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Abstract

The Moore—Penrose inverse of a matrix has been extensively investigated and widely
applied in many fields over the past decades. One reason for the interest is that the Moore—
Penrose inverse can succinctly express some important geometric constructions in finite-
dimensional spaces, such as the orthogonal projection onto a subspace and the linear least
squares problem. In this paper, we establish new perturbation bounds for the Moore—Penrose
inverse under the Frobenius norm, some of which are sharper than the existing ones.
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1 Introduction

Let C™*™ C**™, and %, be the set of all m x n complex matrices, the set of all m x n complex
matrices of rank 7, and the set of all n x n unitary matrices, respectively. For any M € C™*"
the symbols M*, rank(M), | M|, || M|z, and ||M||r denote the conjugate transpose, the rank,
the unitarily invariant norm, the spectral norm, and the Frobenius norm of M, respectively.
The Moore-Penrose (MP) inverse of M € C™ " is denoted by MT, which is defined as the

CnXm

unique matrix X € satisfying the following equations [10, 11]:

() MXM =M, (i) XMX =X, (i) (MX)*=MX, (iv)(XM)*=XM.

In particular, if M is a square and nonsingular matrix, then MT will coincide with the usual
inverse M~!. The MP inverse can concisely express some important geometric constructions in
finite-dimensional spaces, such as the orthogonal projection onto a subspace and the linear least
squares problem. More specifically, the orthogonal projection onto the column space of A can
be expressed as Py = AAT; see [18] for the perturbation analysis of P4. Recall that the linear
least squares problem can be described as follows: Find x, € C" such that

X, € argmin ||Ax — b||2, (1.1)
xeCn
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where A € C™*™ and b € C™. It is well known that the solutions of (1.1) can be formulated as
x, = A'b 4 (I, — ATA)z,

where I, denotes the n x n identity matrix and z € C” is an arbitrary vector. Furthermore,
the minimum 2-norm solution of (1.1) is x, = A'b. The MP inverse has been widely applied
in many fields such as matrix computation, algorithm analysis, statistics, and engineering; see,
e.g., [2, 6, 7, 3]. Over the past decades, many researchers have investigated the perturbation
analysis of MP inverse, which can be found, e.g., in [12, 16, 1, 13, 14, 9, 4, 17, §].
Let A € C"" B € CI"" and E = B — A. Wedin [16] established the estimate (see
also [14, 9])
1B — AT <y maxc {|AT[3, 1B 3} 1211 (1.2)

In particular, if s = r, then
IBT — AT|| < po[|AT||o]| BT [|2[| E]|- (1.3)

The above parameters p1 and pg are listed in Table 1. In 2010, Meng and Zheng |9, Theorems 2.1

|-l I p2 (r <min{m,n}) pe (7“ = g;g}b{m,n}) p2 (r=m=n)

Il 1% 3 3 2 1
-l 505 Iy V2
- 1lF V2 V2 1

Table 1: The values of p; and po.

and 2.2] improved the estimates (1.2) and (1.3) under the Frobenius norm. More specifically,
they derived that
1B — AT||p < max {|AT|13, | BV I3} £l . (1.4)

In particular, if s = r, then
IB" — Al < | AT|l2)| B2 Bl - (1.5)
Recently, Li et al. [8, Theorem 3.1] further refined the estimate (1.4). They obtained that

HATEBT!%+IIBTEATI?v<ma {HATH% !W!%}_)

|BT—AT||% < maX{HATH%a ||BT||%}||E||2F_

2 B3 [ AT]I3
(1.6)
If Ae C"™™ (m>n) and B= A+ E € CI"*", Li et al. [8, Theorem 3.2] also proved that
AT|31IBT|I3 IAT]3
B At < SARIBE 6 p e g a2 - 2. 1.7
In particular, if s = n, then
IBT — AT|[% < min {||BT|3]| EAT|%, || AT|3I| EBT|% }- (1.8)



Although the estimate (1.6) has sharpened (1.4), the upper bound in (1.6) is still too large
in certain cases. We now give a simple example:

1
A=t 0, = (T 0) (1.9)
0 0 0 T

where 0 < 7 < % In this example, it holds that
1
Bt — A2 =472 + =,
1B = A} = ar? +
Direct computation yields that the upper bound in (1.6) is

1 4 =:u(r).

