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ABSTRACT. A numerical method for approximating weak solutions of an aggregation equation with
degenerate diffusion is introduced. The numerical method consists of a stabilized finite element
method together with a mass lumping technique and an extra stabilizing term plus a semi—implicit
Euler time integration. Then we carry out a rigorous passage to the limit as the spatial and temporal
discretization parameters tend to zero, and show that the sequence of finite element approximations
converges toward the unique weak solution of the model at hands. In doing so, nonnegativity is
attained due to the stabilizing term and the acuteness on partitions of the computational domain,
and hence a priori energy estimates of finite element approximations are established. As we deal with
a nonlinear problem, some form of strong convergence is required. The key compactness result is
obtained via an adaptation of a Riesz—Fréchet—-Kolmogorov criterion by perturbation. A numerical
example is also presented.
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1. INTRODUCTION

1.1. The model. Let Q € R%, d = 2 or 3, be a bounded domain and 7' > 0 be a fixed time.
We consider an aggregation equation with degenerate diffusion term which reads as follows. Find
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p:Qx[0,T] — [0,00) such that

(1) Op—AA(p)+ V- (pVK xp)=0 in @Q:=Qx(0,7T],
subject to the boundary condition

(2) (=VA(p) + pVK xp)-n=0 on X:=090x (0,T]
and the initial condition

(3) p(0)=p" in @

where * stands for the convolution operator and m is the outward-pointing unit vector to 9f).

Equation (1) arises in many models in biology, where p represents the population density, K * p
stands for the density of the chemo-attractant, and A(p) models the local repulsion. Patlak-Keller—
Segel models [21, 17, 15, 16, 14, 4, 18, 11] governing the movement of species by chemotaxis are a
particular instance, which correspond to considering A(p) = p™ and K(z) = —5 log || for d = 2 or
K(x) = m\w\% for d > 3, with wy being the volume of the unit ball in R¢. Pure aggregation
equations modeling biological swarming [20, 19, 22, 23] result from ruling out the diffusion term
—AA(p) and from selecting K (-) to be the Newtonian potential, repulsive-attractive Morse potential,
or power law potential.

While there is a rich body of literature on the mathematical analysis of equation (1) supported by
numerical simulations, very few results on numerical analysis are available for the situation considered
here. Carrillo, Chertock, and Huang [6] introduced a positivity-preserving entropy-decreasing finite
volume scheme for (1) which takes into account a confinement potential term as well.

The existence and uniqueness of a weak solution to equation (1) was established by Bertozzi and
Slepcev [3] for A(p) being degenerate and K (-) satisfying some regularity assumptions. It is this degen-
eracy of A that is the major source of difficulties in studying equation (1). The existence proof consists
of three steps: (a) introducing a regularized problem via the diffusion term A(p), (b) establishing a
maximum principle and a priori energy bounds independent of the regularizing parameter, and (c)
proving compactness for the regularized problem. In particular, the compactness of the regularized
solutions is obtained by using some results borrowed from [1] based on the Riesz—Fréchet—Kolmogorov
criterion on Lebesgue spaces.

Our aim in this work is to construct a sequence of fully discrete approximations and analyze its
convergence toward the unique solution to (1)-(3). Our algorithm uses a stabilized finite element
method combined with a mass lumping technique plus a semi—implicit Euler time integration. This
resulting scheme is conditionally solvable and mass conserving, and preserves nonnegativity under
acute partitions of the computational domain. A priori energy bounds are obtained in a different
way from those in [3] since a discrete maximum principle does not hold. The lack of such a discrete
maximum principle is overcame with the use of a nodal truncating operator [9]. A version of the
Riesz—Fréchet—Kolmogorov compactness criterion on Lebesgue spaces by perturbation [2] allows the
passage to the limit in the nonlinear terms as the spatial and temporal discretization parameters tend
to zero in order to reach the unique weak solution of (1)-(3).

1.2. Notation. For p € [1,00], we denote by LP(f2) the usual Lebesgue space, i.e.,
P ={v: Q=R :v Lebesgue—measurable,/ |v(x)|Pde < oco}.
Q

or

L>*(Q) ={v:Q — R : v Lebesgue-measurable, ess sup |v(x)| < co}.
EISY)
This space is a Banach space endowed with the norm |[v||r»0) = (J;, [v(z)[P dz)'/? if p € [1,00)
or [[v]|L=(n) = esssupyeq [v(x)| if p = oo. In particular, L*(Q2) is a Hilbert space. We shall use
(u,v) = [, u(z)v(x)de for its inner product and || - || for its norm.
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Let a = (a1, s, ...,aq) € IN? be a multi-index with |a| = a3 + as + ... + a4, and let 9 be the
differential operator such that
5o — (i)“l (i)“d
o0x1 0xy

For m > 0 and p € [1,00), we define W™P(£2) to be the Sobolev space of all functions whose m
derivatives are in LP (), i.e.,

WmP(Q) = {v e LP(Q) : dFv e L2 (Q) V |k] <m}

associated to the norm

1/p
£ wmriey = | D2 19% ey for 1 < p < o,
o] <m
7l = e 197 o, forp = e

For p = 2, we denote W™?2(Q) = H™() and its dual as (H™(f2))’. The dual pairing between H'(Q)
and (H'(Q)) is denoted by < -, - >.

Let X be a Banach space. Thus, LP(0,T; X) denotes the space of Bochner-measurable, X-valued
functions on (0,7 such that fOT [ f(s)]%ds < oo for p € [1,00) or esssupge(or |If(s)]x < oo for
p = oo.

1.3. Outline of the paper. The layout of the paper is as follows. In section 2 we introduce the
hypotheses for constructing the finite element approximation of (1) as well as some auxiliary results.
In section 3 we present our finite element method which includes a stabilizing term and combines a
semi-implicit time integration. Afterwards we state our main theorem which is proved in the subsequent
sections. The well-posedness of our algorithm is carried out in section 4. Non-negativity under the
acuteness of the mesh and a priori energy estimates are obtained in section 5. Section 6 deals with the
compactness of the finite element approximations. The passage to the limit toward the unique weak
solution of (1) is reported in section 7. To finish off, we present a numerical example in section 8.

2. THE DISCRETE SETTING

This section is mainly devoted to the numerical tools for approximating the solution to problem
(1)-(3).

2.1. Hypotheses. Herein we set out the hypotheses that will be required for the domain, the mesh,
and the finite element space.

(H1) Let ©Q be a convex, bounded domain of R¢ with polygonal (d = 2) or polyhedral (d = 3)
Lipschitz-continuous boundary.

(H2) Let {&,}n>0 be a family of simplicial partitions of Q that is acute, shape-regular, and quasi-
uniform, so that Q = Ugeg, F, where h = maxgeg, hg, with hg being the diameter of E.
More precisely, we assume that

(a) there exists a > 0, independent of h, such that

min{diam Bg : FE € &,} > ah,

where Bpg is the largest ball contained in E, and
(b) there exists 8 > 0 such that every angle between two edges (or faces) of a triangle (or a
tetrahedron) is bounded by § — .
Further, let AV}, = {a;};c; denote the set of all the nodes of &p,.
(H3) A conforming finite element space associated with &, is assumed for approximating H!((2).
Let P1(FE) be the set of linear polynomials on F; the space of continuous, piecewise polynomial
functions on &, is then denoted as

Dy, = {ﬁh € Co(ﬁ) : ﬁh|E S Pl(E), VE € gh},
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whose shape functions are {¢q}acn, -

2.2. Technical preliminaries. Under hypotheses (H1)—(H3) we collect some properties that will be
used in the subsequent analysis.

To start with, we state a consequence of the acuteness of the mesh needed for proving non-negativity
of the finite element approximation.

