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Abstract

Accurate reporting and forecasting of PM2.5 concentration are important for
improving public health. In this paper, we propose a daily prediction method
of PM2.5 concentration by using data-driven ordinary differential equation
(ODE) models. Specifically, based on the historical PM2.5 concentration, this
method combines genetic programming and orthogonal least square method
to evolve the ODE models, which describe the transport of PM2.5 and then
uses the data-driven ODEs to predict the air quality in the future. Exper-
iment results show that the ODE models obtain similar prediction results
as the typical statistical model, and the prediction results from this method
are relatively good. To our knowledge, this is the first attempt to evolve
data-driven ODE models to study PM2.5 prediction.

Keywords: concentration data, genetic programming, least square method,
ODE models, PM2.5 prediction

1. Introduction

Air pollution has became one of the most challenge environmental prob-
lems. PM2.5 (particulate matter smaller than 2.5 µm) has been found to play
a significant role for decreasing visibility, negative effects on human health,
and influence on air pollution. Accurate and timely forecasting of PM2.5
concentration is essential for improving public health and economic condi-
tions. Because PM2.5 concentrations are dynamic and exhibit wide variation
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for different cities in China, accurate description and prediction in China
become a highly challenging task for scientists.

There is a host of studies on PM2.5 prediction. Each approach ad-
dresses the problem from different perspectives. Physico-chemical methods
and satellite remote sensing techniques are widely used in Meteorological
science. For example, 3-D chemistry transport models (CTMs) mainly ad-
dress the formation mechanism of PM2.5 from the view of physico-chemical
and meteorological processes through the temporal dynamics of the emission
quantities of various pollutants (Yahya et al. (2014); Chuang et al. (2011)).
This approach needs a large number of various meteorological data and per-
fect representation of the physico-chemical processes; therefore, it is difficult
to guarantee real-time forecast. Satellite remote sensing techniques have the
advantages of spatially seamless and long-term coverage; as s result, in re-
cent years they have been widely employed to predict PM2.5 by considering
satellite-derived aerosol optical depth empirically correlated with PM2.5 (Ma
et al. (2014)). However, the equipment expense for this type of research is
relatively high.

Statistical approach is a very popular empirical prediction method. It
aims to detect certain correlated patterns between air quality data and var-
ious selected predictors, thereby predicting the pollutant concentrations in
future. Common statistical approaches, such as linear regression models (Li
et al. (2011); Benas et al. (2013)), neural networks (Mao et al. (2017)), non-
linear regression models (Emili et al. (2010)) and neurofuzzy models, are
easier to implement but limited to specific geographical locations. In our
previous work (Wang et al. (2018)), a partial differential equation (PDE)
model, specifically, a linear diffusive equation, was applied to describe the
spatial-temporal characteristics of PM2.5 for short-term prediction. Average
prediction accuracy of the PDE model over all city-regions is 93% or 83%
with different accuracy definitions. We use a simple logistic growth PDE
model with reasonable assumptions based on meteorological knowledge and
applied mathematics knowledge. In this paper, we present a data-driven
method to improve the simple PDE for predicting PM2.5 in China.

A large amount of available data has sprung up in our lives. Nowadays,
monitoring stations in a city can provide real-time air quality. Evolutionary
modeling method, as a data-driven identification algorithm, is used to help
build ordinary differential equation (ODE) models for PM2.5 prediction in
this paper. Genetic programming (GP)is an important EM method, which
mimics the mechanisms of natural selection and genetic variation. Based
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on some suitable coding, GP uses genetic operators and the principle of
“survial of the fittest” to search for the optimal solutions. An evolutionary
modeling method of ODEs with GP is proposed in Cao et al. (2000) and
Chen et al. (2011), in which a genetic algorithm is applied to optimize the
parameters of a model. Compared with genetic algorithm for parameter
optimization, least square method can analytically calculate the linear-in-
parameter models. Therefore, in Madár et al. (2005) a GP method with least
square method for identification of linear-in-parameter models is proposed.

