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Abstract

This paper investigates an identifiability method for a class of systems of reac-
tion diffusion equations in the L2 framework. This class is composed of a master
system of ordinary differential equations coupled with a slave system of diffusion
equations. It can model two populations, the second one being diffusive contrary
to the first one. The identifiability method is based on an elimination procedure
providing relations called input-output polynomials and linking the unknown pa-
rameters, the inputs and the outputs of the model. These polynomials can also be
used to estimate the parameters as shown in this article. To our best knowledge,
such an identifiability method and a parameter estimation procedure have not yet
been explored for such a system in the L2 framework. This work is applied on an
epidemiological model describing the propagation of the chikungunya in a local
population.

Keywords: Identifiability; PDEs and ODEs systems; Parameter estimation;
Epidemiological models

1. Introduction

Many biological or physical processes are modeled using ordinary differen-
tial equations (ODE) or partial differential equations (PDE) to describe the (spa-
tial) evolution over the time of quantities of interest. However, they depend on
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many parameters that need to be estimated from the measurements of the sys-
tem to make the mathematical model useful. This kind of problem, called inverse
problem, necessitates, in general, an identifiability study. An identifiability study
ensures that the parameters of interest can be uniquely inferred from given mea-
surements. Consequently, it is a necessary prerequisite before putting in place
parameter identification procedures, otherwise, the latter can fail or give not real-
istic parameter values. This theoretical work is done in the ’best-case’ that is from
noise-free data.

Identifiability study for ODEs systems is well known and several methods ex-
ist in the literature for linear or nonlinear systems (see for example [11, 14, 16,
18, 26, 30, 31, 33] and the references therein). In the case of PDEs systems (or
equations), most of the work on inverse problems concerns a source problem (see
[2, 7, 10, 13, 23, 36]) or a Calderòn’s problem (see the original paper [5] and
the review on the subject [29]). This kind of inverse problems consists in identi-
fying a source term, or to determine a space variable parameter, from boundary
measurements.

The inverse problem studied in this paper for PDEs systems is of different type
to the one handled in the previous references. Indeed, the difference comes from
the knowledge of one (or more) of its solutions (on all the domain or just a part
of it). Even if this assumption seems to be less considered, some works can be
found in this direction. An identifiability study has been proposed in [34] (see
also reference [6] for a more recent reference) for a SIS (Susceptible - Infectious -
Susceptible) epidemic reaction-diffusion model using an optimal control method.
In [24], using input-output relationships, identifiability of a system of nonlinear
integro-partial differential equations of transport type was proposed. An approach
based on semigroup theory to identify the mortality rate in an age-structured pop-
ulation dynamics model have been proposed in [25]. In the case of coupled ODEs
and PDEs systems, a study of identifiability have been done in [15] by means of
Carleman-type estimate, and in [28] using the differential algebra approach where
the PDE model is an age-since-infection-structured population dynamics model.

In this paper, we propose an identifiability method, using the differential alge-
bra approach, for some coupled nonlinear ODEs and reaction-diffusion systems
composed of rational functions. This assumption is not so restrictive since by
change of variables, lots of systems can be rewritten as rational ones. From the
elimination theory developed in the case of ODEs systems, some input-output
(IO) polynomials are obtained. The method that we propose is based on these
specific relations permitting in the same way to propose a numerical procedure
giving a first estimate of the parameters by direct measurements without any a
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priori knowledge. To our best knowledge, such an identifiability method has not
yet been studied for a coupled nonlinear ODEs and reaction-diffusion systems in
the L2 framework.

For the application of the method, we propose to consider the model given
in [20] and describing the transmission of the chikungunya to the human popu-
lation by the mosquito vector, the Aedes Albopictus. This disease is still current
since this vector has developed capabilities to adapt to non tropical regions and a
genetic mutation has reduced the delay between the contamination of the host and
its propagation to humans. In 2014, several cases have been reported in the South
of America, the Caraı̈bes and central America. In August 2017, it is the France
and Italy that have been concerned. In [20], the virus transmission to the human
population has been modeled by a SI-SIR (Susceptible - Infectious and Suscepti-
ble - Infectious - Recovered) model taking into account the mosquito biological
life cycle. An identifiability study of this model has been done in [27]. But this
ODEs system does not consider an important factor favoring the re-emergence of
diseases, that is the spatial mobility of humans. In order to consider this spatial
mobility, a metapopulation model has been proposed in [21]. This spatio-temporal
model can be seen as a discrete model in space. In this paper, we model human
mobility by a diffusion term in the same way as [22] or [1, 17]. In [37], an identifi-
ability study was proposed on this model in the continuous framework, that is with
continuous initial datum. In this paper, we revisit this work with less assumptions
on the regularity of the solutions. More precisely, we work in the L2 framework.

The paper is structured as follows. In section 2, we present the coupling model
which is considered in the sequel. Section 3 is devoted to general identifiabil-
ity results based on the elimination theory and their applications on the coupling
model. In section 4, the theoretical part is applied on a chikungunya epidemiolog-
ical model and a parameter estimation method based on the input-output polyno-
mials is proposed in section 5 to estimate two of the model parameters. Section 6
concludes the paper.

2. Coupling model

2.1. Notations
The notations are the following:

• Ω is a bounded domain of Rn with C2-boundary.
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• Cl([0,∞);C(Ω)) denotes the space of piecewise continuous functions from
[0,∞) to C(Ω) and C1

l ([0,∞);C(Ω)) the space of piecewise differentiable
functions from [0,∞) to C(Ω).

• Given a local Lebesgue-integrable function F , TF defines its regular distri-
bution.

• H2
N(Ω) := {v ∈ H2(Ω) | ∂v

∂ν
= 0 on ∂Ω}, where ν is the outward unit

normal of ∂Ω.

• For any function f ∈ L1(Ω), we set 〈f〉 :=
1

| Ω |

∫
Ω

f(x)dx.

2.2. Coupling model
The model we investigate in this paper is a master-slave model of two species

where the slave one diffuses, contrary to the master one. The master model is
a system of classical ordinary differential equations defined on the space C(Ω)
given by: {

∂tζ = F (t, ζ), in (0,∞),
ζ(0) = ζ0.

(1)

where ζ0 ∈ C(Ω) and F : R × Rp → Rp is piecewise continuous with respect to
the first component and uniformly Lipschitz continuous with respect to the sec-
ond component. Then, from the Cauchy-Lipschitz theorem, there exists a unique
piecewise differentiable solution ζ from any time interval of existence to C(Ω),
i.e. ζ ∈ C1

l

(
[0,∞);C(Ω)

)
.

The slave model is a system of reaction-diffusion equations defined on the
Banach space X := C(Ω;Rq0)×L2(Ω;Rq1) and which depends on the solution ζ
of the master model:{

∂tU +BU = G(t, ζ, U), in (0,∞),
U(0) = U0,

(2)

where U0 ∈ X and the diagonal operator B := diag(Bi) on X satisfies

• for all i ∈ {1, . . . , q0}, Bi := I ,

• for all i ∈ {q0 + 1, . . . , q} (where q := q0 + q1), Bi := diA + bi with
di, bi > 0 and A is the realization of the Laplacian in L2(Ω) with Neumann
homogeneous boundary condition on ∂Ω.
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In other words, (2) is composed of q0 ODEs and q1 PDEs which are all together
coupled.

Moreover, G(t, ζ, ·) is a non-linear operator from D(Bη) into X (see (24)),
where 0 < η < 1, which satisfies the following Lipschitz type condition: there
exists an increasing function φ such that, for any compact time interval I where ζ
is differentiable and for all (t, U),(s, V ) ∈ I ×D(Bη), we have

‖G(t, ζ, U)−G(s, ζ, V )‖X ≤ φ(‖U‖X + ‖V ‖X)

×
[
‖Bη(U − V )‖X + (‖BηU‖X + ‖BηV ‖X + 1)(|t− s|+ ‖U − V ‖X)

]
,

(3)
where ‖ · ‖X denotes the norm of X .