Proposition 2.1. Let E € &, with vertices {ao,---aq}. Then there exists a constant Cyeg > 0,
depending on (3, but otherwise independent of h and E, such that

(4) / Va; - Vipa,dz < _Cneghdfz
E

for all a;,a; € E with i # j, and

(5) /E Voa, - Vipa,dx > Chegh®™?
for alla; € E.

Proof. For every d-simplex E € &, and for every vertex a; € E, we denote by F,, the opposite face to
a; and by ng,, the exterior (to the d-simplex E) unit normal vector to the face F,,. Write

1
E= = Na;;

aj

Va,

where hp, is the distance of a; to the hyperplane which contains F,,. Then we have

1 1
Véals - Vea)lp = 1= —Na,  Ta,.
Note that ng, - na, = cos(n;-n\aj) = cos(Fa/iEj —7)=- cos(Fﬁj). Integrating over E gives
1 1 _—
/ Va, Vg, de = —|E|-— cos(Fg, Fa,)
B he, hr,
1 T
< —|Bp|l— -
< - E|hFai T cos(2 B)
w$ g1 1 ™
= diam Bg)®—— cos(— —
QdF(% 1)( E) hFai hFaJ (2 /B)
T8 q 1 1 s
< —a cos(— —
> 2dr(g + 1) hFai hFaj (2 ﬂ)
d
2 m
< —al—————cos(= — B)h?2,
- 2104 + 1) (53-8
where we have used that the fact that |Bg| = Wzﬂ)(diam Bg)? with T'(-) being Euler’s gamma
2
function.
The same argument as in the proof of (4) yields (5). O

Some inverse inequalities are provided in the following proposition.

Proposition 2.2. Let E € &,. There exists a constant Ci,y > 0, independent of h and E, such that,
for all pp, € P1(E),

_ Cinv _
(6) 1nll 1 () < N 1nll L2 (k)
and
(7) lonllL2 () < ;N |onll (21 (2 -
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Proof. The proof of (6) can be found in [5, Lem. 4.5.3] or [7, Lem. 1.138].
To obtain (7), we use a duality argument. Let 7, be the L?(E) orthogonal interpolation operator
from L?(E) into P;(E). Then, from (6), we find

= Ph, P Ph; ThP
e =  sup P o g, (Pmmap)
o£per2(B) l1PllL2() ~ ozperz(m) Imholle(m)
< C’inv (ﬁh,ﬂ'h[)) < C'inv (ﬁhaph)
T hoogper2@ lmnpllarE) T b ozpneny, onllE(E)
C’inv (ﬁhap) inv || —
< = sup = = Ionllcr ey
otpctt (@) Pllm ()
Il
Corollary 2.3. There holds
(8) 1Pnll i) < == lonll2)
and
_ C’inv _
9) Pnllz2) < == lonll ) -
Let Z, be the nodal interpolation operator from C°(Q) to Dy and consider
(el = [ Taon) = Y- (@) pula) | oa
Q aeN}, Q

for all py,, py, € Dy, with the induced norm ||pplln = \/(pr; pr)n- It is well-known that there exists a
constant Ceq > 1, independent of h, such that
(10) lonlln < llonllrz) < Ceallonlln-

From the definition of Zj,, one can straightforwardly check the following.

Proposition 2.4. Let E € &,. It follows that

(11) 1ZnellLe(m) < ll@llem —forall @€ L>(E)
and

(12) IVZnpllLoe(my < V@l for all € WH(E).
Corollary 2.5. There holds

(13) 1Znell= @) < llellze@)  forall @€ L>(Q)
and

(14) IVZhellL~(@) < IVelle forall e Wh=(9Q).

Proposition 2.6. Let E € &,. There exists a constant C,pp, > 0, independent of h and E, such that
15) e = Znglle(my + V(e = Tng)ll = (m) < Capph®|[V2@llLoe(my  for all o € W(E).
and

(16) IV(p = Zno)llr2(m) < Capphl|V2@ll2(my  forall ¢ € H*(E).

Proof. The proof of (15) and (16) can be found in [5, Thm. 4.4.4] or [7, Thm. 1.103]. O
Corollary 2.7. There holds

A7) e = Znglle) +hlIV(e = Tnp)llr=@) < Capph®[V2¢ll()  for all o € W(Q)
and

(18) IV(e = Zno)llz2(0) < CapphlV?@llr2()  for all ¢ € H*(Q).
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Proposition 2.8. There ezists a constant Ceom > 0, independent of h and E, such that

_ — 1 _
(19) lpnon — Zn(pnpp)llLr @) < Ceomh |lpnll 1)y IV PR Lo (@)
and
(20) lonon — Zn(pnpp)llzr (@) < Coomh|lpnllz) IVORl L2 (0)-

Proof. On each element E € &, combine (15), (6), and (7) to obtain

Capp*|E|V? (prpn) | Lo (2)
CappP?|E|IV il Lo () IV 1| o< ()
Capph? |Vl L1 () I Vonll L ()
Capph 2 [Vprll L2y [ Vonll L (&)
CoappC2hE lpnl a2 () |V Bl L= (1) -

lonpn = Zn(pnpp)ll L1 (e)

VAVARVANVANIVAY

Estimate (19) follows by summing up this last estimate over all the elements E € &j,.
One can prove estimate (20) in a similar fashion.

Proposition 2.9. Let f € C%(R) be monotonically increasing with Lipschitz constant CLip.

follows that, for all py, € Dy,
(21) IV f(pn)* < CLipVpn - VInf(pn).-

Proof. On each element E € &, consider E tobe an oriented, right element with vertices {a(])“j S

where a(‘? is the vertex supporting the right angle, such that E C E. Observe that

pn(aF) — pu(af)
(af —ag);

)

where (x); is the ith component of . Since

(f(z) = fF())? < CLip(f(2) = f(y)) (@ —y) forall z,y€eR,

we have
) ) ) ~ i
CLipVonle - VInf(pr)le = CuLip ; ph((CZEE)_S%(?E) f(ph(‘i;)_jg;f(ag))
5 <f<ph<(¢z;gé> - jg;h;;o W 9T, 1 (on) P
i=1 i~ Q0Ji

where e; is the ith vector of the Cartesian basis. We deduce (21) upon summing over all the element

EGgh.

O

For each element F € &, with vertices {ao, - - aq}, we associate once and for all a vertex ap € E.

Thus we define Py, (pp)(x) = pi(ag) for all x € E.
Proposition 2.10. There exists a constant Ciyy > 0, independent of h, such that
(22) lpn = PrpnllLz) < Cinthl|VonllLz)  for all  pp € Dp.
Proof. Let x € E and write
pr(x) — Pr(pn)(x) = pn(@) — pr(ap) = Vpule - (x — ap).
Squaring and integrating over F gives
llon = Pulpr)llz2 () < Chl[VpnllL2 (k)

and hence summing over E € &, yields the desired result.
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Moreover, let Ah be defined from Dj, to Dy, as

(23) — (Anon, pr)n = (Véu,Vpn)  for all py, € Dy,
and let ¢(h) € H%(Q) be such that

—A¢(h) = —Apgp, in Q,
(24) { Ond(h) = 0 on ON.

The H?(Q)-regularity of ¢(h) is ensured by the convexity assumption stated in (H1). See [12] for a
proof.

Proposition 2.11. There exists a constant Crap > 0, independent of h, such that, for all ¢, € Dy,
(25) IV (6(h) = én)ll L2 (@) < CraphllAndnllL2(@)-
Proof. Testing (24) with pj, € Dy, yields
(Vo(h), Vin) = —(Andn, o).
Combining the above equation and (23), we write
(V($(h) = 61), Von) = (Dndn, pn)n — (Dnén, o)
and hence
(V(Znd(h) = ¢1), Von) = (Bndn, pn)n — (Bndn, pn) + (V(Znd(h) — ¢(h)), V).
We now choose pp, = Zp¢(h) — ¢p, to get

|V (Zno(h) — ¢h)\|%z(g) = (Ao, Zuod(h) — dn)n — (Andn, Zuo(h) — én)

(26) (V(Znblh) — 6(1))., V(Td(h) — on)).