In this paper, we extend the work of Cao et al. (2000) and Madár et al.
(2005) to develop an algorithm for constructing ODEs which combines GP
algorithm and orthogonal least square (OLS) algorithm. Specifically, the
ODE model will involve the concentrations y of PM2.5 varying with time t
and its change rate y′(t) and y′′(t) which are related to the current concen-
tration y and the current time t. Therefore, the dynamic process of PM2.5

concentration is naturally described by an ordinary differential equation,

dy

dt
= f1(y, t) (1)

or
d2y

dt2
= f2(y,

dy

dt
, t), (2)

but the exact mathematical formulas of f1(y, t) and f2(y,
dy
dt
, t) will be de-

termined by PM2.5 data. We may make some reasonable preassumptions
about the model structure. But it is almost impossible to develop a model to
include all factors that affect the PM2.5, which needs more knowledge of the
specific atmosphere details. The aim of this paper is to apply genetic algo-
rithm to identify the model structure from real data of PM2.5 concentrations,
thus to further make prediction for PM2.5 in the future.

The main contribution of this paper are two-fold:
• We propose a novel data-driven ODE construction method based on

tree-based genetic programming and OLS to predict the future PM2.5 con-
centration using historical PM2.5 concentration observations. This method
requires only short-term PM2.5 concentration data. In addition, this method
needs almost no meteorological assumptions; therefore, it can be easily ap-
plied to other problems.
• We evaluate our approach with Wuhan’s PM2.5 concentration data of

about half a year from the view of in-sample and out-of-sample predictions.
Compared with traditional statistical regression model, our models obtain
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relative good prediction results. These experiments suggest that our new
method of predicting PM2.5 is promising.

The paper is organized as follows. Section 2 gives a general description for
the ODE construction algorithm: genetic programming with the least square
method. Section 3 describes the details of the ODE construction, section
4 validates the effectiveness of the proposed model, and finally conclusions
are drawn in section 5. In particular, in section 4, we will make in-sample
and out-of-sample predictions to measure the ODE models and compare the
evolutionary ODE model proposed in this paper with the statistical model
to demonstrate the feasibility of the ODE model.

2. Genetic programming for ODE

In this paper, we develop a genetic programming algorithm to construct
ODEs for PM2.5 prediction. The higher-order ODE (2) can be converted
into an ODE system with the form of{

dy1
dt

= y2,
dy2
dt

= f2(y1, y2, t)
(3)

If we know the construction of f2(y1, y2, t), we just replace y1 and y2 by y and
dy
dt

respectively; then we can easily obtain the structure of (2). Therefore,
the construction of (2) equals the construction of the following:

dy2
dt

= f2(y1, y2, t), (4)

where y1 satisfies dy1
dt

= y2. As a result, the construction of (1) and (2)
is essentially the same problem as the construction of one-order ODEs (1)
and (4). In the following, we discuss only problem (1). Problem (2) can be
discussed in the same way.

The ODE construction of (1) contains the structure construction of the
function f(y, t; p) and parameter identification of vector p from{

dy
dt

= f(y, t; p),
y(t0) = y0 ∈ <1,

(5)

using additional measurements of the following type:

y(tk) = Yk, k = 0, 1, 2, . . . , n. (6)
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We reduce problems (5) and (6) to an optimization problem, which consists
in minimizing of the functional

J(f, p) =
1

n

{
n−1∑
k=2

(
f(Yk, tk; p)− Yk+1 − Yk−1

24t

)2
+
(
f(Y1, t1; p)−

−Y3 + 4Y2 − 3Y1
24t

)2
+
(
f(Yn, tn; p)− 3Yn − 4Yn−1 + Yn−2

24t

)2}
, (7)

where 4t is the time interval.
The construction of the ODEs contains structure selection and parameter

selection. GP is an evolutionary computation technique, which transforms
the structure selection problem to a symbolic optimization problem, in which
the search space consists of possible compositions of predefined symbols from
the symbol set. Specifically, the construction of the ODE models is concluded
as follows:

1) Defining initial function set and operator set.
Denote the function set as I1, containing the predefined elementary func-

tions in f ; Denote the operator set as I0, including the basic arithmetic
operations existing between the elementary functions in f.