Then, a simple adaptation of Theorem 4.4 of [35] (p. 188, and p. 199 for the
non autonomous case) implies that there exists TU0 > 0 such that (2) admits a
unique local solution

U ∈ Cl([0, TU0 ];D(B)) ∩ C1
l ((0, TU0 ];X).

Note that U is piecewise continuous and piecewise differentiable due to the de-
pendence with respect to ζ .

Moreover, if there exists CU0 > 0 such that the local solution U satisfies:

∀ t ∈ I, ‖U(t)‖2 ≤ CU0 , (4)

for any compact time interval I where U is continuous with respect to the time
variable, then U is a global solution:

U ∈ Cl([0,∞);D(B)) ∩ C1
l ((0,∞);X).

Such systems depend on parameters not always directly accessible from measure-
ments or by mean of a costly and experimental scheme. However, they must be
estimated to make the model usable. Several numerical procedures, based on mea-
surements, can be found in the literature. They carried out by optimizing some cri-
terion function over the parameter space. However, an identifiability study should
be done since it is a pre-condition for safely running a parameter estimation al-
gorithm. Indeed, it will ensure that the algorithm will not converge towards an
unrealistic solution.

More precisely, we introduce a parameter vector function θ := (θa, θb) ∈ L∞(Ω;Up),
where Up is an open subset of Rp, and some corresponding model outputs y(t, θ) :=
(ya(t, θa), yb(t, θb)). Thus, we rewrite models (1) and (2) in the following form:
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(Γa)

{
∂tζ(t, θa) = f(t, ζ, θa), t ∈ [0,∞),

ya(t, θa) = ha(ζ), t ∈ [0,∞),
(5)

completed with ζ(t = 0, θa) = ζ0, and

(Γb)

{
∂tU(t, θb) +B(θb)U(t, θb) = g(ζ, U, θb), t ∈ [0,∞),

yb(t, θb) = hb(ζ, U), t ∈ [0,∞),
(6)

completed with U(t = 0, θb) = U0. The notations are the following:

• f := (f1, . . . , fp) where fi, 1 ≤ i ≤ p, is a rational function with respect to
ζ and θa,

• g := (g1, . . . , gq) where gi, 1 ≤ i ≤ q, is a rational function with respect to
ζ , U and θb,

• ha := (ha,1, . . . , ha,ma) (resp. hb := (hb,1, . . . , hb,mb)) where ha,i, 1 ≤ i ≤
ma (resp. hb,i, 1 ≤ i ≤ mb), are rational functions with respect to ζ (resp. ζ
and U ).

Afterwards, (Γθ) will design either system (Γa) or (Γb).

3. Identifiability

3.1. General Case
The identifiability definition considered in this paper is the following:

Definition 3.1. We say that the model (Γθ) is identifiable with respect to θ if there
exists a time t1 > 0 and a subset Ω̄ of Ω such that, for all θ, θ̃ ∈ L∞(Ω;Up), we
have

∀ (t,x) ∈ [0, t1]× Ω̄, y(t, θ)(x) = y(t, θ̃)(x) =⇒ θ = θ̃.

Definition 3.1 states that there exists a time interval and a space domain such that
two distinct parameters will not generate identical model outputs. This definition
can be easily extended to piecewise continuous outputs by considering the model’s
identifiability on each subinterval on which the outputs are defined.

We propose to extend an identifiability method based on the differential alge-
bra theory applied to ODEs with constant parameters [3, 4, 8, 9]. This method is
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based on some differential polynomials obtained owing to an elimination proce-
dure. The latter consists in eliminating unobservable variables for the benefit of
the outputs and the parameters of the model.

Differential algebra theory provides an automatic elimination tool for perform-
ing specific relations depending only on the inputs, the outputs and the parameters
of the system. These relations are considered as polynomials whose indetermi-
nates are the inputs and the outputs of the model and are also called input-ouptut
polynomials. In certain cases, the elimination procedure can be done by hand,
however, dedicated packages are available, for example DifferentialAlgebra
implemented in Maple [3, 4]. This method necessitates most of the times deriva-
tion operations and, in the case of the use of a dedicated software, the elimination
is done in a formal way, that is, without any consideration of the solution space.
The relations can also not be defined with respect to the solution regularity of the
model. Nevertheless, new well-defined relations can be obtained in considering
the previous relations in the distribution sense or from the mean value, so that an
identifiability result can be deduced on the studied system.

Suppose that, from an elimination procedure considering only the derivation
with respect to the time, the differential polynomials Pi(yθ, θ, u) depending on θ,
yθ and the input function u of the model have been obtained. The number of
these polynomials is the number of model outputs according to [8]. To simplify
the notations, we consider afterwards that we have only one output, that is one
differential relation P (yθ, θ, u) (which correspond to the case of the application of
section 4). This differential polynomial can be expressed as (see [8]):

P (yθ, θ, u) = m0(yθ, u) +
n∑
k=1

γk(θ) mk(yθ, u) and P (yθ, θ, u) = 0, (7)

where (γk(θ))1≤k≤n (γα 6= γβ if α 6= β and α, β ∈ {1, . . . , n}) are rational in
θ, (mk(yθ, u))0≤k≤n are differential polynomials with respect to yθ and u, and
m0 6= 0.

Remark 3.1.

1. In the present case, a differential polynomial with respect to yθ means a
multivariate polynomial of the variables yθ, ∂tyθ, ∂2

t yθ, . . ..
2. The denominators of γk(θ) are supposed not to vanish.
3. For system (Γb), the function ζ can be considered as an input function.
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4. By using Rosenfeld-Groebner algorithm, one can obtain a relation of the
form (7) such that the mk(yθ, u) for k = 1, . . . , n are linearly independent
(see [12]).

The family {γ1(θ), . . . , γn(θ)} is called the exhaustive summary of P and the
differential polynomial P is called an input-output polynomial.

Example 3.1. We illustrate the notion of input-output polynomial on a simple
problem. Consider an ODEs system given by{

ẋ1 = u,
ẋ2 = x1 + k u,

where k ∈ R is a parameter to identify (θ = k) and u is an input function.
Suppose u is C1 and assume that y := x2 is observable. Then, y is C2 and we

have
ÿ = ẋ1 + k u̇ = u+ k u̇. (8)

Thus, we deduce that we have an input-output polynomial P such that P (y, k, u) =
0 which is given by

P (y, k, u) := ÿ − u− ku̇.
Moreover, the exhaustive summary is simply {k}.

Note that we assumed that u is C1. We will see below how we can handle a
more general case of an input function with less regularity.

Suppose that the elimination process respected the regularity of the solutions
of the ODEs or the PDEs system. Then the following proposition gives a nec-
essary condition to obtain the identifiability of the model from the differential
polynomial (7).

Proposition 3.1. Assumed that the family (mk(yθ, u))1≤k≤n given by (7) is lin-
early independent. If, for all (θ, θ̃) ∈ L∞(Ω,Up)2, we have

∀ k ∈ {1, . . . , n}, γk(θ) = γk(θ̃) =⇒ θ = θ̃,

then the model is identifiable with respect to θ.

Proof 3.1. Let (θ, θ̃) ∈ L∞(Ω,Up)2 be such that yθ(t, θ) = yθ(t, θ̃). From (7),
one gets:

n∑
k=1

(γk(θ)− γk(θ̃))mk(yθ, u) = 0. (9)
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According to the linear independence of the family (mk(yθ, u))1≤k≤n, relation (9)
implies

∀ k ∈ {1, . . . , n}, γk(θ) = γk(θ̃).

Thus, by assumption, θ = θ̃.

By using dedicated software programs, relation (7) is obtained in a formal way
by differentiation with respect to the time and combination of the equations of the
initial system. Its derivative degrees may be too high with respect to the solution
regularity.

