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Abstract. This paper considers the p (p = 1, 2, 3) order numerical differentiation

on function y in (0, 2π). They are transformed into corresponding Fredholm integral

equation of the first kind. Computational schemes with analytic solution formulas are

designed using Galerkin method on trigonometric basis. Convergence and divergence

are all analysed in Corollaries 5.1, 5.2, and a-priori error estimate is uniformly obtained

in Theorem 6.1, 7.1, 7.2. Therefore, the algorithm achieves the optimal convergence

rate O(δ
2µ

2µ+1 ) (µ = 1

2
or 1) with periodic Sobolev source condition of order 2µp.

Besides, we indicate a noise-independent a-priori parameter choice when the function

y possesses the form of
p−1
∑

k=0

akt
k +

N1
∑

k=1

bk cos kt+

N2
∑

k=1

ck sinkt, bN1
, cN2

6= 0,

In particular, in numerical differentiations for functions above, good filtering effect

(error approaches 0) is displayed with corresponding parameter choice. In addition,

several numerical examples are given to show that even derivatives with discontinuity

can be recovered well.

1. Introduction

Numerical differentiation is a classical ill-posed problem which arises in different

practical fields, such as option pricing, thermodynamics and photoelectric response (See

e.g. [4,11,13-16,25]). In process of numerical differentiation on a given function y(x)

of specific smoothness, always there would interfuse with a noise δy in measurement

or calculations. For this sake, it is routine to do numerical differentiation on the noisy

function yδ := y + δy, where the high frequency part in δy would bring uncontrolled

huge error when computing with traditional numerical algorithms. In order to overcome

the difficulties of ill-posedness, several kinds of regularization method were introduced.

Tikhonov method (See [8,11,12,17,26-28]) is a classical regularization method for

numerical differentiation of first order. It is generally modeled that, for x ∈ [0, 1] with

a grid ∆ = {0 = x0 < x1 < · · · < xn = 1} and h = maxi xi+1 − xi being its mesh size,

given finite noisy samples ỹi of y(xi) such that |ỹi − y(xi)| ≤ δ. Assume that ỹ0, ỹn are

http://arxiv.org/abs/1903.03978v8
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exactly known boundary data, that is, ỹ0 = y(0), ỹn = y(1). Then minimizing the cost

functional

Ψ[f ] :=
1

n− 1

n−1
∑

i=1

(ỹi − f(xi))
2 + α‖f ′′‖2

in {f ∈ H2(0, 1) : f(0) = y(0), f(1) = y(0)} gives minimizer fα. Afterward

differentiating this minimizer gives f ′
α as the regularized solution to the exact derivative

y′ with appropriate parameter choice α = α(δ). Further results illustrate that f ′
α(δ)

can converge to y′ with best rate O(
√
δ) with parameter choice for α = δ2 (See [28]).

However, we note that the penalty term ‖f ′′‖ in cost functional basically demand

that the all candidate solutions f ′
α must be at least H1 smooth and further result

in [27,28] illustrates that, for y ∈ C[0, 1]/H2(0, 1), under specific parameter choice

α = δ2, the upper bound for ‖f ′
δ2 − y′‖ must tend to infinity as δ, h → 0. Thus this

algorithm naturally deny to recover derivative with regularity less than H1, especially

discontinuous derivative.

Difference method [4,23] is another classical regularization method for numerical

differentiation (including higher orders). It constructs difference quotient of p order as

regularized solution to exact derivatives y(p) with the stepsize h being the regularization

parameter. The convergence of this scheme is established in L∞ setting and will basically

demand that y′ ∈ C0,α, α > 0 (See [4]) which also deny to recover derivatives that are

only continuous and discontinuous. Furthermore, the best convergence rate O(δ
2
3 ) and

O(δ
1
3 ) for first and second order numerical differentiation are derived with h = O(δ

1
3 )

respectively. But we need note the essential flaw in this algorithm that the numerical

derivatives constructed by this algorithm will lose its smoothness and all be piecewise

constant, whether the original function is smooth or not.

In this paper, we first formulate the p order derivative y(p) as the unique solution

of Fredholm integral equation of the first kind

A(p)ϕ :=
1

(p− 1)!

∫ x

0
(x− t)p−1ϕ(t)dt = y(x), x ∈ (0, 2π). (1.1)

where A(p) : L2(0, 2π) → L2(0, 2π). For the simple design of computational scheme,

we apply Galerkin method with trigonometric basis to above equation to construct a

regularized solutions to y(p) (refer to [9,19-22] for similar techniques). The basic setting

can be described as below:

Assume that

yδ, y, δy ∈ L2(0, 2π) and ‖δy‖L2 ≤ δ,

where δ is noise level. Given a projection sequence {Pn} which project L2(0, 2π) onto

subspace

Xn := span{ 1√
2π
,
cos t√
π
,
sin t√
π
, · · · , cos nt√

π
,
sinnt√

π
},

we discrete (1.1) into a finite-rank approximation system

A(p)
n ϕn = yn ϕn ∈ Xn, yn := Pny ∈ Xn, (1.2)
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where A(p)
n := PnA

(p)Pn : Xn −→ Xn.

Now solving (1.2) in sense of Moore-Penrose inverse gives A(p)
n

†
Pny. This is a natural

approximation scheme for y(p), where † denotes the Moore-Penrose inverse of linear

operator. Considering the noise δy, above scheme should be adjusted to a regularized

scheme

A(p)
n

†
Pny

δ with n(p) = n(p)(δ), (1.3)

where n(p) := n(p)(δ) is the regularization parameter choice such that

n(p) := n(p)(δ) → +∞, δ → 0+

and

‖A(p)

n(p)(δ)

†
Pn(p)(δ)y

δ − y(p)‖L2 → 0, δ → 0+.

Here notice that n(p) := n(p)(δ) (p = 1, 2, 3) stands for parameter choice strategy of the

first three order numerical differentiation respectively. Throughout this paper, without

special indication, we follow this notation and p ∈ 1, 2, 3.

Main results of this paper and corresponding remarks are listed as follows.

• For y ∈ Hp
0(0, 2π) (this restriction on initial value data is removable), where

Hp
0(0, 2π) := {y ∈ Hp(0, 2π) : y(0) = · · · = y(p−1)(0) = 0}. a priori error estimate is

obtained uniformly for first three order numerical differentiation as

‖A(p)
n

†
Pny

δ − y(p)‖L2(0,2π) ≤ C(p)npδ + (γ(p) + 1)‖(I − Pn)y
(p)‖L2 ,

This determines the parameter choice strategy:

n(p) = n(p)(δ) = κδa−
1
p ,

where a ∈ (0, 1
p
) is optional and κ is a constant which depends on the concrete form

of ‖(I−Pn)y
(p)‖L2 . This establish a convergence result for numerical differentiation

of first three order when y(p) ∈ L2, especially for derivative with discontinuities.

However, we need specify that, when recovering y(p) ∈ L2 are only continuous and

discontinuous with no periodic smoothness, the constant κ is unknown and need

to test in experiments (See section 8.3). In addition we give a notice that, whether

the derivative is smooth or not, its approximation by above algorithm will be real

analytic since it is a trigonometric polynomial.

• Supplemented with a priori information

y(p) ∈ H l
per(0, 2π), l > 0 (periodic smoothness)

above error estimate is strengthened into a more explicit form as

‖A(p)
n

†
Pny

δ − y(p)‖L2(0,2π) ≤ C(p)npδ + (γ(p) + 1)
1

nl
‖y(p)‖Hl

per
,

where C(p), γ(p) are all independent constants given in proceeding sections. And

optimal convergence rate O(δ
2µ

2µ+1 ) can be derived under periodic Sobolev source

condition

y(p) ∈ H2µp
per (0, 2π) µ =

1

2
or 1,
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with parameter choice n(p) = λ(p)δ−
1

(2µ+1)p , where λ(p) is a constant only depends

on exact derivative y(p) and can be given explicitly in preceding sections 6,7. In

particular, when

y(p) = a0 +
N1
∑

k=1

bk cos kx+
N2
∑

k=1

ck sin kx ∈ H∞
per(0, 2π)

the optimal parameter choice will degenerate to a constant n = max(N1, N2)

which does not depend on noise. Furthermore, the numerical study in section 8.1

demonstrates the good filtering effect (error approaches 0) occurs in this specific

case.

• In a more general setting for p order numerical differentiation when y ∈ Hp(0, 2π),

it is indicated in Corollary 6.2 that, when y ∈ Hp(0, 2π) \ Hp
0(0, 2π),

‖A(p)
n

†
Pny‖L2 −→ ∞ (n→ ∞).

Now any parameter choice n(p)(δ) such that n(p) = n(p)(δ) → ∞ (δ → 0+) may not

be a proper regularization parameter since we can not determine

‖A(p)

n(p)(δ)

†
Pn(p)(δ)y

δ − y(p)‖L2 → 0, δ → 0+.

through traditional estimate any more (See second point behind Corollary 5.2).

In order to recover the regularization effect of algorithm, we introduce Taylor

polynomial truncation of p − 1 order to reform the regularized scheme, that is,

using

ȳ = y(x)−
p−1
∑

k=0

y(k)(0)

k!
xk ∈ Hp

0(0, 2π),

to replace y ∈ Hp(0, 2π). In this way, the regularization effect can be well recovered

(See section 6,7)with exact measurements on initial value data. Furthermore, we

take possible noise in measurements in initial value data into consideration, and

this effectively relax the requirement on precision of initial value data.

