.

Finally, for Lambert W with n = 104, corresponding to tolerance 2 × 10−13, we obtain

a combined behavior ∆tFSSI ' 2.1 × 10−8N + 1.1 × 10−3 while ∆tNewton = 1.3 × 10−4N .

We find that ∆tNewton > ∆tFSSI for every N & 8, and that FSSI is ∼ 7 × 103 faster than

Newton-Raphson for large N . This shows that, in the lack of a good first guess, FSSI

is much better than Newton-Raphson method for every value of N . Again, for large N ,

∆tFSSI < ∆tscipy LambertW = 3.8× 10−7N by a factor ∼ 20.

Note that the values of the FSSI execution times are almost equal for Kepler and Lambert

problems with the same values of n and N . The fact that the method performs at the same

speed when applied to functions that are very different from each other is a further proof of

its universality.

VII. CONCLUSIONS

In this study, we described a scheme, called FSSI, based on switch and spline to invert

monotonic functions under very general conditions. Moreover, we derived analytical expres-

sions for the associated theoretical errors of this method, and tested it on examples that are

of interest in physics, including the computation of Lambert W function and the solution of

Kepler’s equation. As a summary, the FSSI method has several advantages over other more

standard techniques for inverting functions:

• It is simple and universal and, unlike Newton methods, it does not require any initial

guess.

• The error is much smaller than what could be expected from general spline analysis,

by a ∼ 10−22 factor for W ∈ [0, 10] or by a factor 2× 10−4 for Kepler problem.

• This scheme is superior to, and much faster than, Newton-Raphson method when the

latter is difficult to apply, when no good first guess is available, or when the values of
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the inverse function are required on an entire interval or in a large number of different

points.

• When applied to Kepler’s problem (e.g. with eccentricity e = 0.8), FSSI becomes

faster than Newton’s methods for N greater than a few points, and is ∼ 2× 103 times

faster for large N . If the requested accuracy is of the order of 10−6 rad, which is a

low enough value for most applications, the speed of the FSSI algorithm is faster than

Newton’s for N ≥ 2.

• The N dependence of the scheme can be described as O(1)+εO(N). For a wide range

of N values, the O(N) behavior is negligible as compared with the O(1) behavior;

however for very large N , when the O(N) part dominates, the linear coefficient ε is

several orders of magnitude smaller than those of the other methods available.

For all these reasons, we believe that this method could become a competitive choice for

inverting functions in a wide range of applications, and the first choice for solving Kepler’s

equation.
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