2) Generating an initial population
Each ODE model can be uniquely represented by a tree (Cao et al. (2000);

Chen et al. (2011)). Under the condition that the maximum tree depth does
not exceed predefined constant D, based on the function set I1 and operator
set I0, the algorithm randomly generates a lot of potential structures of f
in the form of tree-structure. Every f is regarded as an individual of the
population in GP. This is the first generation of the genetic system and the
optimal ODE structure is evolved from the first generation.

3) Structure selection.
We define the fitness function as (7) and it measures which of the current

ODE structure is better suited to the PM2.5 concentration. Calculate the
fitness value of every tree in the current generation, and operate mutation
and crossover on the ODE-trees with lower fitness in the current generation
(They are parents of the next generation). Measure the fitness of the newly-
generated offsprings. Select predefined number of individuals from all the
parents and offsprings by the rule of higher fitness value, which has most
wins to form the next generation.
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Specifically, mark T a and T b are two ODE-trees of the current generation:
• Crossing. As the predefined crossover rate, perform crossover on the

trees with the lower fitness. Tree-level crossover performs the following oper-
ations on parent T a and T b. Randomly select a node in each tree as crossover
point, exchange the subtree rooted at the crossover points and generate two
new ODE-trees T c and T d.
• Mutating. According to a predetermined mutation rate, perform mu-

tation on the trees with lower fitness. For example parent T a, randomly select
a node within the tree as the mutation point with a randomly generated tree,
thus an offspring T e is generated.
• Selecting. Compute the fitness value of all the parents and the newly-

produced offsprings and delete the trees who have lower fitness as the number
of the new generation we predefined.

4) Parameter identification.
At some interval of the generations, select the better structures to opti-

mize parameter by OLS methods.
5) Forming new generations recursively
Combining Step 3 and Step 4, the algorithm forms the new generation.
6) Checking the exit conditions
Step 3 and Step 4 are repeated in each generation until a predefined

number of generations has reached or the best ODE structure is found.
More specific ODE construction, for the prediction of PM2.5, will be

described in the next section.

3. Construction of ODEs for prediction of PM2.5 concentration

As described in (5) above, PM2.5 concentrations can be described by
a dynamical system. As the right part of the ODE model, f(y, t; p) should
consist of multiple elementary functions. In this section, we develop an ODE-
construction algorithm by combining the genetic algorithm and the OLS
method. Our goal is to construct f(y, t; p) by identifying the elementary
functions in f(y, t; p) and associated parameters p.

3.1. Genetic programming for ODE structure

We will explain the genetic programming for constructing ODE in this
subsection. For convenience, in this subsection we use specific sets of elemen-
tary functions and operations, but it can easily be expand to other sets of
elementary functions and operations. Suppose that f(y, t; p) can be described
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by four correlated functions y(t), t, sin(t), et and the basic arithmetic opera-
tions between these functions are “plus”, “minus” and “multiply”; therefore
we denote I0 = {+,×} and I1 = {y(t), t, sin(t), et}. The reason we choose
these two sets is that the varying rate of PM2.5 concentration is related to
the existing concentration y(t) and the time t. And it behaves periodically
(therefore we select sin(t)) or shows rapid growth (therefore we select et)
in certain weather condition. Now suppose that a series of observed values
of y(ti) are collected at the time ti = t0 + i × ∆t, (i = 1, 2, . . . , n); thus
X(t) = [y(t), t, sin(t), et] can be written as

X =


y(t1) t1 sin(t1) et1

y(t2) t2 sin(t2) et2
...

...
...