Outline of Paper: In section 2, we introduce some tools and basic lemmas. In section 3,

we illustrate general framework, give the main idea on how to utilize the noisy data yδ to

recover the p order derivatives y(p). In section 4, we give corresponding analytic solution

formula to Galerkin approximation system which determines the well-posedness result

and upper bound for noise error. In section 5, we propose an estimate on approximation

error when RHS y belongs to Hp
0(0, 2π), and give the convergence and divergence results

with respect to y ∈ Hp
0(0, 2π) and y ∈ L2(0, 2π) \ Hp

0(0, 2π) respectively. In sections

6 and 7, with periodic Sobolev source condition of order 2µp, we construct a priori

error estimate and indicate the parameter choice strategy for optimal convergence rate

O(δ
2µ

2µ+1 ) when y ∈ Hp
0(0, 2π) and y ∈ Hp(0, 2π) \ Hp

0(0, 2π) respectively. In section 8,

we test some numerical examples to show the characteristics and effects of algorithm

when derivatives are smooth and discontinuous respectively. In section 9, we conclude

the main work of this paper.
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2. Preliminary and Basic Lemmas

2.1. Moore-Penrose inverse

Let X, Y be Hilbert space, and A be bounded linear operator mapping from X to Y .

D(A), N (A) and R(A) denote its domain, null space and range, respectively.

For A : X → Y and y ∈ R(A) ⊕ R(A)⊥, the Moore-Penrose inverse x† := A†y is

defined as the element of smallest norm satisfying

‖Ax† − y‖ = inf{‖Ax− y‖|x ∈ X}.
Thus A† : D(A†) := R(A)⊕R(A)⊥ ⊆ Y −→ X defines a closed linear operator from Y

to X .

In the following, we indicate some useful properties of Moore-Penrose inverse A†:

• If A : X → Y is one-to-one, then, for y ∈ R(A), A†y naturally degenerates into

A−1y.

• If R(A) is closed, then D(A†) = R(A)⊕R(A)⊥ = Y and by closed graph theorem,

A† : Y → X is bounded.

• If R(A) is closed, then AA† = PR(A), A
†A = PN (A)⊥. If R(A) is not necessarily

closed, then the former identity need be adjusted into

AA†y = PR(A)y, ∀y ∈ R(A)⊕R(A)⊥. (2.1)

For more comprehensive information on Moore-Penrose inverses, see [2, Chapter 9] or

[6,7].

2.2. Sobolev spaces

Throughout this paper, we only discuss on Sobolev space over R. Without specification,

we denote Hp(0, 2π) := Hp
R(0, 2π). Here we introduce all kinds of notations of Sobolev

spaces which will be used in the context. For more information, see [1,5] and [3,

Appendix 4].

2.2.1. Sobolev spaces of integer order For some positive integer p, the Sobolev space

Hp(0, 2π) is defined as

Hp(0, 2π) := {y ∈ L2(0, 2π) : D1y, · · · , Dpy ∈ L2(0, 2π)}, (2.2)

where Dky means weak derivative, defined as ζ ∈ L2(0, 2π) which satisfies
∫ 2π

0
ζϕdx = (−1)k

∫ 2π

0
yϕ(k)dx, ϕ ∈ C∞

0 (0, 2π).

Equivalently, it can be characterized in absolute continuous form (refer to [3, Page 14])

as

Hp(0, 2π) = Up[0, 2π] := {y ∈ Cp−1[0, 2π] :

there exists Ψ ∈ L2(0, 2π) such that y(p−1)(x) = α+
∫ x

0
Ψ(t)dt, α ∈ R}(2.3)
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Here notice that above ” = ” admits a possible change in a set of measure zero. In this

paper, when it concerns Sobolev functions of one variable y ∈ Hp(0, 2π), we, by default,

modify y ∈ Hp(0, 2π) (p ∈ N) in a set of measure zero such that it belongs to the latter

fine function space Up[0, 2π].

Besides, for p ∈ N, we define

Hp
z(0, 2π) := {y ∈ Hp(0, 2π) : y(z) = · · · = y(p−1)(z) = 0}, z = 0 or 2π

and

Ḣ2p(0, 2π) := {y ∈ H2p(0, 2π) :

y(2π) = · · · = y(p−1)(2π) = y(p)(0) = · · · = y(2p−1)(0) = 0}.

2.2.2. Fractional periodic Sobolev spaces For real number s > 0, periodic Sobolev

spaces of fractional order Hs
per(0, 2π) is defined in trigonometric form as

Hs
per(0, 2π) := {ϕ ∈ L2(0, 2π) : ξ20 +

∞
∑

k=1

(1 + k2)s(ξ2k + η2k) <∞},

where

ξ0 =
1√
2π

∫ 2π

0
ϕ(t)dt, ξk =

1√
π

∫ 2π

0
ϕ(t) cos ktdt, ηk =

1√
π

∫ 2π

0
ϕ(t) sin ktdt.

Supplementing another element ψ ∈ Hs
per(0, 2π), its inner product is rephrased as

(ϕ, ψ)Hs
per

= ξ0ζ0 +
∞
∑

k=1

(1 + k2)s(ξkζk + ηkλk)

with

ζ0 =
1√
2π

∫ 2π

0
ψ(t)dt, ζk =

1√
π

∫ 2π

0
ψ(t) cos ktdt, λk =

1√
π

∫ 2π

0
ψ(t) sin ktdt.

In addition, we define

H∞
per(0, 2π) :=

⋂

s>0

Hs
per(0, 2π).

2.3. Integro-differential operator of p order

Define integro-differential operator of integer order p as:

A(p) : L2(0, 2π) −→ L2(0, 2π)

ϕ 7−→ (A(p)ϕ)(x) :=
1

Γ(p)

∫ x

0
(x− t)p−1ϕ(t)dt, x ∈ (0, 2π). (2.4)

This is a compact linear operator with infinite-dimensional range, which satisfies

Lemma 2.1

Hp
0(0, 2π) = R(A(p)), p = 1, 2, 3.
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Proof 1 ”⊆”: Assume that y ∈ Hp
0(0, 2π) (p = 1, 2, 3). There exists a y⋆ ∈ Up[0, 2π]

as a modification of y in a possible 0 measure set with 0 initial value data, that is,

y⋆(0) = · · · = y⋆(p−1)(0) = 0. With integration formula by parts, it is not difficult to

verify that,

1

(p− 1)!

∫ x

0
(x− t)p−1y⋆(p)(t)dt = y⋆(x) = y(x), a.e..

Thus,

Hp
0(0, 2π) ⊆ R(A(p)), p = 1, 2, 3.

”⊇”: For simplicity, we only provide proof of case p = 2. Assuming y ∈ R(A(2)), then

there exists a ϕ ∈ L2(0, 2π) such that
∫ x

0
(x− t)ϕ(t)dt = y(x), a.e..

It is not difficult to verify that

D1y =
∫ x

0
ϕ(t)dt, D2y = ϕ(t) a.e.

With definition of (2.2), it yields that y ∈ H2(0, 2π). Then by absolute continuous

characterization (2.3) of Sobolev function of one variable, there exist a y⋆ ∈ U2[0, 2π]

as modification of y in a 0 measure set. Thus we have

y⋆ =
∫ x

0
(x− t)ϕ(t)dt, y⋆′ = D1y⋆ = D1y =

∫ x

0
ϕ(t)dt, a.e.

Notice that

y⋆, y⋆′,
∫ x

0
(x− t)ϕ(t)dt,

∫ x

0
ϕ(t)dt

are all continuous functions, thus

y⋆ =
∫ x

0
(x− t)ϕ(t)dt, y⋆′ =

∫ x

0
ϕ(t)dt. (strictly)

”⊇” holds for case p = 2.

With above equality, we describe the density of range in L2(0, 2π).

Lemma 2.2

R(A(p)) = L2(0, 2π), PR(A(p))
= I (p = 1, 2, 3),

where I is the identity operator on L2(0, 2π).

Proof 2 With Lemma 2.1, Hp
0(0, 2π) = R(A(p)). Recall the fact that C∞

0 (0, 2π) is dense

in L2(0, 2π) and notice that C∞
0 (0, 2π) ⊆ Hp

0(0, 2π), then L2(0, 2π) = C∞
0 (0, 2π) ⊆

Hp
0(0, 2π) ⊆ L2(0, 2π). The result follows.

This implies that R(A(p))⊥ = 0, and

D(A(p)†) = R(A(p))⊕R(A(p))⊥ = R(A(p)) = Hp
0(0, 2π).

Now differentiating the both sides of equation (1.1) for y ∈ Hp
0(0, 2π) in p order yields

that A(p)†y = A(p)−1
y = y(p). This gives

Lemma 2.3 A(p)†y = y(p), ∀y ∈ Hp
0(0, 2π).
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2.4. Galerkin Projection scheme with Moore-Penrose inverses

Let X be Hilbert space. For the linear operator equation

Aϕ = y,

where A : X −→ X is bounded and linear. To approximate

ϕ† := A†y ∈ X,

We introduce a sequence of finite-dimensional subspaces {Xn}, which satisfies

Xn ⊆ Xn+1,
∞
⋃

n=1

Xn = X.