By (20) and (18), we have
27)  [(Andn, Zud(h) — dn)n — (Andn, Tnd(h) — én)| < Ceomhl| Andnll L2 |V (Znd(h) — é0)|l 20

and

(28)  (V(Zno(h) — ¢(1)), V(Tnd(h) = ¢n)) < Capphl| Andnl 22 |V (Znd(h) — ¢(h)) | L2
Consequently, estimate (25) is satisfied by inserting (27) and (28) into (26). O

Corollary 2.12. There holds

X Cinv
(29) I = Andnllzz@) < = =1Vonllra @
and
(30) IVo(h)lz2) < CstallVORllL2(0)-
Proof. Select pr, = —Ap¢y, in (23) and use (6) to have
A X C'inv X
1A¢H]7 20y < IVenllL2@) VARSI L2 () < - IVonllcz@llAndnl L2 (),

which implies (29). Inequality (30) is obtained by using (25) and (29), so we find that

IVe(h) I 2() < IVnllz2(@) + CraphllAndnllL2) < (14 CLapCine) | Vonl2(q)-
O
In order to construct a proper sequence of initial approximations we need an interpolation oper-

ator that preserves non-negativity and has LP-stability. Let SZ; be the variant of the Scott-Zhang
interpolation operator defined in [3], which satisfies the following.
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Proposition 2.13. Forp € [1,00], s = 0,1, and m = 0,1, there exist two constants Cga, Capp > 0,
independent of h, such that

(31) ISZrellwsr@) < Cstall@llwsr)y  forall o€ WHP(Q).

and

(32) Il — SthpHWs,p(Q) < Capphm+175||<p||wm+1,p(9) forall ¢ € Werl’p(Q).
Moreover,

(33) if >0 in Q, then SZpp>0 in Q.

Henceforth C' denotes a generic constant whose value may change at each occurrence. This constant
may depend on the data problem and the constants Cpeg, Cinv, Ceqy Capps CLips Ceom; and Clrap.

3. STATEMENT OF THE MAIN RESULT

Let p° € L>°(Q) be nonnegative and consider p) = SZ,p°. From (31) and (33), we see that

(34) >0 in Q
and
(35) lonllLr @) < Cstall ey forall  pe[l,00].

Moreover, a regularization argument together with (32) provides
(36) P —p? in LP(Q)-strongly as h — 0.

Let k = % with N € IN and consider {t,})_, with ¢, = kn. Given p} € Dy, compute pZ'H € Dy,
satisfying
B7)  Gepp ™ o) + B (Vo N on) + (VIR Aoy r), Vo) — (o3 VIR(K * [pR]r), Vion) = 0,
where 0 < v < 1 and [-]p : Dy, = Dy, is a nodal truncating operator defined as
0 i pa(a) € (—o0,0),
[pr(@)lr = prla) if  pr(a) €0, Br=],
Bre if ﬁh(a') € (BL"Oa +OO)7

with @ € N}, and Br= = eTNAK Loy lPoll L1 o) lpol| Lo (). By an abuse of notation, the convolution

K * [pp, k] must be understood for [pp k|7 Xxq, Wwhere xq is the characteristic function. Moreover, the
definition of By~ will be explained later on.
Due to the embedding W2>°(R¢) into C°(R?), the convolution K * [pj, x]r belongs to C°(RY);
therefore, we are allowed to consider Z,((K * [pn.k]7)|a) that we write Zp,(K * [ppx]7r) to simplify
n+1 n

notation. Further, we have introduced 5th+1 =L "Pn

"
For future references, note that Z, A([p}"']7) = Zn Ar(p} ™), where

0 it se(—00,0),
AT(S) = A(S) if se [O,BLOQ},
A(BLoo) if se (BLoc,+OO).

A weak solution for (1) will be understood in the following sense [3].
Definition 3.1. A function p: Q — [0,00) is a weak solution to (1) with (2) and (3) if
p€LZ(Q), Alp) e L2(07T7 Hl(Q))a Oip € L2(07T§ (HI(Q))/)7
and
. { 0= DA+ T (VK =) = 0 i 0.7 (H(@)),
p(0) = po in (H'Y(Q)).

To establish convergence of the discrete solutions constructed via scheme (37) toward the weak
solution to (1), we need to assume that
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(A1) Ais C1(]0,00);][0,00)) with A’ > 0 on (0,00) and A(0) = 0,

and
(K1) K € W2°(R%) is such that K(z) = r(|x|) with r being nonincreasing.
Let us define pp, k, p;k,p;k : [0, T] — Dy, such that

t—tna1 t, — 1
Ph,k = Tn+p2+1 + nk pZ? te [tmthrl]v

- 1
Prk =P Prg=rn s tE (tnytnia].
Our main result is summarized in the following theorem.

Theorem 3.2. Suppose that (Al), (K1), and (H1)-(H3) are satisfied. Then

(1) there is a unique solution, pZ‘H, to scheme (37) provided that

| =

1
(39) Ck(1+ E)HKHWMO(W)||pﬁHL1(Q) <
(2) pZ‘H > 0 provided that
(40) B K ool 223 (@) < Ces
(3) and

[ it @iz = [ i@z,

Thus, the sequences of approzimate solutions {pn. i th k>0 and {Pik}h,k>0 constructed via scheme (37)
(1) are well-defined if

DN | =

1
(41) Ck(1+ E)llKHW?vw(]Rd)”p?L”Ll(Q) <

(2) satisfy
Phk P =0 in Q,
if

(42) Ch VK [[wzoe ey o5l L1 (0) < Cneg-

(3) and

/ pnk(t, x)de = / Pt z)de = / por(x)dx  for all ¢ €0,T).
Q Q Q
Furthermore, the sequences of approzimate solutions {pp k}n k>0 and {pik}h7k>0 converge toward the
unique weak solution p of (1), as (h,k) — (0,0), in the sense that
[on )7, [ Wl — p in L2(0,T; LP(2))-strongly
and
A([p;k]T) — A(p) in L*(0,T; LP(Q))-strongly and in L*(0,T; H'(Q))-weakly

with 1 < p < oco.

From now on we assume that assumptions (A1), (K1), and (H1)-(H3) hold without further comment
on the statement of the results.
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4. EXISTENCE AND UNIQUENESS OF DISCRETE SOLUTIONS

In this section we prove the unique solvability of scheme (37). To simplify notation we suppress the
n+1

superscript in p, ™ since there will be no ambiguity in setting p;, = pZH.

Before proceeding, we need an auxiliary result concerning the sign of V(K * [p}]r) - n on 9.
Lemma 4.1. It follows that
(43) V(K *[pi]lT) n<0 on 0.

Proof. Let & € 02 be such that n(x) is well-defined at & € 02 as being the outward unit normal
vector and let s > 0. Write

K« [pplr(x +sn) — K« [pp]r(z) = /Q(K(ﬁ'3 +sn —y) — K(z —y))lpplr(y)dy

- / (r(jz + sm — y]) — (| — y) [0 (v)dy.

In virtue of the decreasing property from (K1) and the convexity from (H1), we find that (| 4 sn —
y|) — (| — y|) <0 since |z + sn —y| > |z — y| and [p}!]r > 0. Then

On (K * [p]7) (@) = lim L lPhlr) @+ sm) = (K « [oh]r) ()

s—0t S

<0.
0

The next lemma shows that scheme (37) has at least one solution. In doing so, we make use of
Brouwer’s theorem.