1
4724 — 4=
T +7'2 +72(1+27')2

It is easy to see that
4

_
72(1 4+ 27)2 ’

which will be very large if 0 < 7 <« % Moreover, if 7 is sufficiently small, then

u(r) — | BT - AY||E =

5
u(r) ~ = ~ E)HBJr — AT||%.

Motivated by the above observation, we revisit the perturbation of MP inverse under the
Frobenius norm. Some new upper bounds for || BT — AT||%, are presented. Theoretical analysis
shows that the new bounds are sharper than the existing ones.

The rest of this paper is organized as follows. In Section 2, we introduce a trace inequality
and several auxiliary results on || BT — AT||%. In Section 3, we present some new upper bounds
for | Bf — AT||2,, and compare the new bounds with the existing ones theoretically.

2 Preliminaries

Let {o;(M)}t_, and {o;(N)}._, be the singular values of M € C™*™ and N € C™*™, respectively,
where ¢ = min{m,n}. Assume that {o;(M)}!_; and {0;(N)},_, are arranged in the same
(increasing or decreasing) order. The celebrated von Neumann’s trace inequality [15] reads

Retr(UMVN*) <> 0i(M)oi(N),
=1

where Retr(-) denotes the real part of the trace of a matrix, and both U € %, and V' € %, are
arbitrary. Indeed, the following more accurate characterization for Re tr(UMV N*) [15] holds.

Lemma 2.1. Let M € C™*", N € C™*", and t = min{m,n}. Let {o;(M)}._; and {o;(N)}:_;
be the singular values of M and N, respectively, which are arranged in the same (increasing or
decreasing) order. Then

t

t MVN*) = i(M)o;(N). 2.1

g RerUMVA) > a(M)oi() (2.1)
e{/n 1=



Based on the singular value decomposition (SVD) of a matrix, we can derive two character-
izations of ||BT — AT||% (see Lemma 2.2), which play a fundamental role in our analysis. Let
A e C™ and B € CI"™*™ (throughout this paper, we only consider the nontrivial case that r > 1
and s > 1) have the following SVDs:

5
A=U ( 01 8) V= UV, (2.2a)
B0 (EO g) P ST (2.2

where U = (U, Us) € Um, V. = (Vi,V3) € U, U = (U1, U3) € Up, V = (Vi,Va) € U,

Uy € C™7 Ve C7, Uy € €5, 1y e €, 5 = diag(on,...,0,), 1 = diag(ay,. .., ds),
o1>--->0,.>0,and 5y > --- >G5 > 0. In view of (2.2a) and (2.2b), the MP inverses A and

Bt can be explicitly expressed as follows:
-1
A=V < 0 8) Ut = Vs vy, (2.30)
T 17 i31_1 0 7% 7 S —177%
B'=V 0 0 U= Uf. (2.3b)

Using (2.2a), (2.2b), (2.3a), and (2.3b), we can obtain the following identities.

Lemma 2.2. Let A € C"*"™ and B € CI"*™ have the SVDs (2.2a) and (2.2b), respectively, and
let E=B—A. Then

IBY — AT} = | U Ua|IF + |VaVAsL 3 + | BTEAT|Z, (2.4a)
1BY = AM|E = U= HIE + 157 'ViVel b + | ATEBY . (2.4b)
Proof. By (2.3a) and (2.3b), we have
v*(BT _ AT)U — iflﬁfql - ‘71*%2;1 iflﬁfUQ
—V;Visy ! o )

Ve(B - AN - (VFV@? - 500, —EflUf@) |

Then
|BT — AT% = |57 U Us |7 + Ve iSTHIE + 127 070 — Vs g, (2.5a)
|BY — AT||% = |27 U Ua |2 + (VeS| % + Vi isT — S 003 (2.5b)

In addition, using (2.2a), (2.2b), (2.3a), and (2.3b), we get

Fepipaty - (ViViST - S0T0 0
0 0)°
V*ATEBIT = <211Uf(71 Ra 0>
0 0)



