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Abstract

A contragenic function in a domain Ω ⊆ R
3 is a reduced-quaternion-

valued (i.e the last coordinate function is zero) harmonic function,
which is orthogonal in L2(Ω) to all monogenic functions and their
conjugates. The notion of contragenicity depends on the domain and
thus is not a local property, in contrast to harmonicity and mono-
genicity. For spheroidal domains of arbitrary eccentricity, we relate
standard orthogonal bases of harmonic and contragenic functions for
one domain to another via computational formulas. This permits us
to show that there exist nontrivial contragenic functions common to
the spheroids of all eccentricities.

Keywords: spherical harmonics, spheroidal harmonics, quaternionic analy-
sis, monogenic function, contragenic function.

Classification: 30G35; 33D50

1 Introduction

In certain physical problems in nonspherical domains, it has been found
convenient to replace the classical solid spherical harmonics with harmonic
functions better adapted to the domain in question. For example, spheroidal
harmonics are used in [7] for modeling potential fields around the surface of
the earth.

A systematic analysis of harmonic functions on spheroidal domains was
initiated by Szegö [19], followed by Garabedian [5] who produced orthogonal
bases with respect to certain natural inner products associated to prolate and
oblate spheroids, among them the L2-Hilbert space structures on the interior
and on the boundary of the spheroid. Some aspects of the generation of
harmonic functions which are orthogonal in the region exterior to a prolate
spheroid were considered in [14] and generalized recently in [15].
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The main question which interests us is to relate systems of harmonic
functions associated with the spheroid Ωµ (defined in (1) below) to those
associated with the unit ball Ω0. Our starting point is a fundamental formula
for spheroidal harmonics which was worked out in the short but beautiful
paper [2] and is discussed thoroughly in Chapter 22 of the monumental text
[7]. In classical books such as [6, 16, 18], these expansions in terms of these
bases are used separately without specifying relations between them.

We complete the above formulas by relating different systems of har-
monic functions associated with spheroids of different eccentricity. While
the manipulation of the coefficients is essentially algebraic, it must be borne
in mind that we are dealing with continuously varying families of function
spaces which are determined by integration over varying domains.

This study is then extended to include the contragenic functions, which
are those harmonic functions orthogonal to both the monogenic functions
and the antimonogenic functions in the domain under consideration. In [4]
a short table of contragenic polynomials was provided, which included some
which did not depend on the parameter describing the eccentricity of the
spheroid. Such polynomials are thus contragenic for all spheroids. Our main
result, Theorem 4.6, describes the intersection of the spaces of contragenic
functions.

2 Background on spheroidal harmonics

As a preliminary to the discussion of monogenic and contragenic functions
on spheroids, we establish the basic facts for harmonics in this and the next
section. Consider the family of coaxial spheroidal domains Ωµ, scaled so that
the major axis is of length 2:

Ωµ = {x ∈ R
3| x2

0 +
x2
1 + x2

2

e2ν
< 1}, (1)

where ν ∈ R and where following the notation in [4] the parameter µ = (1−
e2ν)1/2 will be useful in later formulas. The equations relating the Cartesian
coordinates of a point x = (x0, x1, x2) in Ωµ to spheroidal coordinates (u, v, φ)
are

x0 = µ cosu cosh v, x1 = µ sin u sinh v cosφ, x2 = µ sin u sinh v sinφ, (2)

where in the case of the prolate spheroid (ν < 0) the coordinates range
over u ∈ [0, π], v ∈ [0, arctanh eν ], φ ∈ [0, 2π) and the eccentricity is 0 <

2



µ < 1, while for the oblate spheroid (ν > 0) we have u ∈ [0, π] and v ∈
[0, arctanh eν ], φ ∈ [0, 2π) and µ is imaginary, µ/i > 0. The spheroids
reduce to the unit ball Ω0 for ν = 0. In many other treatments of spheroidal
functions, which discuss the two (confocal) families separately, the ball is not
represented. See [4] for a discussion of this question.