Then construct a sequence of orthogonal projections {Pn}, where Pn projects X onto

Xn, and gives Galerkin approximation setting

Anϕn = yn, yn := Pny ∈ Xn, (2.5)

where An := PnAPn : Xn −→ Xn. Hence solving (2.5) in sense of Moore-Penrose inverse

gives Galerkin projection scheme

ϕ†
n := A†

nyn ∈ Xn, (2.6)

where A†
n : R(An) + R(An)

⊥n = Xn −→ Xn. Notice that ⊥n means orthogonal

complement in finite dimensional Hilbert space Xn.

Now {ϕ†
n} is a natural approximate scheme for ϕ†. To study its convergence

property, we introduce the Groetsch regularizer for setting (2.5) as

Rn := A†
nPnA : X −→ Xn ⊆ X,

define the Groetsch regularity as sup
n

‖Rn‖ < +∞, and introduce the following result:

Lemma 2.4 For above Galerkin approximate setting (2.5), if Groetsch regularity holds,

then

(a) For y ∈ D(A†) = R(A) +R(A)⊥.

‖A†
nPnPR(A)y −A†y‖ ≤ ‖PN (An)A

†y‖+ ‖Rn − IX‖‖(I − Pn)A
†y‖, (2.7)

(b) For y /∈ D(A†),

lim
n→∞ ‖A†

nPnPR(A)y‖ = ∞.

Proof 3 see[18, theorem 2.2]

2.5. Higher order estimate under trigonometric basis

To further estimate the right term ‖(I−Pn)A
†y‖ under trigonometric basis in L2, similar

to the result [3, Lemma A.43], we introduce another error estimate:
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Lemma 2.5 Let Pn : L2(0, 2π) −→ Xn ⊂ L2(0, 2π) be an orthogonal projection

operator, where

Xn := {ξ0 ·
1√
2π

+
n
∑

k=1

ξk
cos kt√

π
+

n
∑

k=1

ηk
sin kt√
π

: ξ0, ξk, ηk ∈ R}.

Then Pn is given as follows

(Pnx)(t) = ξ0
1√
2π

+
n
∑

k=1

ξk
cos kt√

π
+

n
∑

k=1

ηk
sin kt√
π
,

where

ξ0 =
1√
2π

∫ 2π

0
x(t)dt, ξk =

∫ 2π

0
x(t)

cos kt√
π
dt,

ηk =
∫ 2π

0
x(t)

sin kt√
π
dt, 1 ≤ k ≤ n

are the Fourier coefficients of x. Furthermore, the following estimate holds:

‖x− Pnx‖L2 ≤ 1

nr
‖x‖Hr

per
for all x ∈ Hr

per(0, 2π),

where r ≥ 0.

3. General Framework

We start from

Problem 3.1 Assume that we have y ∈ Hp
0(0, 2π) and y

δ measured on (0, 2π), belonging

to L2(0, 2π) such that ‖yδ − y‖L2 ≤ δ. How to get a stable approximation to y(p) ?

In Lemma 2.3, we have known that y(p) is the solution of linear operator equation

A(p)ϕ :=
1

Γ(p)

∫ x

0
(x− t)p−1ϕ(t)dt = y(x), x ∈ (0, 2π), (3.1)

when

y ∈ Hp
0(0, 2π) := {y ∈ Hp(0, 2π) : y(0) = · · · = y(p−1)(0) = 0}.

3.1. Formulation of finite-dimensional approximation system

In the following, we consider to approximate y(p) by the Galerkin method. Set

A(p) : X = L2(0, 2π) −→ L2(0, 2π).

Choose a sequence of orthogonal projection operators {Pn}, where Pn projects L2(0, 2π)

onto

Xn := span{ 1√
2π
,
cos t√
π
,
sin t√
π
, · · · , cos nt√

π
,
sinnt√

π
}.

Then degenerate the original operator equation with noisy data

A(p)ϕ = yδ
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into a finite-rank system

A(p)
n ϕn = yδn, (3.2)

where

A(p)
n := PnA

(p)Pn : Xn −→ Xn, yδn := Pny
δ. (3.3)

Span A(p)
n under above basis, then the finite-rank system (3.2) is transformed into the

linear system as

M (p)
n un = bδn, un, b

δ
n ∈ R2n+1. (3.4)

Notice that M (p)
n and bδn are defined as follows:

M (p)
n := (m

(p)
ij )(2n+1)×(2n+1)

where

m
(p)
ij := (A(p)

n (ξj), ξi)L2 , i, j ∈ 0, 1, 2, · · · , 2n− 1, 2n

ξ0 :=
1√
2π
, ξ2k−1 :=

cos kx√
π
, ξ2k :=

sin kx√
π
, k ∈ 1, 2, · · · , n.

Indeed,

A(p)
n (

1√
2π
,
cos t√
π
,
sin t√
π
, · · · , cosnt√

π
,
sinnt√

π
)

= (
1√
2π
,
cos t√
π
,
sin t√
π
, · · · , cos nt√

π
,
sinnt√

π
)M (p)

n . (3.5)

And bδn := (f0, f1, g1, · · · , fn, gn)T is defined as

f0 :=
∫ 2π

0
yδ(t)

1√
2π
dt

fk :=
∫ 2π

0
yδ(t)

cos kt√
π
dt, gk :=

∫ 2π

0
yδ(t)

sin kt√
π
dt, k ∈ 1, 2, · · · , n.

Indeed,

yδn = (
1√
2π
,
cos t√
π
,
sin t√
π
, · · · , cosnt√

π
,
sinnt√

π
)bδn.

Once we figure out up,δn =M (p)
n

†
bδn, then we obtain solution for (3.2),

ϕp,δ
n = (

1√
2π
,
cos t√
π
,
sin t√
π
, · · · , cosnt√

π
,
sin nt√

π
)up,δn .

in sense of Moore-Penrose inverse, ϕp,δ
n = A(p)

n

†
yδn. This is the regularized scheme. In

the following, we need to determine a regularization parameter n(p) = n(p)(δ) such that

ϕp,δ

n(p)(δ)
:= A

(p)

n(p)(δ)

†
yδn(p)(δ)

s−→ y(p), δ → 0+.
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3.2. Total error estimate and parameter choice for regularization

Now, in order to control the accuracy of computation, we adjust parameter choice

strategy n(p) = n(p)(δ) according to following total error estimate

‖ϕp,δ
n − y(p)‖L2 := ‖A(p)

n

†
Pny

δ − y(p)‖L2 . (3.6)

Since Lemma 2.3 illustrates that

y(p) = A(p)†y, y ∈ Hp
0(0, 2π), (3.7)

inserting (3.7) into (3.6), the formula (3.6) becomes

‖A(p)
n

†
Pny

δ −A(p)†y‖L2, y ∈ Hp
0(0, 2π).

Throughout this paper we use the following definitions

• Total error

e
(p)
T := ‖A(p)

n

†
Pny

δ − A(p)†y‖L2,

which is broken into two parts (c.f.[10, Chapter 1.1]):

• Noise error:

e
(p)
N := ‖A(p)

n

†
Pny

δ − A(p)
n

†
Pny‖L2

• Approximation error:

e
(p)
A := ‖A(p)

n

†
Pny − A(p)†y‖L2

It is an easy observation that e
(p)
T ≤ e

(p)
N + e

(p)
A . Upon this fact, we figure out the total

error estimate by estimating e
(p)
N and e

(p)
A respectively.

4. Well-posedness and numerical scheme of Galerkin System

With concrete expressions of M (p)
n in Appendix A, it is not difficult to obtain:

Theorem 4.1 Finite dimensional system (3.4) is well-posed, that is, there exists a

unique solution to (3.4), denoted as

up,δn =M (p)
n

−1
bδn,

where

bδn = (f0, f1, g1, · · · , fn, gn)T , up,δn = (ξ
(p)
0 , ξ

(p)
1 , η

(p)
1 , · · · , ξ(p)n , η(p)n )T .

Moreover, analytic formulas for the solution of Galerkin approximation system (3.2) are

determined as follows:

A(p)
n

†
Pny = ξ

(p)
0

1√
2π

+
n
∑

k=1

ξ
(p)
k

cos kt√
π

+
n
∑

k=1

η
(p)
k

sin kt√
π
.

Corresponding three cases are listed as follows.

Case p = 1:

ξ
(1)
0 =

1

π
(f0 +

√
2

n
∑

k=1

fk), (4.1)
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ξ
(1)
k =

√
2ξ

(1)
0 + kgk, (4.2)

η
(1)
k = −kfk. (4.3)

Case p = 2:

ξ
(2)
0 =

L−1
n

4π2
(f0 +

√
2

n
∑

k=1

fk +

√
2π

2n + 1

n
∑

k=1

kgk), (4.4)

ξ
(2)
k =

√
2ξ

(2)
0 − k2fk, (4.5)

η
(2)
k =

2k

2n+ 1

n
∑

k=1

kgk − k2gk −
√
2kπ

2n+ 1
ξ
(2)
0 , (4.6)

where

Ln :=
1

6
+

1

2π2
Sn −

1

4

2n

2n+ 1
, Sn :=

n
∑

k=1

1

k2
.