Assume that, in (7), the mk(yθ, u), k = 0, . . . , n, are well defined almost
everywhere and are locally Lebesgue integrable. Then, one can replace the not
well defined mk(yθ, u) by their distributions Tmk(yθ,u). Thus, we obtain a new
relation of the form

Tm0(yθ,u) +
n∑
k=1

γk(θ)Tmk(yθ,u) = 0. (10)

In this case, similarly to Proposition 3.1, we have the following result in the
distribution sense.

Proposition 3.2. Assumed that the family of distributions (Tmk(yθ,u))1≤k≤n given
by (10) is linearly independent. If, for all (θ, θ̃) ∈ L∞(Ω,Up)2, we have

∀ k ∈ {1, . . . , n}, γk(θ) = γk(θ̃) =⇒ θ = θ̃,

then the model considered in the distribution sense is identifiable with respect to θ.

Proof 3.2. The proof is similar to the proof of Proposition 3.1.

Remark 3.2. It is easy to show that if the (mk(yθ, u))k=1,...,n are linearly inde-
pendent then the (Tmk(yθ,u))1≤k≤n are linearly independent too. In the application
of section 4, the linear independence assumption of Proposition 3.2 is substituted
by the linear independence of the (mk(yθ, u))k=1,...,n.

3.2. Identifiability result for (Γa) when θa ∈ L∞

The solution ζ of system (Γa) being piecewise differentiable in time, the out-
put ya is, in general, piecewise differentiable (or just continuous) in time. Using
this property, one can obtain a more informative input-output relation taking ac-
count the discontinuous points of ya (recall that only derivation with respect to the
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time variable is considered). These new relations can lead to a positive identifia-
bility result.

Let s be the time derivative of highest order of ya appearing in (7). If the func-
tion y(s)

a can be expressed formally in (7) as a term of the form d(ya, y
′
a, . . . , y

s−1
a )y

(s)
a

where d is a differential polynomial with respect to ya and does not cancel, then (7)
can be rewritten as follows:

y(s)
a = m̃0(ya) +

n∑
k=1

γk(θa)m̃k(ya), (11)

where, for all k = 0, . . . , n, m̃k(ya) is a rational function assumed to be locally
Lebesgue-integrable in time. Note that we omit the dependence on the input func-
tion u to simplify the notation, we will keep this notation in the sequel.

Assume that ya is s times piecewise continuously differentiable in time and
let (tν)ν be the corresponding finite increasing family of discontinuities points.
Due to the discontinuities points, the relation (11) should be considered in the
distribution sense:

T
y
(s)
a

= Tm̃0(ya) +
n∑
k=1

γk(θa)Tm̃k(ya). (12)

Now, for any j = 0, . . . , s, denote the jump at tν of y(j)
a by

σjya,ν(θa) := y(j)
a (t+ν )− y(j)

a (t−ν ).

Note that the jump depends upon θa since ya itself depends on θa. Then, jump
formula yields

T (s)
ya = T

y
(s)
a

+
∑
ν

s−1∑
j=0

σjya,νδ
(s−1−j)
tν ,

where δtν denotes the Dirac distribution at point tν . Thus, equation (12) can be
rewritten

T (s)
ya = Tm̃0(ya) −

∑
ν

s−1∑
j=0

σjya,ν(θa)δ
(s−1−j)
tν +

n∑
k=1

γk(θa)Tm̃k(ya). (13)
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Remark 3.3.

1. These relations are more informative than (11) since new constraints on
the discontinuity points linking the parameters are added to the study of
identifiability.

2. This operation can permit to obtain relations well-defined with respect to
the solution regularity.

The following proposition gives also a sufficient condition to obtain the iden-
tifiability of the parameters.

Proposition 3.3. Assume that the family of distributions (Tm̃k(ya))1≤k≤n is lin-
early independent. If, for all (θa, θ̃a) ∈ L∞(Ω,Up)2, we have

γk(θa) = γk(θ̃a)

∀ν,
s−1∑
j=0

σjya,ν(θa) =
s−1∑
j=0

σjya,ν(θ̃a)
=⇒ θa = θ̃a,

then the model is identifiable with respect to θa.

Proof 3.3. The proof is similar to the proof of Proposition 3.1 and follows from
the linear independence of the families (δ

(j)
tν )j=0,...,s and (T̃mk(yθ))k=1,...,n.

All these input-output polynomials (7), (10), (13) can be used to obtain a first
estimate of the identifiable parameters. This will be illustrated at section 5.

Example 3.2. Consider again Example 3.1 but now assume that u is a piecewise
constant function given by

u(t) :=

{
u1 if t ∈ (0, t1)
u2 if t ∈ (t1, T ),

where u1, u2 ∈ R, u1 6= u2. Then, equation (8) written in distribution sense yields

T ′′y = Tu + k(u2 − u1)δt1 .

So, in this way, we obtained a new relation that could permit to identifiate k.
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3.3. Identifiability result on (Γb) when θb is a constant parameter vector
In this part, we focus on the identifiability of system (Γb). We are interested in

the identifiability of the parameter θb := (θc, θd) where θc ∈ Rq0 and θd := (di)i∈I
with I ⊂ {q0 + 1, . . . , q}. Let U := (Ui)i=1,...,q be the solution of (Γb) and yb be
given by (6).

Lemma 3.1. Let yb be given by yb := (yc, yd) where

yd := (Ui)i∈I .

Assume there exists ν ∈ N such that, for all t ∈ (tν , tν+1),

1. there exists a family of positive reals (λi)i∈I such that∑
i∈I

λi(gi(ζ(t), U(t), θd)− ∂tUi)

is independent of θd,
2. the family (Ui(t, ·))i∈I is linearly independent up to an additive constant

in Ω,
3. the bi defined in Bi = diA+ bi are supposed to be known.

Then, (Γb) is identifiable with respect to θd.

Remark 3.4. In other words, Lemma 3.1 gives a sufficient condition for the iden-
tifiability of diffusion coefficients (di)i∈I when the associated solutions (Ui)i∈I
are known.

Proof 3.4. Let θd, θ̃d be such that

∀ (t, x) ∈ (tν , tν+1)× Ω, yb(t, x, θd) = yb(t, x, θ̃d).

Then, using assumption (1), we have∑
i∈I

λiBi(θd)Ui =
∑
i∈I

λi(gi(ζ(t), U(t), θd)− ∂tUi)

=
∑
i∈I

λi(gi(ζ(t), U(t), θ̃d)− ∂tUi)

=
∑
i∈I

λiBi(θ̃d)Ui,
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which leads to ∑
i∈I

λi(di − d̃i)AUi = 0.

Thus, V :=
∑

i∈I λi(di− d̃i)Ui is an eigenvector of A associated with zero eigen-
value. Thus, V is constant. Since, for all t ∈ (tν , tν+1), (Ui(t, ·))i∈I is linearly
independent up to an additive constant in Ω, we deduce that for all i ∈ I

λi(di − d̃i) = 0,

which leads to the result since λi 6= 0.

It remains to obtain the identifiability with respect to θc. To this end, Proposi-
tions 3.1 and 3.2 can be used. However, in order to test the linear independence
of the family (mk(yb))k=1,...,n, the calculus of the wronskian can not be possible
due to the lack of regularity of the solutions. In the following lemma, we propose
to substitute this test by another one.

Lemma 3.2. Let P̃ := 〈P 〉. Assume that

1. (Γb) is identifiable with respect to θd,
2. the polynomial P defined in (7) with θ := θc satisfy, for all k = 1, . . . , n,

γk(θc) = γk(θ̃c) =⇒ θc = θ̃c,

3. the family of functions (< mk(yb) >)k=1,...,n are linearly independent.

Then (Γb) is identifiable with respect to θc.

Proof 3.5. The relation P̃ (yb, θc)− P̃ (yb, θ̃c) gives:
n∑
k=1

(γk(θc))− γk(θ̃c)) 〈mk(yb)〉 = 0. (14)

A linear system of solutions in the block of parameters γk(θc)−γk(θ̃c) is deduced.
According to Assumption 3, we obtain that γk(θc) = γk(θ̃c) and according to
Assumption 2, (Γb) is identifiable with respect to θc.