In terms of the coordinates (2), the solid spheroidal harmonics are

U±
n,m[µ](x) = Ûn,m[µ](u, v) Φ

±
m(φ), (3)

where
Φ+

m(φ) = cos(mφ), Φ−
m(φ) = sin(mφ) (4)

and for µ 6= 0,

Ûn,m[µ](u, v) =
(n−m)!

2n(1/2)n
µnPm

n (cos u)Pm
n (cosh v). (5)

Here Pm
n are the associated Legendre functions of the first kind [6, Ch. III]

of degree n and order m, and the (rising) Pochhammer symbol is (a)n =
a(a+ 1) · · · (a+ n− 1) with (a)0 = 1 by convention. To avoid repetition, we
state once and for all that U−

n,m[µ] is only defined for m ≥ 1, i.e. U−
n,0[µ] is

expressly excluded from all statements of theorems.
It was shown in [4] that with the scale factor which has been included in

(5), the U±
n,m[µ] are polynomials in (x0, x1, x2) which are normalized so that

the limiting case µ → 0 gives the classical solid spherical harmonics,

U±
n,m[0](x) = |x|nPm

n (x0/|x|)Φ
±
m(φ).

It is known from [5] that while the U±
n,m[µ] are mutually orthogonal with

respect to the Dirichlet norm on Ωµ, the closely related functions, which we
will call the Garabedian spheroidal harmonics,

V ±
n,m[µ](x) =

∂

∂x0
U±
n+1,m[µ](x) (6)

form an orthogonal basis for H2(Ωµ), the linear subspace of real-valued har-
monic functions in L2(Ωµ). This property makes the V ±

n,m[µ] of greater in-
terest for many considerations. The corresponding boundary Garabedian
harmonics V̂n,m[µ] in Ωµ are characterized by the relation

V ±
n,m[µ](x) = V̂n,m[µ](u, v) Φ

±
m(φ). (7)
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We recall [9] that for spherical harmonics, there is a formula analogous to
Appell differentiation of monomials,

∂

∂x0

U±
n+1,m[0](x) = (n +m+ 1)U±

n,m[0](x). (8)

However, V ±
n,m[µ] is not so simply related to U±

n,m[µ] for µ 6= 0, as was ex-
plained in [10]. We examine such relations in the next section.

3 Conversions among orthogonal spheroidal

harmonics and spherical harmonics

3.1 Garabedian harmonics expressed by classical har-

monics

As mentioned in the Introduction, it is of interest to express the orthogonal
basis of harmonic functions for one spheroid Ωµ in terms of those for another
spheroid. It is natural to use the unit ball Ω0 as a point of reference, which will
be the case in the first results. We begin the calculation of the coefficients
for the relationships among the various classes of harmonic functions by
presenting various known formulas in a uniform manner. For n ≥ 0, consider
the rational constants

un,m,k =
(1/2)n−k (n+m− 2k + 1)2k

(−4)k(1/2)n k!
(9)

for 0 ≤ m ≤ n, 0 ≤ 2k ≤ n, and let un,m,k = 0 otherwise. In the present
notation, the main result of [2] may be expressed as follows (i.e. the factor
αm,n = (n−m)!/(2n− 1)!! has been incorporated into (9)).

Proposition 3.1 ([2]). Let n ≥ 0 and 0 ≤ m ≤ n. Then

Ûn,m[µ] =
∑

0≤2k≤n−m

un,m,kµ
2k Ûn−2k,m[0].

An important characteristic of this relation is that the same coefficients
un,m,k work for the “+” and “−” cases (cosines and sines) and, strikingly, for
all values of µ. By (3), an equivalent form of expressing Proposition 3.1 is

U±
n,m[µ] =

∑

0≤2k≤n−m

un,m,kµ
2k U±

n−2k,m[0]. (10)
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Since ∂/∂x0 in (6) is a linear operator, (10) gives automatically the cor-
responding result for the Garabedian harmonics,

V ±
n,m[µ] =

∑

0≤2k≤n−m+1

vn,m,kµ
2k V ±

n−2k,m[0], (11)

where vn,m,k = un+1,m,k. This in turn gives via (8) the following expression
in terms of the spherical harmonics:

Corollary 3.2. Let n ≥ 0 and 0 ≤ m ≤ n. Then

V̂n,m[µ] =
∑

0≤2k≤n−m+1

wn,m,kµ
2k Ûn−2k,m[0],

where
wn,m,k = (n+m− 2k + 1)vn,m,k.