Hence,
IBIEAT: = ViV ! - ST U7, (2.6a)
1A' BB} = |27 U U - ViVisT I3 (2.6b)
Combining (2.5a) and (2.6a), we can arrive at the identity (2.4a). Similarly, the identity (2. 4b)
follows immediately from (2.5b) and (2.6b).
The following corollary can be directly deduced from Lemma 2.2.
Corollary 2.1. Under the assumptions of Lemma 2.2, we have
1Bt — AT|[% < | BYBITUa3 + |AT[51Va VA 3 + (| BT EAT|IZ, (2.7a)
IBT — AT[|% < | A3 U3 Unl[% + | BYBIVE Va3 + | ATEBT 7. (2.7b)
If rank(B) = rank(A), then ||UUs||r, |UsUL|lF, ||[ViVallF, and ||[V5 Vi s have the following
relations [5, Lemma 2.2].

Lemma 2.3. Let A € C"*" and B € CJ™*™ have the SVDs (2.2a) and (2.2b), respectively. If
s=r, then

U Vellp = |UsULlr  and [[VyVallr = V5 Vil

3 Main results

In this section, we develop some new perturbation bounds for ||[BT — Af||2. The first estimate
depends only on the positive singular values of A and B.

Theorem 3.1. Let A € C"*™ and B € CI"™*" have the positive singular values {o;}_; and
{c:};_, respectively, where 01 > ---> o, and 01 > --- > 0.
(i) If s <r, then
S 2 r 2 T
1 1 1 1 1
—— = — < |B' - Af|% < = =. 3.1
S (-7) D g ey (Geg) D e

i=s+1 1=s+1
(ii) If s > r, then

i R 2+§S:<HBT A2 <Z + L 2+ - L (3.2)
oi 0 r ;i Ui . o2 '

i=1 i=r+1 i=1 i=r+l
Proof. Observe first that
|BT — A% = tr (BT — AN*(B Zl;Jergl —2Retr (AT(B1)"). (3.3)
From (2.1), we deduce that
- mi§r} L < Retr (AT(B1)) < mifjr} L (3.4)
iz i =1 010
Combining (3.3) and (3.4), we can obtain the inequalities (3.1) and (3.2). O



Remark 3.1. According to the lower bounds in (3.1) and (3.2), we conclude that a necessary
condition for éimA BT = AT (B is viewed as a variable) is that rank(B) = rank(A) always holds
%

as B tends to A. In fact, it is also a sufficient condition for BlimA Bt = Af [12].
—

Remark 3.2. Under the setting of (1.9), the lower and upper bounds in (3.2) are 472 + % and
414+ 7)% + 7—12, respectively. Clearly, the lower bound has attained ||[BT — Af||%, and the upper
bound will be very tight when 7 is small.

In what follows, we establish some upper bounds involving the perturbation £ = B — A.

Theorem 3.2. Let Ac C"*", Be C**", and E =B — A. Then
|BY = AT < min {1 + | BYEAY%, a0 + |ATEBT 2], (3.5)
where

on = [|ATF(IATEE — |ATEBBIE) + | BYE (1 EBYIE — |AATEBT|E),
az = |AN(|EAE — IBB'EATE) + | B'I3(IB'EIE — |BEATA|).

Proof. By (2.2a), (2.2b), (2.3a), and (2.3b), we have

I LA T G el
Uzt 0/’
v anippi - (ViU - BVVET 0}
0 0
Hence,
U Vel = | EB||E — || AATEBT| % (3.6)

Similarly, we have

V*ATE‘7 _ (El_lUl*ﬁlil — ‘/1*‘71 —Vl*‘72>

0 0 ’

V* A EBIBY = (‘v‘l_lUfﬁlil — Vi 0> .

0 0

Thus,
IVsVil: = |ATE % — | ATEB B |3 (3.7)

Using (2.7a), (3.6), and (3.7), we obtain

1B — AT||% < o + | BTEAT| 7. (3.8)
Interchanging the roles of A and B yields

| BT — AT} < as + | ATEBT| .. (3.9)

The desired result (3.5) follows immediately by combining (3.8) and (3.9). O



Remark 3.3. If A € C'*" (m > n), then V; =V and V3 vanishes. In this case, we have
ar = ||BYB(IEBYE — |IAATEBT|%) + (n — )] A3,
az = [|ANZ (| BAT|E — | BBTEAT|Z).