...
y(tn) tn sin(tn) etn

 (8)

dY (t) = dy
dt

at time ti, i = 1, 2, . . . , n can be approximated by its second-
order difference format as

dY (ti) =
dy

dt
(ti) =


−Yi+2+4Yi+1−3Yi

24t
, i = 1

Yi+1−Yi−1

24t
, i = 2, 3, . . . , n− 1

3Yi−4Yi−1+Yi−2

24t
, i = n

(9)

thus dY (t) = dy
dt

can be expressed as

dY =


dy
dt

(t1)
dy
dt

(t2)
...

dy
dt

(tn)

 (10)

Denote f(X) = [f(X(1, :)), f(X(2, :)), . . . , f(X(n, :))]T , where f(X(i, :
)) = f(y(ti), ti, sin(ti), e

ti) is the composite function of the elementary func-
tions involving variables y(t), t, sin(t), et and the function space defined by
those functions can be denoted by F . Then the optimal problem is to find
the model, having the form of

dY ∗ = f(X∗)

such that
min{||dY ∗ − dY ||,∀f ∈ F}, (11)
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where

||dY ∗ − dY || = 1

n

n∑
i=1

(
dY (ti)− f

(
X(i, :)

))2
.

Figure 1: The representation of a ODE model.

With a predefined function set F, for any function f ∈ F , it is easy to see
that an ODE can be uniquely represented by a tree (Cao et al. (2000); Chen
et al. (2011)). As is the case with f(t, sin(t), et, y), an ODE model with the
form of

f(t, sin(t), et, y) = 3tsint− yet + 6t, (12)

can be uniquely represented by a tree as Figure 1.
Therefore, when we perform crossover, mutation and selection on the

ODE-tree-model, the ODE structure f in (5) will update till satisfying (11).
And if the genetic programming is confined around a local minimum, the
mutation step will help to get out of it. As practice shows, a global minimum
of (11) should be obtained.

3.2. Fitness Function

To construct the structure of the ODE model, we discuss f having the
form of

f(tk) =
M∑
i=1

piFi(X(k, :)), k = 1, 2, . . . , n, (13)

where F1, F2, . . . , FM contain all the nonlinear parts of function f , and the
parts are composed of the values of the predefined function set at tk. As
is the case with (12), they are composed of tk, sintk, e

tk , y(tk) based on the
operation “ minus” and “ plus”. Equation (13) is essentially a linear-in-
parameters model. We make this assumption because an overly complex
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model is not conducive to describing the nature of the problem and we have
put all the potential nonlinear form in the function set I1, which is included
in Fi, i = 1, 2, . . . ,M.

In this paper, we define the fitness function as

Fitness =
1

n

n∑
k=1

(dy
dt

(tk)−
M∑
i=1

piFi

(
X(k, :)

))2
=

1

n

{
n−1∑
k=2

(Yk+1 − Yk−1
24t

−
M∑
i=1

piFi

(
X(k, :)

))2
+
(−Y3 + 4Y2 − 3Y1

24t
−

M∑
i=1

piFi

(
X(1, :)

))2
+
(3Yn − 4Yn−1 + Yn−2

24t
−

M∑
i=1

piFi

(
X(n, :)

))2}
and ODE models whose fitness values are too low will be eliminated in the
process of genetic programming.

3.3. Parameter Identification

Once the ODE-structure is obtained, there are three groups of methods for
solving the minimization problem (7): local, global and hybrid optimization
methods (Ashyraliyev et al. (2009)). Orthogonal least square algorithm, as a
global method, can analytically determine parameters for linear-in parameter
models. In this article we use this method to obtain the optimal model
parameters. The idea of OLS algorithm is as follows:

Mark F and P as

F =

 F1(X(t1)) · · · FM(X(t1))
...

. . .
...

F1(X(tN)) · · · FM(X(tN))

 , P =

 p1
...
pM

 .

Then the parameter indentification equals solving vector P , which meets
dY = FP . Here dY is the measured output vector, defined as Eq.(10); F
is the regression matrix, where M is the number of regressors describing the
basic unit of f and N is the length of vector dY .

As illustrated in Madár et al. (2005), the OLS assumes that F can be
factorized as

F = QR,
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where Q is an N×M orthogonal matrix and the columns of Q are orthogonal
satisfying QTQ = D, and R is an M×M upper triangular matrix. Therefore,

QTdY = QTFP = QTQRP = DRP,

the OLS auxiliary parameter vector is g = D−1QTdY , and the parameters
in vector P are readily computed from

RP = g.