The coefficients

tn,m,k =
(n +m+ 1)! (1/2)n−2k+1

4k(n+m− 2k)!(1/2)n+1

give a similar expression for the Garabedian basic harmonics V ±
n,m[µ] in terms

of the standard harmonics U±
n,m[µ] for the same spheroid, rather than in terms

of Ûn,m[0]:

Theorem 3.3 ([10]). Let n ≥ 0 and 0 ≤ m ≤ n. Then

V̂n,m[µ] =
∑

0≤2k≤n−m

tn,m,kµ
2k Ûn−2k,m[µ].

In [2] the inverse relation of (10) was also derived, expressing U±
n,m[0] in

terms of U±
n,m[µ], via

Ûn,m[0] =
∑

0≤k≤n−m

u0
n,m,kµ

2k Ûn−2k,m[µ], (12)

where the coefficients can be written as

u0
n,m,k =

4n−2k(2n− 4k + 1)(n− k)!(m+ n)!(1/2)n−2k

k!(2n− 2k + 1)!(n+m− 2k)!
, (13)

again independent of µ. In consequence, applying the operator ∂/∂x0 and
using (8), we have the following result.
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Proposition 3.4. Let n ≥ 0 and 0 ≤ m ≤ n. Then

Ûn,m[0] =
∑

0≤2k≤n−m

w0
n,m,kµ

2k V̂n−2k,m[µ],

where

w0
n,m,k =

u0
n+1,m,k

n+m+ 1
.

The inverse relation for Theorem 3.3 is a much simpler formula, given as
follows:

Corollary 3.5 ([10]). For n ≥ 0 and 0 ≤ m ≤ n,

Ûn,m[µ] =
1

n+m+ 1
V̂n,m[µ] +

n+m

4n2 − 1
µ2 V̂n−2,m[µ].

This uses the convention V̂n−2,m[µ] = 0 when m > n; i.e.

Ûn,n−1[µ] =
1

2n
V̂n,n−1[µ],

Ûn,n[µ] =
1

2n+ 1
V̂n,n[µ].

3.2 Conversion among Garabedian harmonics

The preceding subsection does not include the inverse relation of (11) of the
form

V̂n,m[0] =
∑

0≤2k≤n−m

v0n,m,kµ
2kV̂n−2k,m[µ]. (14)

Instead of deriving it directly, we verify first the following remarkable con-
version formula, which relates the spheroidal harmonics associated with Ωµ

to those associated with any other Ωµ̃. Write

bn,m,k =
(n+m+ 1)!(1/2)n−2k+2

4kk!(n +m− 2k + 1)!(1/2)n−k+2

when 0 ≤ 2k ≤ n−m+ 2, otherwise bn,m,k = 0.
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Theorem 3.6. Let n ≥ 0, 0 ≤ m ≤ n, and let µ, µ̃ ∈ [0, 1) ∪ iR+ such that
µ 6= 0. The coefficients vn,m,k[µ̃, µ] in the relation

V̂n,m[µ̃] =
∑

0≤2k≤n−m

vn,m,k[µ̃, µ] V̂n−2k,m[µ]

are given by

vn,m,k[µ̃, µ] = 2F1(−k,−n + k − 3/2;−n− 1/2; (µ̃/µ)2) bn,m,k µ
2k,

with 2F1 denoting the classical Gaussian hypergeometric function.