Note that
|ATEBT|3,

IAT3

IBTEAT|

|AAT BB >
r 1BT3

and ||BB'EAT|% >

In light of (3.5), we have

1Bt — AT|2 < HIIAT!%HBTH% (al + || BTEAYE | as + \ATEBTH%>

ATZ + || B3 IB73 IAT3
1ATI3 11 B3
AT + 1813

Therefore, (3.5) has improved the estimate (1.7).

ulk:
(1B + LEB I+ (0= 51y 502 ).
1573
Remark 3.4. If A € CI"*" and B € CI"*" (m > n), then

o1 = | B3 (I EBY|[% — [|AATEBY||%),
az = |AY3(I| EAT% — |1 BBTEAT|).

Due to rank(B) = rank(A), it follows that
IEBT|% — |[AATEBY|3. = |UrUa||% = |UsUL |7 = | EAT|} — || BBTEAT|,
where we have used Lemma 2.3. Then

ar = |BY5(I[EAT|% — |IBBTEAT|:) < | BT|3|EAT|% — |BTEAT|Z,
ay = [|AT3(|IEBT||% — |AATEBY||3) < || AT|3|EBY|% — [ATEBT|3,
because
IBTEAT||%
IBY|3

IATEBT|3,

1BBTEAT|E >
1473

and ||AATEBY|% >
By (3.5), we have

1B — AT|[3 < min {|| B3| EAT|E, || AT EBT|1%: .
which is exactly (1.8). Thus, (3.5) has also improved the estimate (1.8).

The following two corollaries are based on Theorem 3.2.

Corollary 3.1. Under the assumptions of Theorem 3.2, it holds that
IBT — AY[% < min {1 + || BT EAT|}., 62 + | ATEBY|[3.},
where

B = | A1 EIE — |1 EB'BIE) + IBYI2 (1B — |AATE%),
B2 = AN (IEF — 1BB'EIE) + IBY(1E]F — 1EATA|IT).

7

(3.10)



Proof. In view of (2.2a), (2.2b), (2.3a), and (2.3b), we have

U*EV = UUhSs = S ViVi =SaViha (3.11)
U; U5, 0 ’ '

U*EB'BV = UrhiS: — SV 0 (3.12)
U;U, 5, 0/’ '

A BT — <U1 015 - SV —Elovl v2> | 2.13)

From (3.11), (3.12), and (3.13), we deduce that

IV;Vizull% = || Ell% — |IEB'BIE,
=107 0s % = || BllE — |AATE| .

Then

IATE|E — |ATEB'B|% = IV Vil < IATI3IV; VisullE = 1AM (I EIE — IEB' B %),
IEB|[E — [|AATEBT % = |07 U2 ||F < | BYBI2:07 V27 = 1BV I3 (I ElIF — | AATE|R).

Hence,
on < | AT (I1EIE — I1EBBIE) + 1B (1B — [AATE|F).
Similarly,
a2 < [|ATS(1EIE — IBBTEI:) + B 3 (1B — EATA|R).
Using (3.5), we can obtain the estimate (3.10) immediately. O

Corollary 3.2. Under the assumptions of Theorem 3.2, it holds that
1B = AYZ < min {51 + | BUEAT |2, 5 + | ATEBT|2), (3.14)

where

|AtEBT|2 |ATEBT|Z
o= ||AT||§<||ATE||% — s L+ B3 I1EBY; — e )

13113 IAT13
BTEAT|? BTEAT|?
= AT (BT — e ) < g (1t - 1T )
2 2
Proof. It is easy to verify that
A'EB'|? A'EB'|?
AEB Bl > VElE and aatestip > ISl
2 2

The estimate (3.14) then follows from Theorem 3.2. O

The following theorem provides the sharper counterparts of (1.4), (1.5), and (1.6).