Case p = 3:

ξ
(3)
0 =

T−1
n

4π3
(f0 +

√
2

n
∑

k=1

fk +

√
2π

2n+ 1

n
∑

k=1

kgk − Fn

n
∑

k=1

k2fk), (4.7)

ξ
(3)
k = −k3gk +

2

2n+ 1
k2

n
∑

k=1

kgk −
2πk2

(2n+ 1)2

n
∑

k=1

k2fk + εn,kξ
(3)
0 (4.8)

η
(3)
k = k3fk −

2k

2n+ 1

n
∑

k=1

k2fk −
√
2πk

2n+ 1
ξ
(3)
0 , (4.9)

where

Tn :=
1

12
+

1

2n+ 1

1

π2
Sn −

1

3

2n

2n + 1
+

n2

(2n+ 1)2
,

Fn :=
4
√
2π2

2n + 1
Ln, Kn := −2π2Ln, εn,k =

√
2(1 +

2k2

2n + 1
Kn).

Remark 4.1 After we solve the Galerkin approximation system, we know that A(p)
n :

Xn → Xn is one-to-one and surjective. For the usage of the proceeding section, we claim

that N (A(p)
n ) = 0, R(A(p)) = Xn.

Remark 4.2 With above analytic formulas, it is not difficult to figure out that

‖A(p)
n

†‖Xn→Xn
≤ C(p)np (4.10)

where C(1) =
√
3, C(2) ≈ 11.8040, C(3) ≈ 345.0754. Here we specify that ‖ · ‖Xn

is

induced by ‖ ·‖L2, that is, ‖xn‖Xn
:= ‖xn‖L2, ∀xn ∈ Xn. This give bound to the estimate

of noise error.
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5. Estimate on Approximation Error and Instability result

We use Lemma 2.4 to analyse the convergence and divergence of Galerkin method. The

key point is the estimate of

sup
n

‖R(p)
n ‖ < +∞,where R(p)

n := A(p)
n

†
PnA

(p). (5.1)

To gain an uniform upper bound for above formula, we first prepare two decay estimate

of

R(p)
n (

cos jt√
π

) and R(p)
n (

sin jt√
π

)

with respect to integer variable j:

Lemma 5.1 For operators A(p), A(p)
n defined in (2.4),(3.3) respectively, set

(A(p)
n

†
PnA

(p)(
cos jt√

π
)(t) = α

(p)
0

1√
2π

+
n
∑

k=1

α
(p)
k

cos kt√
π

+
n
∑

k=1

β
(p)
k

sin kt√
π
.

When j ≥ n + 1,

α
(p)
0 = α

(p)
0 (n, j) = ((A(p)

n

†
PnA

(p)(
cos jt√
π

),
1√
2π

)L2,

α
(p)
k = α

(p)
k (n, j) = ((A(p)

n

†
PnA

(p)(
cos jt√
π

),
cos kt√

π
)L2 ,

β
(p)
k = β

(p)
k (n, j) = ((A(p)

n

†
PnA

(p)(
cos jt√
π

),
sin kt√
π

)L2 ,

and

|α(p)
0 | ≤ C

(p)
1

j
, |α(p)

k | ≤ C
(p)
2

j
, |β(p)

k | ≤ C
(p)
3

j
, 1 ≤ k ≤ n. (5.2)

where

C
(1)
1 = 0, C

(2)
1 =

√
2, C

(3)
1 = 11

√
2,

C
(1)
2 = 0, C

(2)
2 = 2, C

(3)
2 = 23,

C
(1)
3 = 0, C

(2)
3 = π, C

(3)
3 = 11π.

When p = 3, we need an extra condition n ≥ 5 to maintain above estimate.

Proof 4 Case p = 1: When j ≥ n + 1, substituting (B.1) into (4.1),(4.2) and (4.3),

it follows that

(A(1)
n

†
PnA

(1)(
cos jt√
π

))(t) = A(1)
n

†
(0) = 0.

This gives lemma for case p = 1.

Case p = 2: Inserting (B.2) into (4.4), it follows that

α
(2)
0 =

√
2L−1

n

4π2j2
.
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Hence

0 ≤ α
(2)
0 ≤

√
2

j
(by (C.1)). (5.3)

Besides, inserting (B.2) into (4.5),(4.6) respectively, it yields that

α
(2)
k =

√
2α

(2)
0 , β

(2)
k = −

√
2kπ

2n+ 1
α
(2)
0 .

Then, by (5.3),

0 ≤ α
(2)
k ≤ 2

j
, −π

j
≤ β

(2)
k ≤ 0.

Case p = 3: Inserting (B.3) into (4.7), it follows that

α
(3)
0 =

T−1
n

4π3

√
2π

j2
1

2n+ 1
.

Notice Proposition C.1 (C.4),

Tn ∈ [
1

396

1

n

1

2n+ 1
,
3

40

1

n(2n+ 1)
], n ≥ 5.

Hence,

0 ≤ α
(3)
0 ≤ 11

√
2

j
, where α

(3)
0 := α

(3)
0 (n, j), and n ≥ 5. (5.4)

Besides, insert (B.3) into (4.8), then it follows that

α
(3)
k =

1

2n+ 1

2k2

j2
+
√
2(1 +

2k2

2n+ 1
Kn)α

(3)
0 . (5.5)

By Proposition C.1(C.2), it is routine to obtain that

2k2

2n+ 1
Kn ∈ [−2, 0], 1 +

2k2

2n+ 1
Kn ∈ [−1, 1].

Hence, with (5.4),

0 ≤ |α(3)
k | ≤ 23

j
.

Further, insert (B.3) into (4.9), and we have

β
(3)
k = −

√
2πk

2n+ 1
α
(3)
0 .

Hence

−11π

j
≤ β

(3)
k ≤ 0 (by (5.4)).

Lemma 5.2 For operators A(p), A(p)
n defined in (2.4),(3.3) respectively, set

(A(p)
n

†
PnA

(p)(
sin jt√
π

)(t) = θ
(p)
0

1√
2π

+
n
∑

k=1

θ
(p)
k

cos kt√
π

+
n
∑

k=1

ω
(p)
k

sin kt√
π
.

When j ≥ n + 1,

θ
(p)
0 = θ

(p)
0 (n, j) = ((A(p)

n

†
PnA

(p)(
sin jt√
π

),
1√
2π

)L2,
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θ
(p)
k = θ

(p)
k (n, j) = ((A(p)

n

†
PnA

(p)(
sin jt√
π

),
cos kt√

π
)L2,

ω
(p)
k = ω

(p)
k (n, j) = ((A(p)

n

†
PnA

(p)(
sin jt√
π

),
sin kt√
π

)L2 ,

and

|θ(p)0 | ≤ C
(p)
4

j
, |θ(p)k | ≤ C

(p)
5

j
, |ω(p)

k | ≤ C
(p)
6

j
, 1 ≤ k ≤ n. (5.6)

where

C
(1)
4 =

√
2

π
, C

(2)
4 =

3
√
2

2
, C

(3)
4 =

44
√
2

3
,

C
(1)
5 =

2

π
, C

(2)
5 = 3, C

(3)
5 = 30,

C
(1)
6 = 0, C

(2)
6 = 5, C

(3)
6 = 48.

Notice that when p = 3, we need the extra condition n ≥ 5 to maintain above estimate.

Proof 5 Case p = 1: When j ≥ n+ 1, insert (B.4) into (4.1),(4.2),(4.3), then

(A(1)
n

†
PnA

(1)(
sin jt√
π

))(t) = A(1)
n

†
(

√
2

j
· 1√

2π
) =

√
2

πj
· 1√

2π
+

n
∑

k=1

2

πj
· cos kt√

π
.

This gives lemma for case p = 1.

Case p = 2: Insert (B.5) into (4.4), and it follows that

θ
(2)
0 =

1

2n + 1

√
2

4πj
L−1
n .

With Proposition C.1 (C.1), it follows that

0 ≤ θ
(2)
0 ≤ 3

√
2

2j
. (5.7)

Besides, insert (B.5) into (4.5),(4.6), then

θ
(2)
k =

√
2θ

(2)
0 , ω

(2)
k =

1

j

2k

2n+ 1
− k

2n + 1
·
√
2πθ

(2)
0 .

Then by (5.7) we have

0 ≤ θ
(2)
k ≤ 3

j
, −5

j
≤ ω

(2)
k ≤ 1

j
.

Case p = 3: Insert (B.6) into (4.7), and it follows that

θ
(3)
0 =

T−1
n

4π3

1

j
(Fn −

√
2

j2
).

Notice that it is easy to obtain that

|Fn −
√
2

j2
| ≤ 4

√
2

n(2n+ 1)

from Proposition C.1 (C.3). In this way, with Proposition C.1 (C.4), when n ≥ 5,

|θ(3)0 | = T−1
n

4π3

1

j
|Fn −

√
2

j2
| ≤ 396n(2n+ 1) · 1

4π3

1

j
· 4

√
2

n(2n + 1)
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≤ 396
√
2

27

1

j
=

44
√
2

3

1

j
. (5.8)

Besides, insert (B.6) into (4.8), and we have

θ
(3)
k =

1

(2n + 1)2
2πk2

j
+
√
2(1 +

2k2

2n+ 1
Kn)θ

(3)
0 .