Remark 3.5. 1. If the relation P̃ obtained from (7) by taken its mean value is
not well-defined with respect to the time variable, it can be considered in the
distribution sense. In that case, for Assumption 3, it is sufficient to prove the
linear independence of the family (〈mk(yb)〉)k=1,...,n. Indeed, if the family
(〈mk(yb)〉)k=1,...,n is linearly independent, then the family (T〈mk(yb)〉)k=1,...,n

is also linearly independent.
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2. Another way to deal with the linear independence assumption is to suppose
that there exist n distinct points t1, . . . , tn such that the determinant∣∣∣∣∣∣∣∣∣∣

〈m1(yb)〉 (t1) . . . 〈mn(yb)〉 (t1)

〈m1(yb)〉 (t2) . . . 〈mn(yb)〉 (t2)
...

...
〈m1(yb)〉 (tn) . . . 〈mn(yb)〉 (tn)

∣∣∣∣∣∣∣∣∣∣
(15)

is not zero.
Indeed, from relation (14), the following linear system in the block of pa-
rameters composed of n equations is obtained:

n∑
k=1

(γk(θc))− γk(θ̃c)) 〈mk(yb)〉 (tj) = 0, for j = 1, . . . , n.

Thus, since the determinant (15) is not zero, following the same argumen-
tation, the identifiability of (Γb) at θc is deduced.
In the numerical applications, the n distinct points t1, . . . , tn can be chosen
randomly to evaluate this determinant.

4. Application to an epidemiological model

The identifiability method presented at the previous section is applied on a
coupling model describing the transmission and the propagation of the chikun-
gunya disease by Aedes mosquitoes to the human population (See. [20]).

4.1. Chikungunya transmission model
The model of [20] couples two sub-systems: the mosquito dynamics model

and the transmission virus model between mosquitoes and humans populations.
The first one describes the biological mosquito life cycle so that three stages are
concerned: Em the number of eggs, Lm the number of larvae/pupae and Am the
number of adult females. This model is the following

E ′m(t) = bAm(t)(1− Em(t)

KE

)− (s+ d)Em(t),

L′m(t) = sEm(t)(1− Lm(t)

KL

)− (sL + dL)Lm(t),

A′m(t) = sLLm(t)− dmAm(t),

(16)
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where KE > 0 (resp. KL = KE/2) is the carrying capacity of Em (resp. carrying
capacity of Lm), sL > 0 (resp. s > 0) is transfer rate from Lm to Am (resp. from
Em to Lm ), b > 0 is the intrinsic rate, d > 0, dL > 0 and dm > 0 are the mortality
rate for Em, Lm and Am respectively.

To construct the second model, that is the transmission virus one, the human
and mosquito populations had been first considered in [20] and divided in sub-
populations before doing a change of variables to obtain densities. In this paper,
only the final version concerning densities is studied. In this model, three stages
are considered: Im the density of infective mosquitoes; SH the density of suscep-
tible humans; IH the density of infected humans. The transmission virus model
is 

I ′m(t) = −(sL
Lm(t)

Am(t)
+ βmIH(t))Im(t) + βmIH(t),

S ′H(t) = −(bH + βHIm(t))SH(t) + bH ,

I ′H(t) = βHIm(t)SH(t)− (γ + bH)IH(t),

(17)

where βH > 0 (resp. βm > 0) is the infectious contact rate between susceptible
humans and vectors (resp. susceptible mosquitoes and infected humans), γ > 0 is
the human recovery rate, bH > 0 is the human birth rate.

Under the same conditions as in [21], a continuous model in space is proposed
in this paper. Contrary to the displacement of mosquitoes limited to a few meters,
human mobility is considered using diffusion terms (See e.g. [22]). Hence, Model
(17) is rewritten as follows:




∂tEm(t, x) = bAm(t, x)(1− Em(t, x)

KE(t, x)
)− (s+ d)Em(t, x),

∂tLm(t, x) = sEm(t, x)(1− Lm(t, x)

KL(t, x)
)− (sL + dL)Lm(t, x),

∂tAm(t, x) = sLLm(t, x)− dmAm(t, x),

(a)


∂tIm(t, x) = −(sL

Lm(t, x)

Am(t, x)
+ βmIH(t, x))Im(t, x) + βmIH(t, x),

∂tSH(t, x) = −(bH + βHIm(t, x))SH(t, x) + bH + d1∆SH(t, x),

∂tIH(t, x) = βHIm(t, x)SH(t, x)− (γ + bH)IH(t, x) + d2∆IH(t, x),

(b)

(18)

where d1, d2 > 0 are diffusion coefficients, x is in a bounded domain Ω ⊂ Rn

with C2-boundary and t > 0. The model is completed with the following initial
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conditions

(Em(0, x), Lm(0, x), Am(0, x)) = (E0(x), L0(x), A0(x)),

(Im(0, x), SH(0, x), IH(0, x)) = (Im0 (x), SH0 (x), IH0 (x)).

Furthermore, we assume that there there is no population flux across the bound-
ary ∂Ω of Ω, thus the model is completed by homogeneous Neumann boundary
conditions:

∂SH
∂ν

=
∂IH
∂ν

= 0 in R+ × ∂Ω,

where ν is the unit outward normal at ∂Ω.
An identifiability study of this model was proposed in [37] but with con-

stant carrying capacities and continuous initial conditions and consequently in
the framework of continuous solutions. In this paper, we generalize the results of
[37] to the L2 framework. More precisely, we make the following assumptions:

1. (E0, L0, A0) ∈ C(Ω)3, Im0 ∈ C(Ω) and (SH0 , I
H
0 ) ∈ L2(Ω)2.

2. The carrying capacities of mosquitoes stages KE and KL satisfy

KE, KL ∈ L∞([0,∞)×Ω) with KL(t, x) = KE(t, x)/2 6= 0, a.e. (t, x) ∈ R+×Ω.

3. Moreover, KE and KL are piecewise constant functions in time that can
correspond to a brutal change in the environment.

4.2. Existence and uniqueness of the solutions
4.2.1. The ODE system

We set

Σ :=

{
(E,L,A) ∈ C(Ω)3

∣∣ 0 ≤ E ≤ k, 0 ≤ L ≤ k

2
, 0 ≤ A ≤ sL k

2dm

}
,

where, to simplify notations, we set k := ‖KE‖∞ > 0.

A simple adaptation of Lemmas 4.2 and 4.3 of [20], from the caseKE constant
to the case KE depending of x and piecewise constant function in time, leads to
the following result:

Proposition 4.1. Let (E0, L0, A0) ∈ Σ. We set

R :=
sL
dm

b

s+ d

s

sL + dL
.
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Then, if R > 1, system (18)-(a) admits a unique solution (Em, Lm, Am) in the
space of differentiable piecewise functions C1

l ([0,∞); int(Σ))3 where int(Σ) is
the interior of Σ.

Remark 4.1.

1. Note that the discontinuous points of Em, Lm and Am are the same and are
those of KE .

2. From [20], the condition of survival of eggs, larvae and adults populations
of mosquitoes is given by R > 1. Afterwards, we suppose that R > 1 so
that Em, Lm, Am > 0. In particular, we make the following assumption:

(H) R > 1 and there exists c > 0 such that, for any t ≥ 0,
ζ3(t) := Am(t, ·) > c.

4.2.2. The PDE system
Since (H) is satisfied, we have

r :=
Lm
Am
∈ C1

l

(
[0,∞);C(Ω)

)
.

By setting U := (Im, SH , IH), system (18)-(b) is of the form (2) where the Banach
space X is given by

X :=
{

(u1, u2, u3) | u1 ∈ C(Ω), u2, u3 ∈ L2(Ω)
}
,

and the operator B is defined by

B := diag(I,−d1A+ bH ,−d2A+ γ + bH),

where A is the realization of the Laplacian in L2(Ω) with Neuman homogeneous
boundary condition on ∂Ω, and I is the identity operator of C(Ω). Furthermore,
the nonlinear operator G(t, ·) is given by

G(t, U) := (−(sLr(t) + βmu3 − 1)u1 + βmu3,−βHu1u3 + bH , βHu1u2).