Proof. We begin by replacing µ with µ̃ in Corollary 3.2 and substituting
the terms on the right-hand side according to Proposition 3.4. By linear
independence of the harmonic basis elements, it follows that

vn,m,k[µ̃, µ] = µ2k
k∑

l=0

wn,m,lw
0
n−2l,m,k−l

(
µ̃

µ

)2l

(15)

in which we note that all terms are real valued. Using reductions such as
(2n− 4k + 3)(1/2)n−2k+1 = 2(1/2)n−2k+2 and recalling 0 ≤ l ≤ k, one easily
sees that

wn,m,l =
(1/2)n−l+1(n +m− 2l + 1)2l+1

(−4l)l!(1/2)n+1
,

w0
n−2l,m,k−l =

2 · 4n−2k+1(n+m− 2l)!(n− k − l + 1)!(1/2)n−2k+2

(k − l)!(2n− 2k − 2l + 3)!(n+m− 2k + 1)!
.

Therefore the product can be expressed as

wn,m,lw
0
n−2l,m,k−l = bn,m,kcn,k,l

where

cn,k,l =
2 · 4n−2k+1(n+m+ 1)!(n− k − l + 1)!(1/2)n−2k+2

(−4l)l!(k − l)!(2n− 2k − 2l + 3)!(n+m− 2k + 1)!

=
(−k)l(−n + k − 3/2)l

l!(−n− 1/2)l

is the coefficient in the polynomial 2F1(−k,−n+k−3/2;−n−1/2; (µ̃/µ)2) =∑k
l=0 cn,k,l(µ̃/µ)

2l.
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Corollary 3.7. For each n ≥ 0, 0 ≤ m ≤ n, the limits

lim
µ̃→0

vn,m,k[µ̃, µ], lim
µ→0

vn,m,k[µ̃, µ]

exist and are given, respectively, by

vn,m,k[0, µ] = (n+m+ 1)w0
n,m,kµ

2k, vn,m,k[µ̃, 0] =
wn,m,k

n+m− 2k + 1
µ̃2k.

Proof. We may write (15) as

vn,m,k[µ̃, µ] =
k−1∑

l=1

wn,m,lw
0
n−2l,m,k−l µ

2(k−l)µ̃2l

+ wn,m,kw
0
n−2k,m,0µ̃

2k + wn,m,0w
0
n,m,kµ

2k

and then simply take µ = 0 or µ̃ = 0 to obtain the desired limit.

Referring to (14), we have

v0m,n,k =
wn,m,k

(n +m− 2k + 1)
.

4 Application to orthogonal monogenic and

contragenic functions

The standard bases for spheroidal harmonics have their counterparts for the
spaces of orthogonal monogenic polynomials taking values in R3. Monogenic
functions are defined by considering R3 as the real linear subspace of the
quaternions H = {

∑3
i=0 xiei : xi ∈ R} for which the last coordinate x3

vanishes. (Quaternionic multiplication is defined, as usual, so that e21 =
e22 = e23 = −1 and e1e2 = e3 = −e2e1, e2e3 = e1 = −e3e2, e3e1 = e2 =
−e1e3.) For background on quaternionic analysis in R3, see [3, 8, 9, 11, 13]. A
function f : Ωµ → R3 is monogenic when it is annihilated by the quaternionic
differential operator ∂ = ∂/∂x0 + e1∂/∂x1 + e2∂/∂x2 acting from the left.
The basic spheroidal monogenic polynomials are constructed [10, 12] as

X±
n,m[µ] = ∂(U±

n+1,m[µ]), (16)

where ∂ = ∂/∂x0 − e1∂/∂x1 − e2∂/∂x2. This is analogous to the definition
(6) for harmonic polynomials. X±

n,m[µ] is monogenic because ∂∂ is equal to
the Laplacian operator. We continue with the convention that m ≥ 1 when
the “-” sign appears in a superscript.
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Theorem 4.1 ([10, 12]). For all n ≥ 0, the basic spheroidal monogenic
polynomial (16) is equal to

X+
n,0[µ] = V +

n,0[µ]−
1

n + 2

(
V +
n,1[µ]e1 + V −

n,1[µ]e2
)

for m = 0, and

X±
n,m[µ] = V ±

n,m[µ] +
[
(n+m+ 1)V ±

n,m−1[µ]−
1

n+m+ 2
V ±
n,m+1[µ]

]e1
2

∓
[
(n+m+ 1)V ∓

n,m−1[µ] +
1

n +m+ 2
V ∓
n,m+1[µ]

]e2
2

for 1 ≤ m ≤ n + 1. The polynomials X±
n,m[µ] are orthogonal in L2(Ωµ), i.e.

in the sense of the scalar product defined by

〈f, g〉[µ] =

∫

Ωµ

Sc(fg) dV.