Lemma 4.2 (Existence). Let pi' € L'(Q) be such that pi > 0 in Q. Then scheme (37) has at least
one solution provided that

N | =

(44) CE| Kllw2 e e llonll 1) <
for a certain constant C > 0 independent of h.

Proof. Let ® : D}, — Dj, be defined by ®(pr) = pp, such that
(45)  (pn — phsPr)n + kR (N, Vpp) + k(NI Ar(pr), Von) — k(pn VIR (K * [py]r), Vo) = 0.
Pick pp = pp, to get

(46)  llenllz + kRN pnll72 0y = (5 pr)n — K(VIR A7 (5n), Von) + k(pnVIn(K * [pi]T), Von).
Cauchy-Schwarz’ and Young’s inequalities give

(47) (6f o < 20817 + S lowll.

The second term on the right-hand of (46) can be estimated on noting (8) as

K(VIhAr(pn), Von) < kIVIL AT (p)ll L2 IVenllLz@
(48) < §W||IhAT(ﬁh)H%2(Q) + §kh7HVPh||%2(Q)
1 k 1
< §|Q|WA(BL°°) + ikm”VPhHZL?(Qy

The third term on the right-hand side of (46) can be rewritten as
(49)  K(pnVIn(K * [pp]r), Von) = k(pn VK * [pp]r, Vpn) + k(pnV (In — L)(K * [pR]7), Von),
where 7 is the identity operator. Integrating by parts and using (43) leads to

k n n
(50) KenVE * [oi]r, Von) = =5 (AK «[phlr, o) + k(VE % [pp]r) - 1, 97 ) o0
CEIAK ||z waylloR L1 ) lon 172 )

IA
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where we have used the fact that ||[p}]7||L1) < ||} llz1 (o) since pj; > 0. Now note that (17) and (6)

imply that

51) k(onNV (Zn — T)(K * [pyl7), Vn) < Ckh”z2K”L°°(le)”[me”Ll(Q)||2ph||L2(Q)||vPh||L2(Q)
< CkIVEK| Lo reyll o7 [ 210 lon 172 () -

Combining (50) and (51), we find

(52) k(pnVIn(K * [ph]7), Von) < CIK w2 wa)loh |1 0y 001172 () -
Putting (46), (47), (48), and (52) together, we arrive at the estimate
3 k
§||Pth21 + kaVPh”Qm(Q) < Allpplli + |Q|WA(BL°°> + Ck||K||W2»oo(1Rd)||PZ||L1(Q)HPh||%2(Q)

and, in view of (44) and (10),

n k
o« = ||Ph||121 + kh”WPh”%z(Q) < 4”th}27, + W|Q|A(BL°°) = R.

As a result, if we choose r > R, we find that ||ps||. < r implies that [|®(pp)]« < 7.

Let us see that ® is a continuous mapping from D}, into Dj, with respect to the || - ||.-norm. Suppose
that pp m — Pp in the ||-||«-norm as m — oo. Then we want to prove that ®(5y, ) — ®(pp) in the |||«
norm as m — 0. To do this, we compare (45) and (45) for py, = pp,m, and test against pp, = pp,m — Pn
to get

19(on,m) — @(p)IZ = —k(VIhAr(pnm) — VIR Ar(pn), V(®(Pnm) — ®(6n))
+E((@(pr,m) — @(pn))VIL(K * [ph]T), V(®(ph,m) — ©(pn)))-
It is straightforward to see that
—k(VIy AT (phm) — VIR AT (pn), V(®(ph,m) — ®(pn)))

< K[VIL AT (phm) — VI AT (pr)| L2 () IV (@(Prm) — (6n)) | 22(0)

1k _ _ 1 - -
< §H||VIhAT(Ph,m) - VIhAT(Ph)H%z(Q) + §/€h7HV(‘I)(Ph,m) - (I)(ph))H%?(Q)‘

~—

and, from (52),
k((@(pn,m) — @(pn))VIn(K * [phl1r), V(®(phm) — (pn)))
<OK|| K llw. @mayllof | 1@ |2 (Pn,m) — S(n) 172 (0)-
Therefore, under (44), we finally get

_ ~ k ~ _
12(Bn.m) — (B0 < = IVIRAT (rm) — VIR AT (1) |12 (q)-

As we are dealing with a finite-dimensional space, all norms are equivalent in Dj; and therefore
we infer that pp,,, — pp in C(2) as m — oo. Since Ar is a continuous operator, we obtain that
Ar(phm) — Ar(pr) in C(Q) as m — oo. This gives that T A7 (ph.m) — ZnAr(pn) in HY(Q) as
m — co. Now the continuity of ® is obvious.

Next apply the Brouwer fixed-point theorem to conclude the proof. O

Once we have proved existence, we turn to the question of uniqueness.

Lemma 4.3 (Uniqueness). Let pi € L'(Q) such that p} > 0 in Q. Then scheme (37) possesses at
most one solution provided that (39) holds.

Proof. Suppose that there are two solutions p} and p?, respectively. Define p;, = pi — p? which satisfies

(53) %(ph, Pu)n + B (Von, Vin) + (VIn(A(lprr) — A7) 1)), Vin) — (pn VL (K = [pj]r), Vion) = 0.

Let us define ¢, € Dy, such that
(54) (Von, Vpn) = (pn, pr)n  forall  pp € Dy,
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Select pp, = ¢y in (53) to get
(55) IVonlliz) + kD7 lpnli = —k(VIu(A(lon)r) — AllhT), Von) + k(pnVIn(K * [p]T), Vn)-

The first term on the right-hand side has negative sign. Indeed, by (54), the mean-value theorem and
(A1),

~k(VIn(A(lpr)r) — Allph]1)), Vén) = —k(Zn(A(lprlr) — Allph]1)), pr)n

(56) — kY Aok @lr - [ (@)r)pn(a) / pal@) de
aENh Q
<k Y Ao (@) - R (@)r)? / pa(x) dz <0,
aGNh, Q2

where &, € ([p}(a)lr, [p7(a)]r) or ([p3(a)]r, [p}(a)]r). For the second term, we proceed as follows.
Combing (23) and (54), we have —Ay ¢, = pr. Thus, by (24), we write

k(pnVIL(K * [py]r), Vér) = —k(Ag(h)VEK x [pp]r, V(h))
—k(AppV(Zn — I)(K * [pp]7), Vo(h))
—k(Apdn VI (K * [pphlr), V(on — ¢(h))).

Integration by parts shows that

—k(AP(W)VE x [pp]r,Vo(h) = k((V(h) - V)VE * [pyl7, V(h))
+E((VE * [phr - V)V(h), Vo (h))
= k((Vo(h) - V)VK * [pp]r, Vo (h))

2 (AK « of)r, (Vo))
+§(|V¢(h)|27 (VK x [py]r) - m)og,
which, from (30) and (43), gives
—k(AG(h)VIL(K * [pplr), V(h)) < CE|AK] g ey | 07 122 () IV R 11720
In view of (17), (24) (29), we have
—k(AG(h)V(Tn — T)(K * [pp]r), Vo(h)) < CRIIV K| Lo ey lo7 | 1 @) [VORl72 ()

Using (25), (29), and (12), leads to the estimate

—k(ARgn VI (K * [0p]7), V(gn — 6(h)) < khl|Andnl72 o) [VE | L we o3l 1)
< CEHVKHLOO(]RG’)HPZ”Ll(Q)HV(bhH%?(Q)'
Therefore,
(57) k(pnVIn(K = [py]r), Von) < Ck(1 + )||K||W2 <@ 1Pr L@ IVonll7za)

From (56) and (57), we estimate (55) as
IVonlZaiq) + kR lonll; < Ck(1+ )IIKIIW2 <@ 1Pr L@ IVonll7za)
The result follows by taking k/h small enough so that (39) holds. O

It should be noted that condition (39) is indeed more demanding than condition (44) concerning
the space and time parameters.
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5. NON-NEGATIVITY AND A PRIORI ESTIMATES

In this section we show that the discrete solution p"+1 computed by (37) is nonnegative. Moreover,
we derive some a priori energy estimates.