We prove in the appendix, section 7, that G satisfies (3) and thus (18)-(b) admits
a unique local solution

U ∈ Cl([0, TU0 ];D(B)) ∩ C1
l ((0, TU0 ];X)

where U0 := (Im0 , S
H
0 , I

0
H).

Moreover, setting

X+ := {(u1, u2, u3) ∈ X | u1, u2, u3 ≥ 0} , (19)

we have the following theorem which states that the solution is global.
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Theorem 4.1. Under the assumption (H), for any (Im0 , S
H
0 , I

H
0 ) ∈ X+, (18)-(b)

possesses a unique non-negative global solution such that{
Im ∈ C1

l ([0,∞);C(Ω)),
SH , IH ∈ Cl([0,∞);H2

N(Ω)) ∩ C1
l ((0,∞);L2(Ω)).

The proof of the theorem is given in the appendix, section 7.

4.3. Identifiability result
The parameters whose values are not directly accessible from the field are s,

sL for the system (18)-(a) and βH , βm, d1, d2 for the system (18)-(b).
In the case of the ODEs model (16)-(17), an identifiable study had been done

in [27] and a procedure based on input-output polynomials had been proposed in
[32]. In [37], the identifiability model (18) was studied but in the case of very
regular functions. Namely, for system (18)-(a), the solutions were C∞ and for
system (18)-(b) the solutions were continuous. We consider the same assumptions
on the measured outputs, that is Lm, SH , IH can be measured.

Indeed, some weekly informations on the number of mosquitoes larvae can be
obtained owing to the use of water tanks in which the mosquitoes female lay their
eggs. Then, institutes for Health Care can collect periodically data on the number
of new infections. Thus, we assume that the number of susceptible humans SH ,
infected humans IH and larvae Lm can be considered as measured variables in Ω
during a finite time interval.

The main result of the paper is the following:

Theorem 4.2. Assume the constants b, d, dL, dm, bH , γ are known and there exists
ν ∈ N such that

• for all (t, x) ∈ (tν , tν+1)×Ω, Lm(t, x), SH(t, x) and IH(t, x) are the outputs
of the model,

• for any t ∈ (tν , tν+1), SH(t, ·) and IH(t, ·) are linearly independent up to
an additive constant in Ω.

We recall that the notation < ., . > is the mean on all the space Ω. Then, system
(18) is identifiable with respect to s, sL, A0, d1 and d2.

Let Ĩm := βH Im. Under the same assumptions, if there exists t̃ ∈ (tν , tν+1)

such that 〈IHS2
H〉 (t̃) 6= 0 and

〈
ĨmIHS

2
H

〉
(t̃) 6= 0, then system (18) is identifiable

with respect to βm and βH .
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Remark 4.2.
1. According to equation (18)-(b), Ĩm can be expressed almost everywhere

only in function of the measured variable SH (or IH) and of the identifi-
able parameter d1 (or d2). Consequently, Ĩm is considered as a measured
variable almost everywhere.

2. Note that a supplementary result is obtained on the identifiability of the ini-
tial condition A0 ∈ C(Ω). Therefore, by an optimization procedure based
on the identifiability study, the values of A0 and the other unknown param-
eters can be obtained in a unique way from the knowledge of Lm, SH and
IH .

3. An example of the estimation of d1 and d2 is given at section 5.

4.4. Proof of Theorem 4.2
We proceed in two steps. In the first step, we show that (18)-(a) is identifi-

able with respect to θa := (s, sL, A0). In the second step, we show that (18)-(b) is
identifiable with respect to θb := (βm, βH , d1, d2).

First step. For x fixed in Ω, let us introduce the following notations:

∀ t ∈ [0,∞), ζ1(t) :=
Em(t, x)

KE(t, x)
, ζ2(t) :=

Lm(t, x)

KE(t, x)
, ζ3(t) :=

Am(t, x)

KE(t, x)
.

In all the sequel, we denote by (tν)ν the finite increasing family of discontinuity
time points of KE (and so of ζ1, ζ2 and ζ3). First, to obtain simpler polynomials,
the third equation of system (18)-(a) is integrated before using the package
DifferentialAlgebra of Maple.

Integration of the third equation of system (18)-(a) on any interval (tν , tν+1)
yields

∀ t ∈ (tν , tν+1), ζ3(t) = ζ3(0)e−dmt + sL

∫ tν+1

tν

ζ2(s, x)e−dm(t−s) ds.

Then, we set

∀ t ∈ (tν , tν+1), ζ̃2,ν(t, x) :=

∫ tν+1

tν

ζ2(s, x)e−dm(t−s) ds and λ(t) := e−dmt.

To simplify the notations, we let ζ̃2,ν = ζ̃2. Since ζ̃2 depends only on dm and
the measured variable ζ2, it can be also considered as a measured variable. Thus,
we have three observations

ya,1 := ζ2, ya,2 := ζ̃2 and ya,3 := λ.
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Then, system (18)-(a) can be rewritten:

∂tζ1 = bζ3(1− ζ1)− (s+ d)ζ1

∂tζ2 = sζ1(1− 2ζ2)− (sL + dL)ζ2

ζ3 = ζ3(0)λ+ sLζ̃2

∂tζ̃2 = ζ2 − dmζ̃2

∂tλ = −dmλ
ya,1 = ζ2, ya,2 = ζ̃2, ya,3 = λ

(20)

with the initial conditions:

(ζ1(0, x), ζ2(0, x), ζ3(0, x), ζ̃2(0, x), λ(0)) = (ζ1,0(x), ζ2,0(x), ζ3,0(x), 0, 1).

The Rosenfeld-Groebner algorithm1 is then applied with (20) and the elimination
order 2

[ζ3,0, s, sL] ≺ [ya,1, ya,2, ya,3] ≺ [ζ1, ζ2, ζ3, ζ̃2, λ]

The software gives the characteristic presentation composed of the following poly-
nomials:

Q1 = −ζ3,0ya,3− sLya,2 + ζ3, Q2 = ζ1 (2 ya,1− 1) s+ ya,1 sL + dL ya,1 + ∂tya,1

and

P = −2 ∂t(y
2
a,1)− ∂2

t ya,1 + 2 ya,1 ∂
2
t ya,1 + b s ζ3,0 ya,3 + (d dL + d sL + dL s

+s sL) (2 y2
a,1 − ya,1) + (2 b dL ζ3,0 + 4 b s ζ3,0 + 2 b sL ζ3,0) y2

a,1 ya,3

+(−b dL ζ3,0 − 4 b s ζ3,0 − b sL ζ3,0) ya,1 ya,3 + b s sL ya,2

+(−b dL sL − 4 b s sL − b s2
L) ya,1 ya,2 + (2 b dL sL + 4 b s sL + 2 b s2

L) y2
a,1 ya,2

+b ζ3,0 (−ya,3 ∂tya,1 + 2 ya,1 ya,3 ∂tya,1) + (2 d+ 2 s) ya,1 ∂tya,1

−(d+ dL + s+ sL) ∂tya,1 + b sL (2 ya,1 ∂tya,1 ya,2 − ∂tya,1 ya,2).