Hence, by (5.8)

|θ(3)k | ≤ 4k2

(2n+ 1)2

π
2

j
+
√
2θ

(3)
0 ≤ 2

j
+
√
2θ

(3)
0 ≤ 2

j
+
√
2 · 44

√
2

3

1

j
=

30

j
.

Further, insert (B.6) into (4.9), and it follows that

ω
(3)
k =

2k

2n+ 1

1

j
− k

2n+ 1

√
2πθ

(3)
0 .

Hence, by (5.8)

|ω(3)
k | ≤ 1

j
+

√
2

2
π|θ(3)0 | ≤ 1

j
+

√
2

2
π
44
√
2

3

1

j
≤ 48

j
.

Lemma 5.3 Set A(p), A(p)
n defined in (2.4), (3.3) respectively. Then

‖K(p)
n ‖L2→L2 ≤ κ(p), ∀n ∈ N

where

K(p)
n := A(p)

n

†
PnA

(p)(I − Pn) : L
2(0, 2π) −→ Xn ⊆ L2(0, 2π)

Remark 5.1 With direct computations, we can obtain that

κ(1) ≈ 0.7801, κ(2) ≈ 7.3729, κ(3) ≈ 74.8198.

Proof 6 Set v = a0
1√
2π

+
∑∞

k=1 ak
cos kt√

π
+
∑∞

k=1 bk
sinkt√

π
such that ‖v‖L2 = 1, that is,

a20 +
∑∞

k=1 a
2
k +

∑∞
k=1 b

2
k = 1. We consider the estimate on ‖K(p)

n v‖L2 , n ∈ N.

Since A(p)
n

†
PnA

(p) (n ∈ N) is continuous with Remark 4.2,

K(p)
n v = A(p)

n

†
PnA

(p)(I − Pn)v

= A(p)
n

†
PnA

(p)(
∞
∑

j=n+1

aj
cos jt√
π

+
∞
∑

j=n+1

bj
sin jt√
π

)

=
∞
∑

j=n+1

ajA
(p)
n

†
PnA

(p)(
cos jt√
π

) +
∞
∑

j=n+1

bjA
(p)
n

†
PnA

(p)(
sin jt√
π

).

Recall Lemma 5.1 and Lemma 5.2. It follows that

A(p)
n

†
PnA

(p)(I − Pn)v = H0
1√
2π

+
n
∑

k=1

Hk

cos kt√
π

+
n
∑

k=1

Gk

sin kt√
π
, (5.9)

where

H0 =
∞
∑

j=n+1

(ajα
(p)
0 (n, j) + bjθ

(p)
0 (n, j)),
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Hk =
∞
∑

j=n+1

(ajα
(p)
k (n, j) + bjθ

(p)
k (n, j)),

Gk =
∞
∑

j=n+1

(ajβ
(p)
k (n, j) + bjω

(p)
k (n, j)).

By (5.2), (5.6) and the Cauchy inequality, we have

H2
0 ≤ C

(p)
1

2
+ C

(p)
4

2

n

∞
∑

j=n+1

(a2j + b2j ), (5.10)

H2
k ≤ C

(p)
2

2
+ C

(p)
5

2

n

∞
∑

j=n+1

(a2j + b2j ), (5.11)

G2
k ≤

C
(p)
3

2
+ C

(p)
6

2

n

∞
∑

j=n+1

(a2j + b2j ). (5.12)

(5.10),(5.11),(5.12) together with (5.9) give that, for all v such that ‖v‖L2 = 1,

‖K(p)
n v‖2L2 ≤ (

6
∑

i=1

C
(p)
i

2
)

∞
∑

j=n+1

(a2j + b2j )

≤ (
6
∑

i=1

C
(p)
i

2
)‖v‖2L2 (κ(p) :=

√

√

√

√

6
∑

i=1

C
(p)
i

2
).

where C
(p)
i (p = 1, 2, 3; i = 1, 2, · · · , 6) are all constants defined in Lemma 5.1 and

Lemma 5.2.

Theorem 5.1 The Groetsch regularity holds for Galerkin setting (3.2); that is,

sup
n

‖R(p)
n ‖L2−→L2 ≤ γ(p) <∞ (γ(p) := 1 + κ(p)),

where

R(p)
n := A(p)

n

†
PnA

(p) : L2(0, 2π) −→ Xn ⊆ L2(0, 2π)

and A(p), A(p)
n are defined in (2.4), (3.3) respectively.

Proof 7 Since

A(p)
n

†
PnA

(p) = K(p)
n + A(p)

n

†
PnA

(p)Pn = K(p)
n + A(p)

n

†
A(p)

n

= K(p)
n + PN (A

(p)
n )⊥n

= K(p)
n + Pn (Since N (A(p)

n ) = 0 in Remark 4.1),

by Lemma 5.3 we have

‖A(p)
n

†
PnA

(p)‖L2→L2 ≤ γ(p), n ∈ N, γ(p) := 1 + κ(p).

After the examination of (5.1), we have an estimate on the approximation error.
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Corollary 5.1 For A(p)
n defined as (3.3), we have

‖A(p)
n

†
Pny − y(p)‖L2 ≤ (γ(p) + 1)‖(I − Pn)y

(p)‖L2 −→ 0 (n→ ∞)

for every y ∈ Hp
0(0, 2π). Furthermore, with a priori information y(p) ∈ H l

per(0, 2π), it

yields that

‖A(p)
n

†
Pny − y(p)‖L2 ≤ (γ(p) + 1)

n
‖y(p)‖Hl

per
,

where γ(p) is constant given in Theorem 5.1.

Proof 8 By Lemma 2.2, 2,3, for y ∈ Hp
0(0, 2π),

‖A(p)
n

†
Pny − y(p)‖L2 = ‖A(p)

n

†
PnPR(A(p))

y − A(p)†y‖L2.

Using Lemma 2.4, Remark 4.1, Theorem 5.1, it yields that

‖A(p)
n

†
Pny − y(p)‖L2 ≤ (γ(p) + 1)‖(I − Pn)y

(p)‖L2. (5.13)

Now provided with a priori information y(p) ∈ H l
per(0, 2π), l > 0. It yields that

‖(I − Pn)y
(p)‖L2 ≤ 1

nl
‖y(p)‖Hl

per

from Lemma 2.5. This improves (5.13) to the latter result needed.

Corollary 5.2 For A(p)
n defined as (3.3), we have

‖A(p)
n

†
Pny‖L2 −→ ∞ (n→ ∞)

for every y ∈ L2(0, 2π) \ R(A(p)), where R(A(p)) = Hp
0(0, 2π).

Proof 9 Lemma 2.4 tells that D(A(p)†) = R(A(p)). Since the estimate of (5.1) holds,

with Lemma 2.4 (b), the result surely holds.

Here Corollary 5.2 tells us two questions:

• the first question is, for p order numerical differentiation, when y ∈ Hp
0(0, 2π), with

interfuse of noise δy, yδ would generally locate in L2(0, 2π) \ Hp
0(0, 2π). Then with

increasing choice of index n independent of noise level δ,

‖A(p)
n

†
Pny

δ‖L2 −→ ∞ (n→ ∞)

This fact shows that, without proper parameter choice strategy for n(p) := n(p)(δ),

numerical scheme constructed as A(p)
n

†
Pny

δ is natively instable.

• the second question is a worse one. With the more general setting y ∈ Hp(0, 2π)

for p order Numerical differentiation, if y ∈ Hp(0, 2π) \ Hp
0(0, 2π), then, with any

parameter choice strategy n(p) := n(p)(δ) such that n(p)(δ) → +∞ (δ → 0+),

approximation error

e
(p)
A = ‖A(p)

n(p)(δ)

†
Pn(p)(δ)y − y(p)‖L2 −→ ∞ (δ → 0+).

In addition with estimate on noise error e
(p)
N ≤ C(p)n(p)(δ) → ∞ (δ → 0+) (by

(4.10)), one could see the invalidness of single regularization parameter choice since

only adjusting parameter choice n = n(p)(δ) can not gives e
(p)
T → 0 (δ → 0+).

The following two sections will answer above two questions respectively.
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6. Total Error Estimate for y ∈ Hp
0(0, 2π) and Parameter Choice for

Regularization

To solve the first question, we introduce regularization in the following procedure:

Combining Corollary 5.1 with Remark 4.2, it gives

Theorem 6.1 Set A(p)
n as (3.3), y ∈ Hp

0(0, 2π). Then

‖A(p)
n

†
Pny

δ − y(p)‖L2(0,2π) ≤ C(p)npδ + ‖(I − Pn)y
(p)‖L2. (6.1)

Furthermore, with a priori information y(p) ∈ H l
per(0, 2π),

‖A(p)
n

†
Pny

δ − y(p)‖L2(0,2π) ≤ C(p)npδ + (γ(p) + 1)
1

nl
‖y(p)‖Hl

per
. (6.2)

Remark 6.1 In the case that y ∈ Hp
0(0, 2π) is provided but no a priori information on

exact solution y(p), we determine parameter choice strategy from (6.1) as

n
(p)
1 := n

(p)
1 (δ) = κδa−

1
p , (6.3)

where a ∈ (0, 1
p
) is optional. However, we specify that, in this case, the convergence rate

can not be obtained higher than O(1).