Lemma 5.1 (Non-negativity). Let p? € L'(Q) be such that pi > 0 in Q. Assume that (39) is satisfied.
Then the solution py*! to scheme (37) is nonnegative provided that (40) holds.

Proof. First of all, note that, for all £ € &, and for all a;,a; € E with i # j,

A\

(58) /ESOaiVIh(K *[ohl7) - Vpa,dz < [Elllga, Lo () [IVIn (K * [05]7) | L () |V Pa, || o< ()
Ch*HIVE | oo ey 0% 1 21 ()
where we used (6) and (12). Comparing (4) with (58), we find that

IN

h"’/ Va, - Vg, dz —/ ©0a, VI (K * [ph]1) - Vipa,dx
E E
< h* 2R (—Cheg + ChlﬂHVKHLw(]Rd)||PZ||L1(E)) <0

holds if we let Ch'~™V||VK| pecra)llpfll L1 (E) < Chueg, which is a consequence of (40). As a result,
summing over E € supp @q, M Supp ¢q; yields

(59) W (Véa;, Va,) = (0a; VIR(EK * [pp] 1), Vpa,) < 0.
Analogously, we have, from (5), that
(60) h(Véa;, Vea:) = (Pa: VIn(K * [p]7), Vipa,) > 0
holds if we let Ch'™7||VK || e (ray | o}l L1 () < Cheg, Which is globally imposed in (40).
Now let pi™ € Dy, be defined as
o =" pp(a)ea,
aENh

"+1( )}. Analogously, one defines pp*®* € D), as

= Y ri(@)a,

aENh

where p, (@) = min{0, p

where p; (a) = max{0, p}"'(a)}. Notice that pj*! = piin 4 pmax_ Get gy, = pi™ in (37) to get

A A R A\ LA

(61) HVTRA( 7). Vo) — (i VIW(K * (o)), Volim) = 0.

We will handle each term of (61) in order to show that p" = 0. Indeed, in virtue of the equality

(n+1 mm) (mm max ,min

ph y Ph, Ph + Ph s Ph )h = ”prinnni’
it follows that

() min 1 min min 1 min
(62) @™ o™ = 2 Ulon™ I = (ks PR™)) = 2 o™ 17
Observe that we have
(VI}LA([ n+1]T)7vp1}1Llin) _ Z A n+1 ) mm( )(v@avaDa)
a#acNy,
(63) + > Al (@)]r) o™ (@) (Vpa, Vipa)
aceNy,

> Al (@)™ (@) (Vpa, Via) >
a#acNy



14 R. C. CABRALES, J. V. GUTIERREZ-SANTACREU, AND J. R. RODRIGUEZ-GALVAN

from (4) and A([p}""(a)]r)pi" (@) < 0. By the decomposition
WY (Vo™ Vo) — (o TV I (K * [p]r), Vo)
(A, Vo) — (VT (K * [of]r), V™)
+ (Vo™ Voit™) = (o™ VIn(K * [ph]r), Voi™),
we deduce from (59) and (60) that
W (Vo™ Y op™) = (R ™ VIn(K * [ph]r), V™)

= Y (@) (@) (0 (Veas V) = (¢aVIW(K % [pi]r), Viea)]

aZacNy,
+ 3 (@)™ (@) (7 (Ve Vo) = (9aVIW(K * 1), V)| 2 0
aeNy,
since pIP*(a)pi(a) < 0 and p***(a)pi(a) = 0. Therefore,
W (Vo™ Vopt) = (o™ In(VE * [pjr), Vi)

(64) < WV, Vo) < (o TL(K « (o)), V).

As a result, we infer on applying (62)-(64) into (61) that
™™ 15 + &RV oR™ (2 < k(R VIn(K * [pi]T), VoR'™).
We know from (52) and (10) that
oI5 + KRNIV o™ 12 < CRIK w2 ray Lk 22 (o 15" -
Thus, from (39), '
o™ 1% < 0,

"1 > 0. It completes the proof. O

which implies that p"™ = 0 and hence p}!
Since we do not have a pointwise upper bound for p"“, we must slightly modify the argument
leading to a priori energy estimates from [3], which uses the maximum principle.

Lemma 5.2 (Energy estimates). Assume that (41) and (42) are satisfied. Then the sequence {pp }1_;
computed via scheme (37) satisfies

(65) o) +1||L1 ||P2HL1(Q) = DB

and

(66) o117 + Z (K100t 17 + kh’YHVPZLHHZLZ(Q) + kHVIhAT(PZLH)H%%Q))
m=0
< PR wsmen | )7 = B3,
Proof. We proceed by induction on n to prove (65). From (34), we know that p; > 0 is true by
Lemma 5.1 for (41) and (42). On selecting pp, = 1 in (37), we obtain (65) for n = 0. The same
argument leads us to proving that (65) holds from pj; > 0 and ||p}||z1 () = [lponlL1 (@) by induction
hypothesis. At this point, it should be noted that (39) and (40) combined with (65) imply (41) and
(42).
Now let gy, = pjt! in (37) to get
b ™% + loh ™ = il + 2khY [V o Iz 0y + 20,
< Nl lls + 2k(ph T VI (K * [o3]r), Vo ),

where we have used (21) for f = Ar being non-decreasing and Lipschitzian. Repeating the argument
that led to estimating (52) and noting (65) and (10) yields

o M5 + o™ = pill + BV PR 1220 + Cripl VIR AT (0 ) 220
< Ik lI5 + CRIE lwe.oo ey lloh Il 2 oy ok 13-

oEIIV IR AT (07 )12 )
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By a discrete Gronwall lemma, we conclude that (66) holds under condition (39). O
The constants By: and Bz can be estimated uniformly with respect to h in term of p° from (35).

Corollary 5.3. It follows that
N-1
(67) B 100 P a )y < C,

n=0

where C' > 0 is a constant independent of h.
Proof. Apply a standard duality technique to obtain (67) from (37) and (66). O

We end this section by summarizing the results of Lemmas 5.1 and 5.2. Bounds (66) and (67) yield
that

(68) Ph,k> p}fk; >0 in Qa

(69) {Phk}hks {Pik}}uk are bounded in L>°(0,T; L*(9)),

(70) {h7 o} 3k ATn AP ) b are bounded in L*(0,T; H'(Q2)),
and

(71) {pn.x}nx is bounded in H*(0,T; (H'(R2)))

and, by passing to the limit in a subsequence, denoted by (k,h) for convenience, that there exists
p € L>(0,T; L?(2)) such that

(72) ph’k,pik —p in  L>®(0,T; L*(Q))-weaklyx,
and

(73) phk —p in HY0,T;(H'Y(Q)))-weakly

as (h, k) — (0,0). Moreover, there exists x € L%(0,T, H*({)) such that
(74) IhA([p;’k]T) —x in  L*0,T; H(Q))-weakly

6. COMPACTNESS

As we are dealing with a nonlinear equation, the key ingredient in passing to the limit is obtaining
compactness of the discrete solutions computed using (37). Since we do not have control of the
gradient of the discrete solutions due to the degenerate diffusion term, compactness turns out to be
more complicated to achieve than in the non-degenerate case. We have split the proof into a series of
four lemmas.