From the two first polynomials Q1, Q2, ζ1 and ζ3 can be expressed according to
ya,1, ya,2, ya,3. The third one, P , links the outputs and the parameters s, sL and

1This algorithm is implemented in in the package DifferentialAlgebra of Maple.
2Note that the equations ξ̇3,0 = 0, ṡ = 0 and ṡL = 0 had been added to (Γa) before the

elimination procedure.
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ζ3,0 of the model, it is also an input-output polynomial. Since solutions of (18)
are in C1

l ([0,∞); C) and P contains derivatives of second order in time, P is not
well-defined with respect to the regularity of the solution. Let us show how to
obtain a regular relation.
In considering P in the distribution sense and in changing the term ya,1 ∂

2
t ya,1 to

∂t(ya,1 ∂tya,1) − (∂tya,1)2 the following polynomial P̃ in the distribution sense is
obtained:

P̃ = −2T∂t(y2a,1) − T ′′ya,1 + 2T ′ya,1 ∂tya,1 − 2T(∂tya,1)2 + γ1(θa)Tya,3 + γ2(θa)T2 y2a,1−ya,1

+γ2(θa)Tya,1 + γ3(θa)Ty2a,1 ya,3 + γ4(θa)Tya,1 ya,3 + γ5(θa)Tya,2 + γ6(θa)Tya,1 ya,2

+γ7(θa)Ty2a,1 ya,2 + γ8(θa)T−ya,3 ∂tya,1+2 ya,1 ya,3 ∂tya,1

+γ9(θa)Tya,1 ∂tya,1 − γ10(θa)T
′
ya,1

+ γ11(θa)T2 ya,1 ∂tya,1 ya,2−∂tya,1 ya,2 ,

where

γ(θa) := (γk(θa))1≤k≤11

:=
(
b s ζ3,0 , d dL + d sL + dL s+ s sL ,

2 b dL ζ3,0 + 4 b s ζ3,0 + 2 b sL ζ3,0 , −b dL ζ3,0

−4 b s ζ3,0 − b sL ζ3,0 , b s sL,−b dL sL − 4 b s sL − b s2
L ,

2 b dL sL + 4 b s sL + 2 b s2
L , b ζ3,0, 2 d+ 2 s

−(d+ dL + s+ sL), b sL
)
.

Remark 4.3. From the observation Lm and by using P̃ , the unknown parameters
s, sL and A0(x) can be estimated for all x ∈ Ω.

Let us prove that the model is identifiable with Proposition 3.2. Using Maple,
we obtain that the functional determinant of the functions {ya,3, 2 y2

a,1 − ya,1,
y2
a,1ya,3, ya,1ya,3, ya,2, ya,1ya,2, y2

a,1ya,2, −ya,3ẏa,1 + 2ya,1ya,3ẏa,1, ya,1ẏa,1, ẏa,1,
2ya,1ẏa,1ya,2 − ẏa,1ya,2} is not identically equal to zero. Then, solving the alge-
braic system γ(θa) = γ(θ̃a) with the Groebner basis implemented in maple leads
to θa = θ̃a. Consequently, applying Proposition 3.2, the model is identifiable at
the parameters s, sL, and ζ3,0(x) for each x ∈ Ω.
Second step. Since SH and IH are assumed to be known for all (t, x) ∈ (tν , tν+1)×
Ω, the equalities yb,1 = SH and yb,2 = IH are added to system (18)-(b) which is

21



rewritten in the following form:

∂tIm = −(sLr + βmIH)Im + βmIH ,

∂tSH = −(bH + βHIm)SH + bH + d1∆SH ,

∂tIH = βHImSH − (γ + bH)IH + d2∆IH ,

yb,1 = SH , yb,2 = IH .

where r := ζ2
ζ3

is known according to the previous subsection.
The parameters to identify being βm, βH , d1, d2, we denote θb := (βm, βH , d1, d2).

The initial conditions are in that case (Im(0, ·), SH(0, ·), IH(0, ·)) = (Im0 , S
H
0 , I

H
0 ).

Following section 3.3, the identifiability of the parameters is done in two steps:
first the identifiability study of d1 and d2 by using Lemma 3.1, then the identifia-
bility study of βm and βH by using Proposition 3.3.

Identifiability of d1 and d2.
Summing the second equation and the third equation of (Γb) yields:

d1∆yb,1(t, ·) + d2∆yb,2(t, ·) = ∂tyb,1(t, ·) + ∂tyb,2(t, ·) + bH(yb,1(t, ·)− 1)

+ (γ + bH)yb,2(t, ·).
(21)

The right hand-side of (21) does not depend on d1 and d2, and the functions
yb,1 and yb,2 are supposed to be linearly independent. According to Lemma 3.1,
the model is identifiable with respect to d1 and d2.

Identifiability of βm and βH .
From the package DifferentialAlgebra of Maple, we obtain the fol-

lowing input-output polynomial:

−(−bHsLr − sLrγ)yb,2yb,1 − (γ + bH)yb,2∂tyb,1 − (−sLr − bH − γ)yb,1∂tyb,2
−d2rsLyb,1∆yb,2 − (d2∂t∆yb,2 − ∂ttyb,2)yb,1 − ∂tyb,2∂tyb,1 + d2∂tyb,1∆yb,2
= βm ((−γ − bH)y2

b,2yb,1 − yb,2yb,1∂tyb,2 + d2yb,2yb,1∆yb,2) + βHβm yb,2y
2
b,1

(22)
Since the function yb,1 = SH and yb,2 = IH are inC1

l ((0,∞), L2(Ω)), the previous
polynomial is considered in the distribution sense.

We apply Lemma 3.2. Since the model is identifiable with respect to d1 and d2,
Assumption 1 of Lemma 3.2 is satisfied. The exhaustive summary of the input-
output relation (22) being (βm, βHβm), Assumption 2 of Lemma 3.2 is easily
verified.
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It remains to show Assumption 3. We set

m1 := (−γ − bH)y2
b,2yb,1 − yb,2yb,1∂tyb,2 + d2yb,2yb,1∆yb,2 and m2 := yb,2y

2
b,1.

m1 can be rewritten:

m1 = yb,2yb,1 ((−γ − bH)yb,2 − ∂tyb,2 + d2∆yb,2) = −yb,2y2
b,1Ĩm.

Thus, the Wronksian of (〈m1〉 , 〈m2〉) is equal to:〈
yb,2y

2
b,1

〉 〈
(∂tĨm)y2

1y2

〉
.

By assumption, there exists a time point t̃ ∈ (tν , tν+1) such that this Wronskian
does not vanish. Thus, from Lemma 3.2 and Remark 3.5, the model is identifiable
with respect to βm and βH .

Remark 4.4. The proof of Proposition 4.2 provides two input-output polynomials
(21) and (22). To illustrate a way to use them in a parameter estimation procedure,
we propose, in the following section, a method to estimate d1 and d2 based on (21).
The procedure does not require any knowledge of the parameter values. This first
estimate of d1 and d2 can be used by a local algorithm to improve their estimation.

5. Example of the estimation of the two parameters d1 and d2

This part is devoted to a numerical simulation estimating the parameters d1

and d2 based on (21). We follow the following procedure:

• We solve (18) with known parameters and thus we obtain approximations
of SH and IH .

• These approximations permit to simulate measured states SmeasH (resp. ImeasH )
as normal distributions around SH (resp. IH) with variance (σSH)2 (resp.
(σIH)2), where σ ∈ R+. The constant σ is chosen in order to obtain the
desired error between SH and SmeasH , and also between IH and ImeasH .

• We apply the parameter estimation procedure with the measured states SmeasH

and ImeasH to recover the parameters d1 and d2.

Let us first present the simulations data.
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Parameters Description Value
b Oviposition rate 6
KE Egg carrying capacity 1000
s Egg transformation rate 0.7
sL Larva transformation rate 0.5
d Egg mortality rate 0.2
dL Larva mortality rate 0.2
dm Female adult mortality rate 0.25
bH Human birth/death rate 0.0000457
βH Infection rate: vector to human 0.75
βm Infection rate: human to vector 0.5
γ Human recovery rate 0.1428

Table 1: Parameters values

5.1. Simulations
We use the parameters values from Table 1 of [19] (see also [21]) and recalled

in Table 1. Moreover, we set d1 = 0.1 and d2 = 0.01 so that susceptible popula-
tions diffuse through the domain faster than the infected populations. The domain
considered is Ω := (0, 1)2 and the final time is T = 20.