In the case that y ∈ Hp
0(0, 2π) and y

(p) ∈ H l
per(0, 2π), we could determine parameter

choice strategy from (6.2) as

n
(p)
2 = n

(p)
2 (δ) = (

l(γ(p) + 1)‖y(p)‖Hl
per

pC(p)
)

1
l+p δ−

1
l+p . (6.4)

Hence it follows that

‖A(p)

n
(p)
2 (δ)

†
P
n
(p)
2 (δ)

yδ − y(p)‖L2(0,2π) ≤ Γp‖y(p)‖
p

l+p

Hl
per
δ

l
l+p , (6.5)

where

Γp := ((
l

p
)

p

l+p + (
l

p
)

−1
l+p )(C(p))

l
l+p (γ(p) + 1)

p

l+p .

Remark 6.2 Assume that

y(p) ∈ H2µp
per (0, 2π) (µ =

1

2
or 1). (6.6)

Choosing n
(p)
3 = n

(p)
3 (δ) = δ−

1
(2µ+1)p , we gain the optimal convergence rate from (6.5),

that is,

‖A(p)

n
(p)
3 (δ)

†
P
n
(p)
3 (δ)

yδ − y(p)‖ = O(δ
2µ

2µ+1 ).

Here we specify that (6.6) is a slightly variant version of the standard source condition

stated in [10], that is, y(p) ∈ R(A(p)∗A(p))µ (µ = 1
2
or 1), where

R(A(p)∗A(p))
1
2 = R(A(p)∗) = Hp

2π(0, 2π), R(A(p)∗A(p)) = Ḣ2p(0, 2π).

Notice that

CodimHpHp
2π(0, 2π) = CodimHpHp

per(0, 2π) = p

and

CodimH2pḢ2p(0, 2π) = CodimH2pH2p
per(0, 2π) = 2p.
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Remark 6.3 Assume that noise level δ range in any closed interval [δ0, δ1] ⊆ (0,+∞).

If y ∈ Hp
0(0, 2π) and y(p) ∈ H∞

per(0, 2π) such that liml→∞ ‖y(p)‖
1

l+p

Hl
per

exists, then the

regularization parameter is determined by (6.4) as

n(p) = lim
l→∞

‖y(p)‖
1

l+p

Hl
per
, (6.7)

which only depends on exact derivative y(p), not concerned with noise level δ.

Furthermore, in the case that y ∈ Hp
0(0, 2π) and

y(p) = a0 +
N1
∑

k=1

bk cos kt+
N2
∑

k=1

ck sin kt ∈ H∞
per(0, 2π), (6.8)

where bN1 , cN2 6= 0. The regularization parameter is determined by (6.7) as

n(p) = max(N1, N2), (6.9)

which only depends on the highest frequency of trigonometric polynomial in (6.8), not

concerned with noise level δ.

7. Extended Numerical Differentiation on Hp(0, 2π)

7.1. Extended result with exact measurements at endpoint x = 0

Theorem 6.1 provides a result of stable numerical differentiation on y ∈ Hp
0(0, 2π), where

Hp
0(0, 2π) := {y ∈ Hp(0, 2π), y(0) = · · · = y(p−1)(0) = 0}.

We consider to remove the restriction on initial value data, and extend the result into

case y ∈ Hp(0, 2π).

Observing that, for y ∈ Hp(0, 2π),

y(x)−
p−1
∑

k=0

y(k)(0)

k!
xk ∈ Hp

0(0, 2π),

we naturally adjust regularized scheme (1.3) into

A(p)
n

†
Pn(y

δ −
p−1
∑

k=0

y(k)(0)

k!
xk).

Now, given exact measurements on the initial value data,

y(0), y′(0), · · · , y(p−1)(0).

we can adjust Theorem 6.1 into the following version.

Theorem 7.1 Set A(p)
n as (3.3), y ∈ Hp(0, 2π). Then

‖A(p)
n

†
Pn(y

δ −
p−1
∑

k=0

y(k)(0)

k!
xk)− y(p)‖L2 ≤ C(p)npδ + (γ(p) + 1)‖(I − Pn)y

(p)‖L2.

Furthermore, with a priori information y(p) ∈ H l
per(0, 2π),

‖A(p)
n

†
Pn(y

δ −
p−1
∑

k=0

y(k)(0)

k!
xk)− y(p)‖L2 ≤ C(p)npδ + (γ(p) + 1)

1

nl
‖y(p)‖Hl

per
.
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7.2. Extended result with noisy measurements at endpoint x = 0

However, in practical cases, one can not obtain initial value data y(0), y′(0), y′′(0)

exactly. Instead, one could only obtain a cluster of noisy data, denoted as

Λ0(0),Λ1(0),Λ2(0) respectively. Now provided with above endpoint measurement, we

reformulate the problem of p order numerical differentiation as:

Problem 7.1 Assume that we have

• y ∈ Hp(0, 2π) and yδ measured on (0, 2π), which belongs to L2(0, 2π) such that

‖yδ − y‖L2 ≤ δ,

• Noisy initial value data Λ0(0), · · · ,Λp−1(0) for y(0), · · · , y(p−1)(0) respectively, which

satisfies that

|Λk(0)− y(k)(0)| ≤ δi, k = 0, · · · , p− 1.

How to gain stable approximation to y(p)?

An estimate similar to (6.2) is constructed to answer this question:

Theorem 7.2 Set A(p)
n as (3.3), y ∈ Hp(0, 2π) and y(p) ∈ H l

per(0, 2π). Then

‖A(p)
n

†
Pn(y

δ − (
p−1
∑

k=0

Λk(0)

k!
xk))− y(p)‖L2

≤ C(p)npδ +∆pC
(p)npδi + (γ(p) + 1)

1

nl
‖y(p)‖Hl

per

For convenience of notations, we set δi = δ, then it follows that

‖A(p)
n

†
Pn(y

δ − (
p−1
∑

k=0

Λk(0)

k!
xk))− y(p)‖L2

≤ C
(p)
∆ npδ + (γ(p) + 1)

1

nl
‖y(p)‖Hl

per
,

where C
(p)
∆ := (∆p + 1)C(p) and ∆p :=

p−1
∑

k=0

‖xk‖
L2

k!
.

Remark 7.1 In this case, it is necessary to specify that the parameter choice strategy

should be adjusted from (6.4) to the following,

n(p) = n(p)(δ) = (
l(γ(p) + 1)‖y(p)‖Hl

per

pC
(p)
∆

)
1

l+p δ−
1

l+p . (7.1)

Also, assume that noise level δ range in the interval (δ0, δ1), where 0 < δ0 << 1 and

δ1 < +∞. When y ∈ Hp(0, 2π) and y(p) ∈ H∞
per such that liml→∞ ‖y(p)‖

1
l+p

Hl
per

exists, the

regularization parameter is determined by (7.1) as

n(p) = lim
l→∞

‖y(p)‖
1

l+p

Hl , (7.2)
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which remains not concerned with noise level δ, also not concerned with the additional

noise level δi of initial value data. Besides, in the case that

y =
p−1
∑

k=0

akx
k +

N1
∑

k=1

bk cos kt+
N2
∑

k=1

ck sin kt,

where bN1 , cN2 6= 0. The optimal parameter choice is determined by (7.2) as

n(p) = max(N1, N2), (7.3)

which is just the same as (6.9), still not concerned with noise level δ and additional

noise in initial value data.

Remark 7.2 The optimal convergence rate O(δ
2µ

2µ+1 ) can be achieved in the same way

as Remark 6.2.

Proof 10 For y ∈ Hp(0, 2π) and yδ ∈ L2[0, 2π] with ‖yδ − y‖ ≤ δ,

‖A(p)
n

†
Pn(y

δ − (
p−1
∑

k=0

Λk(0)

k!
xk))− y(p)‖L2 ≤ e′T + e′P ,

where

e′T := ‖A(p)
n

†
Pn(y

δ −
p−1
∑

k=0

y(k)(0)

k!
xk)− (y −

p−1
∑

k=0

y(k)(0)

k!
xk)(p)‖L2 ,

e′P := ‖A(p)
n

†
Pn(

p−1
∑

k=0

y(k)(0)

k!
xk −

p−1
∑

k=0

Λk(0)

k!
xk)‖L2.

Apply Theorem 7.1, and it follows that

e′T ≤ C(p)npδ + (γ(p) + 1)
1

nl
‖y(p)‖Hl

per
.

Besides,

e′P ≤ ‖A(p)
n

†‖‖Pn‖
p−1
∑

k=0

δe
k!
‖xk‖L2 ≤ ∆pC

(p)npδi,

where ∆p :=
p−1
∑

k=0

‖xk‖
L2

k!
. Then we have

‖A(p)
n

†
Pn(y

δ − (
p−1
∑

k=0

Λk(0)

k!
xk))− y(p)‖L2

≤ C(p)npδ +∆pC
(p)npδi + (γ(p) + 1)

1

nl
‖y(p)‖Hl

per
.
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8. Numerical Experiments

All experiments are performed in Intel(R) Core(TM) i7-7500U CPU @2.70GHZ 2.90

GHZ Matlab R 2017a. For all experiments, the regularized solution is given by

ϕp,δ,δi
n := A(p)

n

†
Pn(y

δ − Λ(p)(x)),

with regularization parameter choice n = n(p) = n(p)(δ, δi)(p = 1, 2, 3), where

δy = δ
sin kx√

π
, yδ(x) = y(x) + δy.

and

Λ(p)(x) =
p−1
∑

k=0

Λk(0)

k!
xk with Λk(0) = y(k)(0) + δi, k ∈ 0, 1, · · · , p− 1.