Lemma 6.1. There exists a nonincreasing function Fy : [0,00) — [0,00) with Fi(z) = 0 as z — 0
such that for any sequence of discrete solutions {p;{’k}h,k computed via scheme (37) satisfies

(7)) Nowalr(t +0) = loy el L2y < F(IZn Ao i)t + ) = Zn Aoy iz (0 L2(@)
for all 6 € (0,T) and t € [0,T — 6], and

T
1) [ [ Pulotre+de) - Pl et @) Pda
0 w

T
<R / / PATW (o (6 + Ses)) — PuTuA(7 ot )P dt |
0 w

for allw CC Q and 0 < § < dist(w, 9Q) with {e;}L_, being the Cartesian basis of RY.
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Proof. For x > 0 and y > 0, define the following continuous function

Al@)—-Aly)
o(z,y) = T—y ?f x Y,
A(x) it x=uy.

Let n > 0 and consider f(n) = min{o(z,y) : (x,y) € [n, Br=] % [0, Br~]}. Then we have that f(n) >0
since A(z)" > 0 for > 0 owing to (Al). Let

Nt = {a € N[ (e + 6.0)| < and [[5] o (t,0)| < )
and A2 = AG\AL. Then, from (10), we get
Il adr(t+0) = f @y < Coallai et +9) = il O
= G X (oiulr(t+8.0) = o Jr0))? | a

aeN,{ Q
+Coq S (It et + 6,0) — o7 ] (t,@))? / Ga
aeN,f Q
< Ceq772|Q|

+Ceaf M ZnA(lps, 1)1 (t + 8)) = TnAllos 1T (D) 172 () -

Consider F),(z) = inf,;50{Ceq|Qn? 4+ Cequf 2(n)z*} with =1 to complete the proof of (75).
For (76), we reason along the same line as before. Define

Q&; = {(tvw) € [OvT] Xw: |'Ph[p;k}T(t7w + 561)| <1 and |'Ph[p;;k]T(t,(B)| < 77}
and Q% = Q\QL. Estimating as before, we find

T
/ / Pulpi la(t @+ bex) — Pulpi ot z)
0 w

[ 1Paloirtt.+ b = Palof et Pda
Q

1
w

+ [ PubiLadrtt o +0e) ~ Palpi )¢ @) o
M
QI+ 725 / / PUTn Ao (@ + 5ex)) — PaTuA(lpif ot @) Pz dt,

which implies (76). O

Lemma 6.2. Let § € (0,T) and t € [0,T — §]. Assume that there exists B > 0 such that the sequence
of discrete solutions {p:;k}h,k computed via (37) satisfies

(77) IZh A([pf Gl (t + )l < B and VI A([pf plr () 51y < B.
and
(78) WV ph ot +6) 2@ < B and  KVpl,(0) 2@ < B.

Then there exists a function Gp : [0,00) — [0,00) being nondecreasing and satisfying Gg(g) — 0 as
€ — 0 such that

len ot + Ol = oy 1 (D)7l 2 () < GB(e)
providing that
(Lo 1) (t +8) = [0 17 (), Tn Al[og, 1] (t + 0)) = Zu A([ogy 1 Jr(E)n < €
holds
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Proof. We establish the lemma by contradiction. Assume that there exist k > 0 and two sequences
{pﬁn,kn (t+6)}n, and {PZ”,kn (t)}nZ such that

79 (o, k)o@ +8) = o k10 (), Tn, Ay, 1 10t +6)) = Zn, Allpyy g 17(0)h,, < %
and
(80) o7, k7t +8) = pf 5 Jr (O 720) > -

From (77), we know that there exist wy,ws € L?(Q) and a subsequence of {[p,fmkn];r(t +9)}2, and
{[p;mkn]T(t)}ff:O, still denoted by itself, such that
Tn, Ao, p 7t +06)) = A(pr) in L*(Q) as n— o0

and
IhnA([pkan]T(t))HA(pg) in L*Q) as n— oo,

where p; = A= (w;) and ps = A7 (wg). It is not hard to see from (22) and (77) that
Ph, In, A(lpy, 10t +0)) = A(p1) in L*(Q) as n— o0
and
PhnIhnA([pkan]T(t)) — A(pz) in L*(Q) as n— oo
Lebesgue’s Dominated Convergence Theorem implies that

AilphnIhnA([p;mk"]T(t +8)—=p1 in L*Q) as n—oo

and
A_l’PhnIh"A([p;{mkn]T(t)) —py in L*Q) as n— oo
It is clear that
Pu,lon g ot +06) = A Pu, ThA(lp); 4 1ot +0))
and
Pu.loh, g o) = APy, Tn, Ao 4 10(1).
In view of (22) and (78), we get
los, ozt +8) = Pupf) Jr(t+0)ll2) < ChallVpy, (¢ +6)lL2(0) < Chy "B

and

P51 &) = Prpsy, 1o, Dllz2) < Chall Ve 4 (0)lL2(0) < Chy 7 B.
Here, we used the fact that [V[p}  ]r(-)| < [V[p Z 7 (-)|. Therefore,

gy, ot +08) = p1 and  [pf 4 Jr(t) =2 in L*(Q) as n— oo
On noting (20), we have
(log, 1o, Jr(E+0) = o3y, 1o, Jr(8). Tn, Allpy, i, | (t +0)) = Tn, Allpy,, 1, 17(1)))
< —+ Challlpy, kot +0) = oy, 4 JrOll2 @IV (Zn, (AllpR, 1, 17t +8) = Allor, g, Jr ) 22(2)
<= +C|Q\ hnBreB.
Passmg to the limit in this last estimate yields

(p1 = p2, A(p1) — A(p1)) = 0,

which implies that p; = p2. As a result, we have || Zp,, A([pn,, &, ]7(t+9)) = Th A([ph,, k)7 ()| L2(0) = 0
as n — +oo. But then ||[pn, &, ]7(t +0) = [ph, ko7 ()] L2(0) = 0 as n — 400 from Lemma 6.1, which

(R}

is a contradiction from (80). 0

In order to prove the following lemma, we draw on [10, Prop. 27].
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Lemma 6.3. Let § € (0,T) and t € [0,T — 8]. Then it follows that

T—5
(81) /0 (o il (t + ) = [on )7 (2), Aoy, 1] (t + 0)) — A([oyy 4] (1)))n dt < C.
Proof. Since p;k is a time—stepping function, we only need to consider § = rk, with r = 1,--- | N,
and prove
N-—r
B (o e = o), Al 1r) — A(lpR]r)n dt < C(rk)%
m=0

Let us test (37) against pp, = Zy A([p)" " |7) — Zn A([p*]7) to obtain

(o™ = oy A7) = AR r)n
= —h"k(Vop T VI A ) = VIR A([pr 7))
— K(VIh Ay 7). VIR Al 1) — VIR A([p]7))
+ k(pp PV I (K * [0)7), VIR Aoy ")) — VIR A} 7).

Summing for n = m,...,m — 1 + r, multiplying by k£ and summing for m =0,--- , N — r yields

k:Z W= o Ay ) = Al 1T))n

—r m—14r
:_mkzk Z (Vop ' VI A7) — VIn A([o 7))

—r m—1+4r

—k Z k Z (VIhA(loy 7). VIR Ay r) = VIR A([oi 7))

—r m—1+r

+kz k Z (o IV In(Ax [pp)r), VIR Ay r) = VIR A(ph)r).-

We now proceed to bound each term on the right-hand side. In doing so, we first apply a Fubini
discrete rule to write
—r m—14r
hk Z k Z (Vor ™ VL Aoy r) — VI Ao r))
= h7k Z k Z (Vor ™ VI Aoy r) = VIR Al r)),
m=n—1+r
where
0 if n<O0,
n= n if 0<n<N-—-7
N—-r if n>N-r

Therefore, using | —n — r + 1| < r, we have, by (66), that

—r m—14r

Wk Z k Z P VI A ) — VI A([pi]r))
N—r n % n
<k > hV2k||VpZ“||L2(Q > KIV@Ae ) = ThAeR ) 720 >k
n=0 m=n—1+r m=n—1+r

< CB2,T3(rk)z.