At the initial time, the variables ζi are taken constant while the infected hu-
mans are supposed to be concentrated in the center of the domain, which can
correspond for example to an hospital, and the susceptible humans are located at
the extremities of the domain. More precisely, the initial conditions are given by:

ζ1(t = 0, x, y) = 0.1, ζ2(t = 0, x, y) = 0.04, ζ3(t = 0, x, y) = 0.01,

Im(t = 0, x, y) = 0.2,

SH(t = 0, x, y) = 1− z(x, y),

IH(t = 0, x, y) = z(x, y),

where

z(x, y) :=

 e
−

1
4

1
4−(x− 1

2 )2−(y− 1
2 )2 , if (x− 1

2
)2 + (y − 1

2
)2 < 1

4

0 else.

Then, we compute approximations of SH and IH by solving the system (18), with
the exact parameter values, by an explicit finite difference method.
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The measured states SmeasH and ImeasH are constructed by using the function
randn of Matlab, where the coefficient σ is chosen in order to have a maximal
value of the relative error between SH and SmeasH (and between IH and ImeasH )
equal to 1%, 5%, 10% and 20%.

5.2. The numerical input-output method for estimating d1 and d2

The relation (21) is given in distribution sense by:

d1

∫
Ω

SH(t, x)∆ψ(x) dx+ d2

∫
Ω

IH(t, x)∆ψ(x) dx

=

∫
Ω

(
∂tSH(t, x) + ∂tIH(t, x)

)
ψ(x) dx

+(γ + bH)

∫
Ω

IH(t, x)ψ(x) dx− bH
∫

Ω

(
1− SH(t, x)

)
ψ(x) dx,

for all ψ ∈ Cc(Ω). Integrating this relation on (0, t), we obtain

d1

∫ t

0

(∫
Ω

SH(τ, s)∆ψ(s) ds

)
dτ + d2

∫ t

0

(∫
Ω

IH(τ, s)∆ψ(s) ds

)
dτ

=

∫
Ω

(
SH(t, s) + IH(t, s)

)
ψ(s) ds−

∫
Ω

(
SH(0, s) + IH(0, s)

)
ψ(s) ds

+(γ + bH)

∫ t

0

(∫
Ω

IH(τ, s)ψ(s) ds

)
dτ

−bH
∫ t

0

(∫
Ω

(
1− SH(τ, s)

)
ψ(s) ds

)
dτ,

(23)
for all ψ ∈ Cc(Ω)and all t > 0.

We consider the following test function:

ψ(x, y) :=

{
e

1
1−x2−y2 if (x, y) ∈ Ω,

0 else,

and a discretization 0 = t1 < t2 < . . . < tM+1 = T of [0, T ]. For k =
1, 2, . . . ,M , we set

A(k, 1) :=

∫ tk+1

0

(∫
Ω

SH(τ, s)∆ψ(s) ds

)
dτ,

A(k, 2) :=

∫ tk+1

0

(∫
Ω

IH(τ, s)∆ψ(s) ds

)
dτ,
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and

B(k) :=

∫
Ω

(
SH(tk+1, s) + IH(tk+1, s)

)
ψ(s) ds−

∫
Ω

(
SH(0, s) + IH(0, s)

)
ψ(s) ds

+ (γ + bH)

∫ tk+1

0

(∫
Ω

IH(τ, s)ψ(s) ds

)
dτ − bH

∫ tk+1

0

(∫
Ω

(
1− SH(τ, s)

)
ψ(s) ds

)
dτ.

Then, we obtain the following approximation of (23):

Ad = B, where d := (d1, d2)T .

We solve this system by the standard least squares method based upon QR factor-
ization to obtain the parameters approximations da1 and da2.

The results are summarized in Table 2 where λ is the relative error between
(SH , IH) and (SmeasH , ImeasH ), while re is the relative error between (d1, d2) and
(da1, d

a
2).

λ 1% 5% 10% 20%

da1 0.1019 0.1011 0.0836 0.1153
da2 0.0186 0.0159 0.0102 0.0191
re 0.0880 0.0595 0.1636 0.1773

Table 2: Calculation results and errors

One can see that the method gives good approximations of d1 and d2. More-
over, this method also works with a strong noise.

6. Conclusion

In this paper, we have investigated an identifiability method applied up to now
to ordinary differential equations systems to partial differential equations systems.
Furthermore, some generalization results on the L2 framework had been obtained.
This method based on algebra tools had proved to provide interesting relations
after regularizing them in using the distribution theory. As shown on the two
examples describing the chikungunya disease, these relations permit to provide
identifiability results. Furthermore, a numerical method deduced from the differ-
ential relations had been proposed and permitted to give a first initial guess of
the unknown parameters. Future works concern the exploration of the proposed
method to parameters in Lp and for other class of systems.
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7. Appendix

In this appendix we give the proof of Theorem 4.1. To this end it suffices to
show that (3) is satisfied so that a local solution U exists and then to show that U
is non negative and satisfies (4).

We restrict ourselves to the case r ∈ C1
(
[0,+∞);C(Ω)

)
. The case r piece-

wise differentiable in time is a simple adaptation by considering only compact
time intervals on which r is C1. Thus, since we assume (H) satisfied, in all the
sequel we have

r :=
Lm
Am
∈ C1

(
[0,∞);C(Ω)

)
.

Set η ∈ (3/4, 1). The domain of the fractional power Bη of B is given by (see
theorem 16.7 of [35]):

D(Bη) = {(u1, u2, u3)T ; u1 ∈ C, u2, u3 ∈ H2η
N (Ω)} (24)

and there exists c > 0 such that for i = 1, 2

1

c
‖f‖H2η

N (Ω) ≤ ‖B
η
i f‖L2(Ω) ≤ c‖f‖H2η

N (Ω), (25)

for all f ∈ D(Bη
i ). Moreover, since 2η > 1 and Ω is bounded, from Sobolev

embedding theorem, we have

H2η
N (Ω) ⊂ C(Ω̄) ⊂ L∞(Ω) ⊂ L2(Ω), (26)

with continuous embedding.

First step. Existence and uniqueness of a local solution.
In all the sequel, C will denote a positive constant whose value can change

from line to line. Set U := (u1, u2, u3) ∈ D(Bη), V := (v1, v2, v3) ∈ D(Bη),
T > 0 and s, t ∈ [0, T ]. We have

‖G(t, U)−G(s, Ũ)‖2 ≤‖ − (sLr(t) + βmu3 − 1)u1 + βmu3

+ (sLr(s) + βmv3 − 1)ũ1 − βmv3‖L2

+ βH‖u1u3 − v1v3‖L2 + βH‖u1u2 − v1v2‖L2 . (27)
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From (25) and (26), we deduce

‖u1u2 − v1v2‖L2 ≤ ‖u1u2 − u1v2 + u1v2 − v1v2‖L2

≤ ‖u1(u2 − v2)‖L2 + ‖(u1 − v1)v2‖L2

≤ ‖u1‖∞‖u2 − v2‖L2 + ‖v2‖∞‖u1 − v1‖L2

≤ C‖u1‖H2η‖u2 − v2‖L2 + ‖v2‖H2η‖u1 − v1‖L2

≤ C(‖BηU‖L2 + ‖BηV ‖L2)‖U − V ‖L2 . (28)

In the same way, we also have

‖u1u3 − v1v3‖L2 ≤ C(‖BηU‖L2 + ‖BηV ‖L2)‖U − V ‖L2 . (29)

Moreover, since r ∈ C1
(
[0,∞);C(Ω)

)
, arguing as previously we obtain

‖ − (sLr(t) + βmu3 − 1)u1 + βmu3 + (sLr(s) + βmv3 − 1)v1 − βmv3‖L2

≤ (sL‖r‖∞‖+ 1)‖u1 − v1‖L2 + sL‖r′‖∞‖u1‖L2 |t− s|
+ βm‖u1u3 − v1v3‖L2 + βm‖u3 − v3‖L2

≤ C (‖Bη(U − V )‖L2 + (‖BηU‖L2 + ‖BηV ‖L2 + 1) (|t− s|+ ‖U − V ‖2) .
(30)

From inequalities (27), (28), (29) and (30), we get (3).
Set U0 ∈ X+, where X+ is given by (19). From the first step and Theorem 4.4

of [35], we obtain that there exists TU0 > 0 such that (18)-(b) admits a unique
local solution:

U := (u1, u2, u3) ∈ C ([0, TU0 ];D(B)) ∩ C1 ((0, TU0 ];X) .