All experiments are divided into two cases:

• Case I: δ 6= 0, δi = 0, that is, high frequency noise δy and exact initial value data.

• Case II: δ = δi 6= 0, that is, high frequency noise δy and noisy initial value data.

The following index is introduced to measure the computational accuracy in tests:

• Relative error

r =
‖ϕp,δ,δi

n(p)(δ,δi)
− y(p)‖L2

‖y(p)‖L2

.

8.1. On smooth functions

Example 8.1 Set

p(x) =
6
∑

k=1

1

k2
sin(kx), qi(x) =

p−1
∑

i=0

1 ∗ xi, p = 1, 2, 3

yi(x) = p(x) + qi(x), y
δ
i (x) = yi(x) + δ

sin 12x√
π

.

We use the yδi as test function for i order numerical differentiation. Notice that

y′1(x) =
6
∑

k=1

1

k
cos(kx), y′′2(x) = −

6
∑

k=1

sin(kx),

y′′′3 (x) = −
6
∑

k=1

k cos(kx).

y1(0) = 1, y2(0) = 1, y′2(0) = 1 +
6
∑

k=1

1

k

y3(0) = 1, y′3(0) = 1 +
6
∑

k=1

1

k
, y′′3(0) = 2.
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n 2 4 6 8 12

p = 1 δi = 0 r 0.4023 0.2132 1.5194e−16 1.5194e−16 0.0554

δi = 0.01 r 0.4024 0.2035 0.0133 0.0152 0.0532

p = 2 δi = 0 r 1.0695 0.6808 7.5244e−15 1.1876e−14 0.3666

δi = 0.01 r 1.0830 0.7046 0.0732 0.1051 0.3046

p = 3 δi = 0 r 1.1879 1.3802 6.6497e−14 1.6561e−13 0.0469

δi = 0.01 r 1.1884 1.3827 0.0081 0.0150 0.0355

Table 1: Above experiments correspond to the three examples in Example 8.1. Case

I,II are uniformly set as (δ, δi) = (0.01, 0) and (δ, δi) = (0.01, 0.01) respectively. Notice

that r denotes the relative error.

n 2 4 6 8 12

p = 1 δi = 0 t 0.3341 0.3673 0.4178 0.4577 0.5983

δi = 0.01 t 0.3391 0.3728 0.4488 0.4935 0.5748

p = 2 δi = 0 t 0.4670 0.6070 0.6385 0.8051 0.8400

δi = 0.01 t 0.4892 0.5641 0.6218 0.7126 0.8160

p = 3 δi = 0 t 0.2755 0.3958 0.4497 0.5024 0.6810

δi = 0.01 t 0.4723 0.5151 0.6348 0.7240 1.1838

Table 2: t denotes the CPU time (s) for the corresponding experiment in Table 1.

8.1.1. Unified observation on cases with smooth derivative We first investigate into the

case (δ, δi) = (0.01, 0). All data in this case can be divided into three phases V1 = {2, 4},
V2 = {6, 8}, V3 = {12}.

We can compare above three phases and quickly find that when n ∈ V2, the

relative error r is the least and almost approaches 0. This displays the good

filtering effect of algorithm on specific class of functions (the sum of trigonometric

polynomial and polynomial of order less than order p, where p denotes the order of

numerical differentiation), and also correspond to the fact indicated by (6.9): the best

regularization parameter n = 6.

Now we explain the source of the good filtering effect in case p = 2, the other cases

are similar.

• The exact measurement of initial value data help give a precise Taylor polynomial

truncation to eliminate the polynomial term q2(x) in yδ2, thus the computational

scheme is transformed into A(2)
n

†
Pn(p̄(x) + δy), where p̄(x) = p(x)−∑6

k=1
1
k
x.

• The parameter choice n = 6 appropriately eliminate the noise component δy, now

A
(2)
6

†
P6(p̄(x) + δy) = A

(2)
6

†
P6p̄(x). Notice that p̄(x) ∈ R(A(2)), A(2)†p̄(x) = y′′2 ,

A
(2)
6 y′′2 = P6A

(2)P6y
′′
2 = P6A

(2)y′′2

= P6A
(2)A(2)†p̄(x) = P6PR(A(2))

p̄(x) = P6p̄(x) by (2.1).
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Then the uniqueness of Galerkin system in Theorem 4.1 gives that A
(2)
6

†
P6p̄(x) = y′′2 ,

that is, approximate solution strictly equals to the exact solution in this case, the

good filtering effect appears.

The deviation of the accuracy in V1 and V3 can also be explained in the same way. The

former case of choice n = 2 with lower accuracy is due to that Pny
δ
2, n = 2 does not

cover the major part of p(x), but with the increase of n ∈ V1, the coverage increases

and hence the accuracy improves. As to the latter case V3, now the δy = sin 12x√
π

come

into the computation, thus the good filtering effect disappears.

For case II with noise pair (δ, δi) = (0.01, 0.01), it can be seen in Table 1 that,

when regularization parameter n ∈ V2, the corresponding relative error r all approach

or exceed 0.01 uniformly. Now, compared to the case I with the same choice for

regularization parameter, the good filtering effect of case I are strongly weakened. This

is because the noise δi in initial value data bring a not complete Taylor polynomial

truncation and hence parameter n = 6 can not eliminate the lower-frequency noise

components in

Λ(p)(x)−
p−1
∑

k=0

y(k)(0)

k!
xk.

8.2. On periodic weakly differentiable derivatives

In this subsection, we mainly investigate the effectiveness of parameter choice (6.4) and

(7.1) for general case (compared with the case in subsection 8.1).

8.2.1. First order

Example 8.2 Set

y(x) =

{

πx− 1
2
x2, 0 ≤ x < π,

1
2
x2 − πx+ π2, π ≤ x < 2π.

y(0) = 0,

yδ(x) = y(x) + δ
sin kx√

π
,

y′(x) =

{

π − x, 0 ≤ x < π,

x− π, π ≤ x < 2π.
∈ H1

per(0, 2π)

8.2.2. Second order

Example 8.3 Set

y(x) =

{

1
2
πx2 − 1

6
x3, 0 ≤ x < π,

1
6
x3 − 1

2
πx2 + π2x− 1

3
π3, π ≤ x < 2π.

y(0) = 0, y′(0) = 0
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yδ(x) = y(x) + δ
sin kx√

π
,

y′′(x) =

{

π − x, 0 ≤ x < π,

x− π, π ≤ x < 2π.
∈ H1

per(0, 2π)

8.2.3. Third order

Example 8.4 Set

y(x) =

{

1
6
πx3 − 1

24
x4, 0 ≤ x < π,

1
24
x4 − 1

6
πx3 + 1

2
π2x2 − 1

3
π3x+ 1

12
π4, π ≤ x < 2π.

y(0) = 0, y′(0) = 0, y′′(0) = 0;

yδ(x) = y(x) + δ
sin kx√

π
,

y′′′(x) =

{

π − x, 0 ≤ x < π,

x− π, π ≤ x < 2π.
∈ H1

per(0, 2π)
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Figure 1: The figure corresponds to Example 8.2 where the bule curve denotes the

exact derivative, the red, yellow, green curves denote the case (δ, δi, n) = (0.1, 0, 7),

(δ, δi, n) = (0.05, 0, 10) and (δ, δi, n) = (0.01, 0, 23) and the lightcyan, manganese purple,

black curves denote the case (δ, δi, n) = (0.1, 0.1, 4), (δ, δi, n) = (0.05, 0.05, 5) and

(δ, δi, n) = (0.01, 0.01, 12) respectively.
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Figure 2: The figure corresponds to Example 8.3 where the bule curve denotes the

exact derivative, the red, yellow, green curves denote the case (δ, δi, n) = (0.1, 0, 3),

(δ, δi, n) = (0.05, 0, 3) and (δ, δi, n) = (0.01, 0, 6) and the lightcyan, manganese purple,

black curves denote the case (δ, δi, n) = (0.1, 0.1, 2), (δ, δi, n) = (0.05, 0.05, 3) and

(δ, δi, n) = (0.01, 0.01, 4) respectively.

8.2.4. Unified observation on cases with periodic weakly differentiable derivative In this

subsection, we utilize strategies (6.4) and (7.1) to determine regularization parameter

for two cases with different noise level respectively. The figures 1-3 show the good

effectiveness of strategy proposed in this paper in a general aspect.

8.3. On discontinuous derivatives

In the following numerical examples with non-periodic discontinuous derivatives, we

choose to adjust parameter

n(p) = n(p)(δ, δi), p = 1, 2, 3,

with experiments, not by (6.3) for the uncertainties to determine κ. Figures

corresponding to least-error r in numerical differentiation of each order are attached.