N|=
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Analogously, we bound

—r m-—=14+r

kzk Z (VLA ) T A7) — Th A7) < OT? B2 (rk)®
and
N—r m—1+
kY k Z PIIL(K * [pPr), VIR A7) — TnA(p)]r)
n=0 n=m

< CT||K|lweoo ey lon |l 10y B2 (rk) 2.

Combining these above estimates gives

kz (ot — o, Al r) — Al )n < C(rk)%.

The proof is now completed on noting that |[p)"""|r(a) — [p7*(a)lr| < o (a) — pi*(a)| for all

acN,,. O

In order to set out that the sequence of {[sz]T}h,k is precompact in L?(Q), we will use the Riesz-
Fréchet-Kolmogorov compactness criterion.

Lemma 6.4. It follows that
(82) [p,tk]T — pr in L*(Q)-strongly as (h, k) — (0,0),
where pr is the truncating of the limiting function p obtained from the weak convergences.

Proof. The proof should be understood for the subsequence obtained in (72) and (73). We divide the
proof into two parts:

Part I: We claim that for each € > 0 there exists 0 < §g < T such that for all (h, k) > 0 and all
0<d<ido

T—¢
(83) / 1ol + 8) = [onalE ()2t < .
By Lemma 5.2, we know that

1
IA(of el L2 0.1 () < (Biw | + Bj2)? := B.
Consider 0 < § < € and 6 > 1 and define

1

By(3) = {t € 0.7 — &) | Aol Jr ()l < BOY, [A(pi (¢ + 0Dl oy < BO,

WV o (Ol 20y < BOY, BVt +6) 32y < BOY,
(o3t ot +6) = [ Jr (), i (t +0)) - <[p;,kmt>>>hscea}.

By Chebyshev’s inequality, we deduce that |Eg(d)| < % where E§(0) is the complementary set of

Ey(9). Therefore, by Lemma 6.2 combined with (81),

T—e¢
5
| Wil 6) = o dr s oyt < TG, (009) + 253

On choosing 6 = max{ QOB;"" ,1} and dp > 0 such that TG,y (CH5) < 5, this leads to (83).
Part IT: We claim that for each € > 0 and each w CC 2 there exists 0 < o < dist(w, 9Q) such that

T

(51) [ [ttt + se) = (o ot )Pt < e
0 w

for all (h,k)>0,and all0 <§ <dpandi=1,---,d.
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Using Minkowski’s inequality, we have

T
| [ ke + e~ o Jr(e. )Pz
0 w
T
<c / 1o e — Pulpi el ot

T
e / / Pulpi (b @ + Se:) — Pulpi o (b, @) Pda dt.
0 w

We estimate each term on the right-hand side separately. We have, by (22) and (66), that

T
/0 1o sl — Pulot olrl2adt < CBZAL,

where we have used that that fact |V[pn]r| < |[Vpp| for all p, € Dy,.
Now we want to use (76) to control the second term. Observe that

T
[ [ Puatof dett, + 5e) - PTaA(or ot ) x oydade
0 w
T
<C [ IBAi L) = PATaAE ) [ o

T
e / / T Aot + be:)) — Th Ao ot ) Pde dt.
0 w

It is easily to check, from (22), that

T
/0 IZh Aot 4 J7) — PaTu Ao} W) 2y dt < CB:02

and, by the Mean-Value Theorem, that
T
| [ maatetetto+ e - TuA(of ot )Pt
0 w

T
<8 [ IVTAQ 0 [ oyt < B

Thus, by Lemma 6.1,

T
/ / Prlof ) (t, @ + de;) — Pulp) Jo(t, @)?de dt < Fi(B7:(Ch® 4 6%)).
0 w

Therefore,
T
/ / Pt + D) — pt (@) Pda dt < CBpah™ + Fy(82B2,) + Fy(CBL12).
0 w

Following the proof of [2, Thm. 5.1] we infer that (84) holds.

Finally, inequalities (83) and (84) are sufficient to prove that the sequence of {[pn k|1 }n.k is precom-
pact via the Riesz-Fréchet-Kolmogorov compactness criterion. It is not hard to see that the limiting
function pr is the truncating of p. g

We further infer that
(85) [php)T — pr in L*(Q)-strongly as  (h, k) — (0,0).
As a consequence of Lemma 6.4, we have the following.
Corollary 6.5. There holds
(86) I;LA([p;;k]T) — A(pr) in  L*0,T; HY(Q))-weakly as  (h,k) — (0,0).
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Proof. Using Minkowski’s inequality a few times, we see that

T T
/0 IThA(p7 ) — Alpr)Bagoydt < C / 1T A7 ) — PaTn Aot )22 ot
T
c / IPATa Ao fJr) — AP ) 2t
T
c / 1A(p7 ) — Apr) 220t

In view of (22) and (70), we obtain

T T
/0 IZnA(lpy kl7) = PaZnAllpy plr)lI720)dt < C h2/0 IVZn Allpy )72 @)dt — 0

and
T T
/0 IPWTWA(oE o)) — AllpE ()| 2adt = / IPRA(p7 ) — A ) 2yt
T
< on / IV A7 ) 2t
T
< CRIA (oI~ / 1900 el 22t
T
< O BL) [ WVt 0
0

as (h,k) — (0,0). Lebesgue’s Dominated Convergence Theorem combined with (82) provides

T
/0 1At fJr) — Apr) |22yt = 0

as (h,k) — (0,0). Thus, the above convergence gives
ThA([p} lr) = A(pr) in L*(Q)-strongly as  (h, k) — (0,0).

Furthermore, it follows from (74) that (82) is satisfied; thus completing the proof. O

7. PASSAGE TO THE LIMIT

We briefly outline the main steps of the passage to the limit since the arguments are quite standard.
Let p € L2(0,T; Wh>(Q)). We know that SZ,p — p in L?(0,T; WH>(Q2)) as h — 0 from (32).
Then selecting pp, = SZ,p in (37), multiplying by k, and summing over n yields

T T
/ (atph,k,SZhﬁ)hdt—l—/ h”(Vp;k,VSZhﬁ)dt
0 0
T T
+ / (VIRA(pf ), VS Znp)dt — / (P RV TH (K * [y ), VSZnp) dt = 0.
0 0

e For the time derivative, we have:

T T T
/ (Otpn ks SZnp)pdt = / [(Oepr,ns SZhp)n — (O1pn g, SZnp)]dt +/ (Ovph ks SZpp)dt.
0 0 0

It is clear from (73) that

T T
/ ((%ph,k,Sth)dt — / < Oyp, p > dt.
0 0
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To control the residual term, we use (19) combined with (71) to see

T
R AEE Y AR
0

T % T
0 0

e For the dissipation terms, we have by (70) and (86) that

T
m/ (Voi i VSZnp)dt — 0
0

and
T T
| (VT o), 9SZamdt [ (9T, A(pr), Ty
0 0

e For the convolution term, we proceed as follows.
T T
/ (p;kVIh(K * [p}:,k]T)’ VSZpp)dt = / (p;kV(Ih —I)(K * [p;,k]T’ YWWSZp)dt
0 0
T
+/ (pf VK * [p) 11, VS Zpp)dt.
0
For the first term, we have

/0 (ph oV (Zn — T)(K * [py, 1 J1), VS Z4p) dt

1
2

T
(/O |vszhp|%2m)dt> — 0.

T T
/0 IVE * o)z — K # prl3eqydt < IVE 2 e / ol — prl2s gydt = 0,

which implies on recalling (72) that

1
2

T
< Ch| V2K || Lo ey |20 L102) </o ||P;f,k||%2(9)dt>

For the second term, we apply (85) to show

T T
/ (,OZJﬁVK * [pl:,k]T’ VSZhﬁ)dt — / (pVK * P, VSZhﬁ) dt.
0 0

Therefore,

T T
/ (p‘hs"kVIh(K * [py, plT), VS ZRp)dt — / (pVK * pr,VSZp,p) dt.
0 0

as (h, k) — (0,0).