Theorem 3.3. Let Ac C"*", Be C**", and E =B — A. Then

1BY — AT|[E < min {6y + | B'EAT|E, 6> + |ATEB|[E},

where
|AATEBTL | ATEBIB|2
51 1= max {]| AT, || B[4 <||E|P —max{ , |
{147z, 157l 117 IBT3 AT
|BBIEAT | BTEATA|Z
5y 1= max {]|AT}4, || B[4 <||E|P —max{ | |
{147, 157l 117 AR B

In particular, if s =, then
|B — AT||% < min {e1 + || BYEAT||}, e0 + |ATEBT| 1},

where

|BBIEAZ |BIEAT AR
e HA*H?HBHP(HEH% - max{ , |
211512 TAT B3

|AATEBT||% |ATEBIB;
szzzHA*M%HB*H%(HEH%—maX{ B AR )
2 2

Proof. According to (3.11), we deduce that

B3 = (U U1 — 21V VASTHE 1 + (151 Ve Va2 + U3 Th 21 |3
_ NAATEBYE  VallE 07

B3 IATI3 13113
and
IEIF = IS0 0TS = ViEVDIE + I Val7 + | Us T S 7
IATEBIBE | VsVilE | U7 0sl%
14T IAT]3 IBY3
Hence,

Tival |, IVival
13113 IAT]I3
Using (2.7a) and (3.17), we obtain

|AATEBT|E HATEBTBHZF}

< |EI% —max{ |
1B e

IUrta)E | Vs Vallz
137113 IAT13

1B — A% < max {JAT|4, HBH%}< ) T IB EAT
<6 +[|BTEAT|[3.

Interchanging the roles of A and B, we arrive at

1BY — AT|[% < & + | ATEBT||%.

(3.15)

(3.16)

(3.17)



Thus, the estimate (3.15) is valid.
We next consider the special case s = r. Direct computation yields

BV — <i1‘71*V1 —UUS, 21‘71*‘/2> ’

—U3U1%, 0
which leads to

IEF = 1Z1ViVi = U E 5+ 120V VelE + U300 7 (3.18)
If s =r, we get from (3.18) and Lemma 2.3 that

1B = |G TE = TiO0L + ISV Vallh + 105015
_ IBBTEATS | [VsVil: | |05Usll

— AT 1813 IAT]I3
and
|EIE = IE1(V Vi = S 0T 5+ |IE10V Va3 + 103 UL Sl 7
_ IBIEATALG | VEWE | Uil
~ B3 183 I ATI3
Hence, N B
U0 | Va3Vl 2 |BBTEAT|; ||BTEATA|Z
< |E|% - max , (3.19)
IATI3 1813 IAT]13 13113
By (2.7a) and (3.19), we have
1T 02013 | VWl At
1B — AT||% < \IAT!@\IBTH%( + +IB'EAT|p
|| AT]|3 13113
<e + |BTEAT|3.
Interchanging the roles of A and B yields
IBT — AM|[% < e2 + | ATEBT|3.
Therefore, the estimate (3.16) is proved. This completes the proof. O
Remark 3.5. From (3.15), we deduce that
1
1B — AT|I% < (01 +d+ IATEBT|% + | BTEAT|). (3.20)
Using the inequalities
"EBT|? |BTEAT|?
tpti2 < 14 F tAt2 F

10



we obtain

ATEBY|2 + || BTEAT||2
o+ 80 < max {113, 15118} (21 - I L )

[ATBIBTR
4T3 153

= 2 (A BB — o { (22 W2 ) (IATEB I + |57 EAT)
2 2

< 2max {|A"|3, | B HIEIE — (IATEBT|% + |B'EAT|E).
Thus, the estimate (3.20) is sharper than both (1.4) and (1.6). Furthermore, since
IBY3I1BBEAT|E > | BTEAT|: and |AT|3|AATEBT|E > |ATEBYE,
it follows that the estimate (3.16) is sharper than (1.5).

Remark 3.6. Under the setting of (1.9), the upper bounds in (3.5), (3.10), (3.14), and (3.15) are
listed in Table 2. Table 2 shows that the upper bounds in (3.5), (3.10), and (3.15) have attained

Estimate Upper bound for || BT — A||%,
(3.5) Ar? + 5%
(3.10) Ar? + 5
2
(3.14) 4% + &+ gy — 4
(3.15) Ar? + 5

Table 2: The upper bounds in (3.5), (3.10), (3.14), and (3.15).

the exact value 472 + 7—12 In addition, if 7 is sufficiently small (i.e., the perturbed matrix is very
close to the original one), the upper bound in (3.14) will be very close to the exact value.
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