8.3.1. First order

Example 8.5 Set

y(x) =















x, 0 ≤ x < 4,

4, 4 ≤ x < 6,

7− x
2
, 6 ≤ x < 2π.
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Figure 3: The figure corresponds to Example 8.4 where the bule curve denotes the

exact derivative, the red, yellow, green curves denote the case (δ, δi, n) = (0.1, 0, 1),

(δ, δi, n) = (0.05, 0, 1) and (δ, δi, n) = (0.01, 0, 2) and the lightcyan, manganese purple,

black curves denote the case (δ, δi, n) = (0.1, 0.1, 1), (δ, δi, n) = (0.05, 0.05, 1) and

(δ, δi, n) = (0.01, 0.01, 2) respectively.

y(0) = 0,

yδ(x) = y(x) + δ
sin kx√

π
,

y′(x) =















1, 0 ≤ x < 4,

0, 4 ≤ x < 6,

−1
2
, 6 ≤ x < 2π.

8.3.2. Second order

Example 8.6 Set

y(x) =















x3 − 7x2, 0 ≤ x < 4,

x2 − 16x, 4 ≤ x < 6,

−4x− 36, 6 ≤ x < 2π.

y(0) = 0, y′(0) = 0,

yδ(x) = y(x) + δ
sin kx√

π
,
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n 4 6 8 16 24

p = 1 δi = 0 r 0.2786 0.2551 0.2294 0.1474 0.1294

δi = 0.01 r 0.2734 0.2486 0.2216 0.1378 0.1187

p = 2 δi = 0 r 0.4148 0.3175 0.2754 0.2068 0.1636

δi = 0.01 r 0.4239 0.3323 0.2948 0.2603 0.2667

p = 3 δi = 0 r 0.1413 0.1185 0.1209 0.1137 0.1490

δi = 0.01 r 0.1446 0.1185 0.1060 0.1383 0.4010

Table 3: Above experiments correspond to Example 8.2, 8.3 and 8.4 respectively. Case

I,II are uniformly set as (δ, δi) = (0.01, 0) and (δ, δi) = (0.01, 0.01) respectively. Notice

that r denotes the relative error. (k = 8)

n 4 6 8 16 24

p = 1 δi = 0 t 1.73 2.67 3.89 12.47 103.05

δi = 0.01 t 1.55 2.66 4.29 13.80 142.73

p = 2 δi = 0 t 3.77 6.57 11.38 73.04 175.93

δi = 0.01 t 3.95 6.46 11.09 116.55 230.05

p = 3 δi = 0 t 6.10 13.06 19.47 127.01 304.70

δi = 0.01 t 7.79 11.45 17.89 149.72 438.42

Table 4: t denotes the CPU time (s) for the corresponding experiments in Table 3.

y′′(x) =















6x− 14, 0 ≤ x < 4,

2, 4 ≤ x < 6,

0, 6 ≤ x < 2π.

8.3.3. Third order

Example 8.7 Set

y(x) =















x4 + x3, 0 ≤ x < 4,

13x3 − 48x2 + 64x, 4 ≤ x < 6,

186x2 − 1340x+ 2808, 6 ≤ x < 2π.

y(0) = 0, y′(0) = 0, y′′(0) = 0,

and

yδ(x) = y(x) + δ
sin kx√

π
,

y′′′(x) =















24x+ 6, 0 ≤ x < 4,

78, 4 ≤ x < 6,

0, 6 ≤ x < 2π.
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Figure 4: The figure corresponds to Example 8.2 where the bule curve denotes the

exact derivative, and the red, black curves denote the case (δ, δi, n) = (0.01, 0, 24) and

(δ, δi, n) = (0.01, 0.01, 24) respectively.
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Figure 5: The figure corresponds to Example 8.3 where the blue curve denotes the

exact derivative, and the red, black curve denote the case (δ, δi, n) = (0.01, 0, 24) and

(δ, δi, n) = (0.01, 0.01, 16) respectively.
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Figure 6: The figure corresponds to Example 8.4 where the blue curve denote the

exact derivative, and the red, black curves denote the case (δ, δi, n) = (0.01, 0, 16) and

(δ, δi, n) = (0.01, 0.01, 8) respectively.

8.3.4. Unified observation on cases with discontinuous derivative It can be concluded

from figure 4,5,6 that, in both cases, when regularization parameters are chosen

appropriately, the computational error can be well controlled. However, for sake of

the intersection of frequency band of y and δy (this does not happen in the example we

list in the subsection 8.1), the good filtering effect disappears in case with discontinuous

derivative. Besides, we note that when the choice of n increases to U := {16, 24}, the
CPU time will increase to a considerable amount.

9. Conclusion

The core theoretical work of this paper locates in the uniform upper estimate for

‖A(p)
n

†
PnA

(p)‖L2→L2

where A(p), A(p)
n are defined in (2.4), (3.3) respectively. This determines the error

estimate for approximation error and give a complete answer to regularization procedure.

In experiments, the algorithm has its advantage over other classical regularization

method:

• It induces a noise-independent a-priori parameter choice strategy for function of a
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specific class

y(t) =
N1
∑

k=1

ak cos kt +
N2
∑

k=1

bk sin kt +
p−1
∑

k=0

ckt
k

where p is the order of numerical differentiation. Good filtering effect (error

approaches 0) is displayed when the algorithm acts on functions of above class

with best parameter choice.

• Derivatives discontinuities can also be recovered well although there exists a

unknown constant κ to test in experiments.

Appendix A. Representation of M (p)
n

M (p)
n =

















a(p) u
(p)
1 · · · u(p)n

v
(p)
1

T
M

(p)
11 · · · M

(p)
1n

...
...

. . .
...

v(p)n

T
M

(p)
n1 · · · M (p)

nn

















(2n+1)×(2n+1)

, p = 1, 2, 3.

where

a(1) = π, a(2) =
2π2

3
, a(3) =

π3

3

u
(1)
k = (0,

√
2

k
), v

(1)
k = −u(1)k

u
(2)
k = (

√
2

k2
,

√
2π

k
), v

(2)
k = (

√
2

k2
,−

√
2π

k
)

u
(3)
k = (

√
2π

k2
,
2
√
2π2

3 · k −
√
2

k3
), v

(3)
k = (

√
2π

k2
,−2

√
2π2

3 · k +

√
2

k3
), 1 ≤ k ≤ n

M
(1)
ij = 0, ∀i 6= j,

M
(1)
ii =

(

0 −1
i

1
i

0

)

, 1 ≤ i ≤ n.

M
(2)
ij =

(

0 0

0 − 1
i·j

)

, 1 ≤ i, j ≤ n, i 6= j.

M
(2)
ii =

(

− 1
i2

0

0 − 3
i2

)

, 1 ≤ i ≤ n.

M
(3)
ij =





0 2
i2·j

− 2
i·j2 −2π

i·j



 , 1 ≤ i, j ≤ n, i 6= j.

M
(3)
ii =

(

0 3
i3

− 3
i3

−2π
i2

)

, 1 ≤ i ≤ n.
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Appendix B. Some Fourier expansions

Lemma Appendix B.1 For A(p) defined in (2.4), when j ≥ n+ 1, set

(PnA
(p)(

cos jt√
π

))(x) = c
(p)
0

1√
2π

+
n
∑

k=1

c
(p)
k

cos kx√
π

+
n
∑

k=1

d
(p)
k

sin kx√
π
,

Then Fourier coefficients are determined as follows:

c
(1)
0 = c

(1)
k = d

(1)
k = 0, k ∈ 1, ..., n, (B.1)

c
(2)
0 =

√
2

j2
, c

(2)
k = 0, d

(2)
k = 0, k ∈ 1, ..., n, (B.2)

c
(3)
0 =

√
2π

j2
, c

(3)
k = 0, d

(3)
k = − 2

kj2
, k ∈ 1, ..., n. (B.3)

Lemma Appendix B.2 For A(p) defined in (2.4), when j ≥ n+ 1, set

(PnA
(p)(

sin jt√
π

))(x) = s
(p)
0

1√
2π

+
n
∑

k=1

s
(p)
k

cos kx√
π

+
n
∑

k=1

t
(p)
k

sin kx√
π
,

Then Fourier coefficients are determined as follows

s
(1)
0 =

√
2

j
, s

(1)
k = 0, t

(1)
k = 0, k ∈ 1, ..., n, (B.4)

s
(2)
0 =

√
2π

j
, s

(2)
k = 0, t

(2)
k = − 2

kj
, k ∈ 1, ..., n, (B.5)

s
(3)
0 =

2
√
2π2

3j
−

√
2

j3
, s

(3)
k =

2

k2j
, t

(3)
k = −2π

kj
k ∈ 1, ..., n. (B.6)

Appendix C. Some Inequalities

Proposition Appendix C.1 Set Ln, Kn, Fn, Tn defined as in Theorem 4.1. Then

L−1
n ∈ [10n, 36n], (C.1)

Kn ∈ [−2

n
,− 1

2n
], (C.2)

Fn ∈ [

√
2

n(2n+ 1)
,

4
√
2

n(2n + 1)
], (C.3)

Tn ∈ [
1

396

1

n

1

2n+ 1
,
3

40

1

n(2n+ 1)
], n ≥ 5. (C.4)
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