In practice, although some elements of P exist, an overly small value of
the element contributes little to the performance of the model. Therefore, we
calculate the contribution of every function item corresponding to pi. Denote

dY = FP + e, (14)

where e is the error vector. After inserting FP = QRP = Qg in to (14), it
is easy to get

(dY )TdY =
M∑
i=1

g2i q
T
i qi + eT e,

where qi is the column vector of Q, gi is the element of vector g = D−1OTdY .
Define Deli = g2i q

T
i qi/dY

TdY . If Deli is less than the value 0.05 we prede-
fined, we regard the corresponding pi as zero.

4. Experimental results and prediction analysis

The research data used in this study cover 120 days from January 21, 2016
to May 19, 2016, in Wuhan, China. The training set contains the former 100
days from January 21, 2016, to April 29, 2016. And the data from April 30,
2016, to June 13, 2016, is the test set. To validate the ODE models proposed
in this paper, we compare the prediction results with the typical statistical
model in the view of in-sample prediction and out-of-sample prediction.

4.1. Statistical model

Consider the PM2.5 concentration from January 21, 2016, to April 29,
2016, as the training data. By applying unit root test, the time series is sta-
tionary; therefore, we use a typical AR(p) model for the data. We apply the
well-known Akaike information criterion(AIC) (Akaike (1998)) and obtain
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the order p = 1. Therefore, the AR(1) model can describe the time series.
We perform out-of-sample one-step-ahead prediction for April 30, 2016, and
the real concentration of PM2.5 is 47.1. The statistical model AR(1) obtianed
through EViews 8 is

yk+1 = 0.660439yk + 23.49820, (15)

whose statistical results of out-of-sample one-step-ahead prediction are shown
in table 1.

Prediction results 54.7198
Root Mean Squared Error 0.225989
Mean Absolute Error 0.225989
Mean Abs. Percent Error 0.475767

Table 1: Out-of-sample one-step-ahead prediction prediction of statistical model for April
30, 2016

4.2. ODE models obtained by our data-driven method

Meanwhile, we use data from January 21, 2016, to April 29, 2016, to train
our ODE models and make a prediction for April 30, 2016. The experiment
parameters are shown in table 2. Generation gap equals 0.8, which means
individuals with the top 20% fitness value are selected as the parents of the
next generation. When the number of generations reaches 20th, the evolution
terminates.

Innitial population size 30
Initial max tree depth 5
Max Generation 20
Crossover rate 0.7
Generaton gap 0.8
Mutation rate 0.3

Table 2: Experiment parameters for ODE-construction.

Because the ODE-construction method that we proposed in this paper
is stochastic, each performing maybe to get different ODEs. We perform
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the experiment 1,000 times and all the models and prediction results are as
follows:

ODE1 :
dy

dt
= −0.152040, P re = 47.3480, Ape = 0.005265393, (16)

ODE2 :
dy

dt
= −0.113800, P re = 47.3862, Ape = 0.006076433, (17)

ODE3 :
dy

dt
= 5.537091 ∗ sin(t)− 0.409219, P re = 50.3057, Ape = 0.068061571,

ODE4 :
dy

dt
= 0.091441 ∗ y ∗ sin3(t)− 0.292838, P re = 48.0573, Ape = 0.020324841,

ODE5 :
dy

dt
= 0.000846 ∗ y2 ∗ sin3(t)− 0.270239, P re = 47.6034, Ape = 0.010687898,

ODE6 :
dy

dt
= 0.000006 ∗ y3 ∗ sin3(t)− 0.265039, P re = 47.3608, Ape = 0.005537155,

where Pre stands for the prediction results; Ape is the absolute percent

Figure 2: Plots of ODE models for April 30, 2016 as shown the value y corresponding 101
of the x-axis.

error, namely the absolute relative error. The specific prediction process is
as follows: After we use 100 days of data from January 21, 2016, to April 29,
2016, to obtain the models above, we apply the concentration of PM2.5 on
April 29, 2016, as the initial value and predict the concentration of PM2.5

on April 30, 2016, just as the predicted y value corresponding to time 101 of
x-axis in Figure 2. Also, we can see that (16) and (17) are essentially two
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linear polynomial models and their discrete forms are AR(1) models. As each
preforming generates different ODE models, we compute the expectation for
the prediction results of one thousands times of performings and compare it
with the real date as shown in table 3.