The continuous assimilation of the initial datum is ensured by the compact embedding H* (0, T; (H*(£2))")
into C'([0,T]; (H*(£2))’) and (36). Moreover, one can show that p(t) — p° in LP(Q) as t — 0. For more
details, see [3, pp. 1627].

Since p € L2(0,T, W>(Q)) is dense in L?(0,T; H'(£2)), we have found p : Q — [0,00) such that

p e L®(0,T; L2(Q) N HY0,T; (H(Q))),

/p(t)da::/podsc for all ¢ €0,7],

Q Q

and

(87) {atp—AA@T)W-(pVK*pT) = 0 in L*0,T;(H'\(Q)),
p(0) = po in (H'(Q)).

To complete with the proof of Theorem 3.2 we show the equivalence of problems (38) and (87).
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Lemma 7.1. Problems (38) and (87) are equivalent.

Proof. At this point the only thing we need to show is that p defined by (87) satisfies p < B in Q.
Indeed, define p,u = tIAK Loo rayllpoll L1 e llpoll Loy for t € [0, T], and observe that, by (43),

(88) (8tpaux7ﬁ) - (PaUXVK *pr, vﬁ) <0

holds for all p € H*(Q) with p < 0. Substracting (87) from (88), and testing the resulting equation
against p = (paux — p)— € HY(Q) yields

1d, .
5@“0”%2(9) — (VAr(p),Vp) — (bVK * pr,Vp) <0,
or equivalently,

B2 + (AR () 0) — (VK * pr, V) < 0.
It follows again from (43) and integration by parts that

d, . —
%HPH%%Q) <NAK| oo wayllpoll 1@ 171172 )
and 80 p < paux < Br~ by Gronwall’s lemma. Therefore, pr = p. O

8. SIMULATION OF AGGREGATION PHENOMENA

In this section we illustrate how scheme (37) can be used to approximate the unique weak solution
to (1) with (2)-(3). Moreover, we compare our numerical solution to that computed in [6, Sect. 3.4,
Ex. 8.

8.1. Computational performance. At this point we shall make two comments regarding scheme (37).
Firstly, we need not use the truncating operator []r to compute A([p}™!]7) and K * [p}!]z because
the discrete approximations are non-negative and the unique weak solution being approximated is
not expected to blow up. Furthermore the convolution term K * p}’ cannot be exactly computed at
the nodes in order to construct its nodal interpolation, so a quadrature formula must be utilized on
simplexes.

Then, our numerical method remains as: Given pj € Dj,, compute p"+1 € Dy, satisfying

(89) 6oyt pr)n + WY (Vo™ Vipn) + (VIR Aoy ™), Vion) — (pn T VI(Qu (K * ppy))), Vion) = 0,

where Qi is the midpoint quadrature formula. The term ((5th+1, Pr)n can be computed by using
a closed-nodal quadrature formula, and the term Z,(Q:(K * p})) can be rewritten as follows. Let
a € Ny, then

(90) Q1(K + p)(a / Bu(K(a—y)i(w)dy = 3 K(a—bp)|El,

Eeg&y,

where Py, is a piecewise constant interpolation taking its value on each E € &, at the barycenter bg.

We see no obstacle to analyzing algorithm (89) using (90) and the truncating [-] in A(+) as well, but
we did not consider such a formulation in our analysis because it is tedious.

Scheme (37), and its modification (89), require the solution of nonlinear algebraic systems at each
time step, which can be approximately solved using fixed-point iterations. In doing so, we first observe
that A(pp ) = D(pp )V tt, where D(p) ) is a piecewise constant, d x d diagonal matrix function
over the mesh 7}, constructed as follows. Let E € &, and consider E C E to be a right simplex (see
Figure 1) with vertices {a;};=o,... ¢ with @ supporting the right angle. Then

A(pn(ay)) — A(pn(ao))
[D(pn)|Elsi = pn(a;) 5 pr(ao)

if pn(a;) — pr(ao) # 0,

if pn(a;) — pr(ao) = 0.

Particularly, we choose ag to be the incenter of E. Thus, we take a; = ag + “£e;, where r is the
inradius of the inscribed ball.
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FIGURE 1. Interior right triangle used for computing D(ny,)

Time: 0.0 density
0.0e+00 0.10.15 2.5e-01

FIGURE 2. The initial condition p).

We linearize as follows. For i = 0, select pﬁ'l = pj, then compute pzt}rl using in (89) the expression
(Phitas Pn)n + WY (Vo iy, Von)+(D(on )V i1y, Vion)
— (PR VIR(QuE * pi))) = (pf, Pn)i-

As a stopping criterion for the iterations, we choose || pz,ﬂrl — pZ"{lH r2(q) < tol, with tol being the
prescribed tolerance.

Finally, the computation of (90) for each a € N} constitutes the bottleneck in running scheme
(89). To make it possible in an acceptable amount of time, a parallel procedure on a high-performance
cluster can be invoked since all the nodes a € N}, are independent of each other.

8.2. A numerical experiment. As the domain we take the square Q = [—4,4]?> C R2. The evolution
starts from the initial datum p° = % X[-3,3)2 being a rescaled characteristic function supported in the
square [—3,3]?, which is shown in Figure (2). The local repulsion term is chosen as A(p) = £p™
with v = 0.1 and m = 3, and the kernel is set as K(x) = exp(—|z|?)/m. From an Nsquare X Nsguare
uniform grid, obtained by dividing §2 into macroelements consisting of squares, we construct the
mesh 75 by splitting each macroelement into 14 acute triangles as indicated in Figure 3. This way,
for Nsquare = 120, we define a mesh consisting of 201600 acute triangles and 101281 vertices with
h = 8/(2Nx) ~ 0.033. For the time discretization, we carry out 1500 iterations with time step
k = 1071. Moreover we select v = 0.99 to be as large as possible in orden to reduce the impact of the
stabilizing term, which has a smoothing effect on the dynamics of aggregation phenomena. It should
be noticed that (h, k) do not fulfill (41) what makes us believe that such a restriction is superfluous.
We also performed some numerical tests with & = 1072, obtaining quite similar results, which are
omitted for brevity.

Specifically, we run our test on a machine with 16 Intel Xeon E52670 processors (2,6 GHz, 8-core),
in a distributed memory architecture; thus using a total of 256 parallel threads. The MPI library on
the FreeFem++ PDE solver [13] was selected as a software framework.
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12 4

FiGURE 3. Reference macrolement, composed of 14 acute triangles

Using the above-described parallel computing environment for the computation of (90) for each
a € Ny, the converged solution is obtained by about 3 iterations with tolerance tol = 103 in the
L?(Q)-norm. To be more precise, the average number of iterations is 2.81, with minimum and maximum
equal to 2 and 11, respectively. So, each time step takes an average time of 88.85 seconds, of which
35.95 seconds (on average) are due to the parallel computation of (90). The remaining time is occupied
in solving the associated linear system, which spends 3.06 seconds (on average) for each iteration, and
data I/0.

Figure 4 shows how the initial state changes into four peaks that are aggregated into a single
component until reaching a final steady state. This result is in good agreement with that in [6, Sect.
3.4, Ex. 8]. The dynamics regarding the || - || Lo(q)- and [ - || ;1 (q)-norms is reported in Figure 5. The
|| - [| oo (@)- norm approaches the value 16 as of ¢ = 14, while the [| - ||11(q)-norm takes values around

8.92, which is comparable to ||p°(| 11 (o) = 9.
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