Second step. Non negativity of the local solution.
This proof is quite standard and can be found in [35] (e.g. page 197), we

set it here for the reader convenience. Let χ(f) be a cutoff function defined by
χ(f) = 0 for f ∈ (−∞, 0) and χ(f) = f for f ∈ [0,+∞). We set

G̃(t, Ũ) := (−(sLr(t)+βm ũ3−1) ũ1 +βm ũ3,−βH χ(ũ1) ũ3 +bH , βH χ(ũ1) ũ2).
(31)

Then, we consider the following problem{
∂tŨ +BŨ = G̃(t, Ũ), in (0,∞),

Ũ(0) = U0.
(32)
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Using similar arguments as in step 1, one can prove that there exists T̃U0 such that
(32) admits a unique local solution

Ũ := (ũ1, ũ2, ũ3) ∈ C
(

[0, T̃U0 ];D(B)
)
∩ C1

(
(0, T̃U0 ];X

)
.

Consider H(s) := 1
2
s2 for s ∈ (−∞, 0) and H(s) := 0 for s ∈ [0,+∞). This

function satisfies

H(s) ≥ 0, H ′(s) ≤ 0 and H ′(s)s ≥ 0, H ′(s)s ≤ 2H(s). (33)

We set
φ1(t) :=

∫
Ω

H(ũ2(t, x)) dx.

Since x 7→ H(ũ2(t, x)) is continuous for all t ∈ (0, T̃U0 ], if φ1 ≡ 0 then ũ2 ≥ 0.
Since φ1 is continuously differentiable and from (32), we have:

φ′1(t) =

∫
Ω

H ′(ũ2(t, x))∂tũ2(t, x)dx

= d1

∫
Ω

H ′(ũ2)∆ũ2dx+

∫
Ω

H ′(ũ2)(bH − (bH + βHχ(ũ1))ũ2)dx

− bH
∫

Ω

H ′(ũ2)ũ2dx− βH
∫

Ω

H ′(ũ2) ũ2 χ(ũ1)dx.

Since ∂ν ũ2 = 0 on ∂Ω, we get∫
Ω

H ′(ũ2)∆ũ2dx = −
∫

Ω

∇(H ′(ũ2)).∇ũ2dx = −
∫

Ω

| ∇ũ2 |2 dx ≤ 0.

Owing to (33), one gets that
∫

Ω

H ′(ũ2)dx ≤ 0,
∫

Ω

H ′(ũ2)ũ2dx ≥ 0 and conse-

quently that φ′1(t) ≤ 0. Thus, for any t ∈ [0, T̃U0 ], 0 ≤ φ1(t) ≤ φ1(0). Since
U0 ∈ X+, ũ0 ≥ 0 and so φ1(0) = 0. We deduce that ũ2 ≥ 0 in [0, T̃U0 ].

In the same way, we obtain that ũ1 ≥ 0 and ũ3 ≥ 0 in [0, T̃U0 ]. Set T :=
min(TU0 , T̃U0). Since ũ1 ≥ 0 in [0, T ], we deduce from the definition (31) of G̃
that G̃(Ũ(t)) = G(U(t)) in [0, T ]. By uniqueness of the solution of (18)-(b), this
leads to Ũ = U in [0, T ]. Thus, u1, u2, u3 ≥ 0 in [0, T ].
Third step. Global non negative solution.

To prove that the solution is global, it suffices to show that the inequality (4)
is satisfied.
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1. Let us prove first that u1 is bounded . Suppose that there exists t such that
u1(t, x) > 1 and consider

t1 := inf{t | u1(t, x) = 1 and u1(t+ ε, x) > 1, ∀ε > 0},

then
∀t ∈ [0, t1], u1(t, x) ≤ 1, u1(t1, x) = 1.

Since

∂tu1(t1, x) = −
(
sL
ζ2(t1, x)

ζ3(t1, x)
+ βmu3(t1, x)

)
u1(t1, x) + βmu3(t1, x))

= −sL
ζ2(t1, x)

ζ3(t1, x)
≤ 0.

If ∂tu1(t1, x) = 0, then ζ2(t1, x) = 0 so ∂tζ2(t1, x) = sζ1(t1, x) ≥ 0. Recall
that ζ3(t1, x) 6= 0.

• ∂tζ2(t1, x) > 0, by continuity, there exists δ1 such that ζ2(t, x) is
strictly increasing on (t1 − δ1, t1 + δ1), then ζ2(t, x) < ζ2(t1, x) =
0, t ∈ (t1 − δ1, t1), which contradicts the positivity of ζ2.

• ∂tζ2(t1, x) = 0, then ζ1(t1, x) = 0 and ∂tζ1(t1, x) = bζ3(t1, x) > 0,
so by continuity, there exists δ2 such that ζ1(t, x) is strictly increasing
on (t1 − δ2, t1 + δ2), then ζ1(t, x) < ζ1(t1, x) = 0, t ∈ (t1 − δ2, t1),
which contradicts the positivity of ζ1.

So we have ∂tu1(t1, x) < 0, by continuity, there exists δ3 such that u1(t, x)
is strictly decreasing on (t1 − δ3, t1 + δ3), then

u1(t1 − δ3, x) > u1(t, x) > u1(t1, x), t ∈ (t1 − δ3, t1).

Since u1(t, x) > u1(t1, x) = 1, t ∈ (t1 − δ3, t1), which contradicts the
definition of t1. So we obtain

∀t ∈ [0, T ], ‖u1(t)‖∞ ≤ 1. (34)

2. Let t ∈ [0, T ]. Multiplying ∂tu2 = −(bH + βHu1)u2 + bH + d1∆u2 by u2

and integrating by parts over Ω, we get

1

2

d

dt
‖u2(t)‖2

L2 =− bH‖u2(t)‖2
L2 − βH

∫
Ω

u1(t)u2
2(t) dx+

∫
Ω

bHu2(t) dx

− d1

∫
Ω

|∇u2(t)|2 dx.
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Since u1 ≥ 0, d1 > 0 and bHu2(t) ≤ bH
2

+ bH
2
u2

2(t), we obtain

d

dt
‖u2(t)‖2

L2 + bH‖u2(t)‖2
L2 ≤ bH |Ω|.

Solving this differential inequality leads to

∀t ∈ [0, T ], ‖u2(t)‖2
L2 ≤ C. (35)

3. In the same way, from (34), we obtain that u3 satisfies

1

2

d

dt
‖u3(t)‖2

L2 ≤ βH

∫
Ω

u1u2u3 dx− (γ + bH)‖u3(t)‖2
L2

≤ βH

∫
Ω

u2 u3 dx− (γ + bH)‖u3(t)‖2
L2 .

From Cauchy-Schwarz inequality and Young’s inequality, for any ε > 0,
we get

1

2

d

dt
‖u3(t)‖2

L2 dx ≤ βH‖u2(t)‖L2 ‖u3(t)‖L2 − (γ + bH)‖u3(t)‖2
L2

≤ βH
2ε
‖u2(t)‖2

L2 +
βHε

2
‖u3(t)‖2

L2 − (γ + bH)‖u3(t)‖2
L2

≤ βHC1

4ε
+ (βHε− γ − bH)

∫
Ω

u2
3 dx.

Taking ε := (γ + bH)/βH , from (35), we obtain

d

dt
‖u3(t)‖2

L2 dx+ (γ + bH)‖u3(t)‖2
L2 ≤ C.

Solving this differential inequality leads to

∀t ∈ [0, T ], ‖u3(t)‖2
L2 ≤ C. (36)

From (34), (35) and (36) we obtain that U satisfies (4), which leads to the result.
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