Expectation (Prediction results) 47.88686
Root Mean Squared Error 0.764535
Mean Absolute Error 0.786863
Mean Abs. Percent Error 0.017034

Table 3: Out-of-sample one-step-ahead prediction of ODE model for April 30, 2016

In this part, we list only the ODE models for predicting the concentration
of PM2.5 on April 30, 2016. The ODE-models for predicting other days are
listed in the supplementary materials. By observing these models given in
the supplementary materials, it can be seen that although genetic program-
ming is a stochastic optimization method, the ODE models are different when
performing programs each time. In this paper, we only select several sim-
ple models from this procedure for prediction. We will derive a systematic
procedure to determine the best model for prediction in the future.

4.3. Prediction comparison between statistical model and the ODE models

As seen from tables 1 and 3, the ODE prediction models for April 30,
2016 are slight better than AR(1) model in the view of mean absolute percent
error, but are worse in the view of root mean squared error and mean absolute
error.

In the statistical field, in-sample and out-of-sample predictions are two
points of view from which to measure the models for prediction. There-
fore, below we will compare our ODE models with the traditional statistical
model. Here, in-sample prediction is done to estimate the model with all
the observations, and then we use the obtained model to predict some of the
observations. For out-of-sample prediction, we divide the total observation
into two parts. One part is to build the model and then to predict the other
part of the data with the obtained model.

Figure 3 shows the in-sample prediction results. Specifically, we use the
data of 100 days from January 21, 2016, to April 29, 2016, to train models,
and then we use the obtained model to make one-step ahead prediction for
the same time period. It is clear that there is a consistent trend between

13



Figure 3: In-Sample one-step-ahead for January 21, 2016 to April 29, 2016.

Figure 4: Out-of-sample one-step-ahead prediction from April 30, 2016 to June 13, 2016
by ODE-construction genetic program.
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predicted data (represented by red lines and green lines) and real observations
(presented by black lines). In particular, compared with the typical statistical
model, the prediction results obtained by the proposed ODE models are fairly
good.

Figure 4 shows the out-of-sample one-step-ahead prediction results through
the ODE models proposed in this paper. Specifically, we use the data from
January 21 to April 29, 2016, to train models and then use the obtained
models to make one-step-ahead prediction from April 30 to June 13, 2016. It
is clear that there is a consistent trend between predicted data (represented
by red lines) and real observations (represented by black lines).

As a result, the experiments show that the real-time ODE models are
effective in approaching the real-time modeling and predicting tasks of series.

5. Conclusion

In this paper, ODE models are proposed to predict the daily PM2.5 con-
centration. Tree-based genetic programming and least square method are
employed to evolve the structure and model parameters of ODEs. The pro-
posed method is based on observed real data and needs almost no meteo-
rological assumptions; therefore, it can easily be applied to other problems.
The experiment results clearly illustrate that the ODE model can effectively
predict the daily concentration of PM2.5.

However, some issues need further discussion in our future work, as in-
cludes:

1) In practical application, although our ODE construction algorithm
does not need meteorological knowledge or the specific mathematical for-
mulation of the ODE model, some control parameters are predefined before
making ODE construction, such as the function set, the operator set, the
maximum tree depth, the mutation rate, the crossover rate and so on. We
will develop a rule to choose control parameters in future research.

2) The data-driven ODE model obtained in the current work is not
unique, as the procedure involves a stochastic inputs. We will develop a
systematic approach to determine the best model for the data.

3) Compared with ODE, a partial differential equation (PDE) involves a
spatial dimension to describe the interplay between individuals, thus better
describing the dynamic system in the spatial-temporal dimensions. There-
fore, a PDE model may better describe the transboundary pollution of PM2.5.
A PDE construction method should be developed in our future work.
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