4.1 Bases for monogenics in distinct spheroids

Analogously to (11) and (14), we now express X±
n,m[µ] in terms of the spher-

ical monogenics X±
n,m[0].

Theorem 4.2. For n ≥ 0 and 0 ≤ m ≤ n + 1,

X±
n,m[µ] =

∑

0≤2k≤n−m+1

vn,m,kµ
2kX±

n−2k,m[0],

X±
n,m[0] =

∑

0≤2k≤n−m+1

v0n,m,kµ
2kX±

n−2k,m[µ],

X±
n,m[µ̃] =

∑

0≤2k≤n−m+1

vn,m,k[µ̃, µ]X
±
n−2k,m[µ],

where vn,m,k, v
0
n,m,k, and vn,m,k[µ, µ̃] are as in the previous section.

Proof. Fix a value of µ. Note that for given n, the collections {X±
k,m[0] : k ≤

n, 0 ≤ m ≤ k} and {X±
k,m[µ] : k ≤ n, 0 ≤ m ≤ k} are bases for the same

linear space, namely the monogenic R3-valued polynomials in the variables
(x0, x1, x2) of degree ≤ n. Therefore there must exist real coefficients a±k such
that X+

n,m[µ] =
∑

k

∑
m a+k X

+
n,k[0] +

∑
k

∑
m a−k X

−
n,k[0]. By Theorem 4.1, the

9



scalar part of this equation expresses the spheroidal harmonics V ±
n,m[µ] as a

linear combination of the spherical harmonics V ±
k,m[0]. By the uniqueness of

the representation (11) we have that a±k = vn,m,kµ
2k. The second formula

follows by the same reasoning, and then the relationship between X±
n,m[µ]

and X±
n,m[µ̃] is a consequence of the fact that by Theorem 3.6 the matrix

(vn,m,k[µ̃, µ])n,k is essentially the product of (vn,m,kµ̃
2k)n,k and the inverse of

(v0n,m,kµ
2k)n,k.

4.1.1 Spheroidal ambigenic polynomials

Antimonogenic functions (quaternionic conjugates of monogenics, i.e. anni-
hilated by ∂) are generally not studied independently, since their properties
may be obtained by taking the conjugate of facts about monogenic func-
tions. For example, the basic antimonogenic polynomials satisfy essentially
the same relation as given in Theorem 4.2,

X
±

n,m[µ] =
∑

0≤2k≤n−m

vn,m,k[µ, µ̃]X
±

n−2k,m[µ̃].

However, the subspace of the R
3-valued harmonic functions generated by

the monogenic and antimonogenic functions together, that is, the ambigenic
functions [1], is of interest.

An ambigenic function is not represented uniquely as a sum of a mono-
genic and an antimonogenic function because one may add and subtract
a monogenic constant, that is, a function which is simultaneously mono-
genic and antimonogenic. A collection of ambigenic polynomials denoted
{Y ±,±

n,m [µ]} was constructed in [4] and shown to be a basis of 2n(n + 3) + 3
elements for the ambigenic polynomials of degree no greater than n, mutu-
ally orthogonal in L2(Ωµ). For our purposes we will only need the particular
ambigenic functions

A±
n,m[µ] = 2VecX±

n,m[µ] = X±
n,m[µ]−X

±

n,m[µ], (17)

where q = Sc q+Vec q denotes the decomposition of a quaternionic quantity
into its scalar and vector parts. It is simple to verify that for fixed µ, the
A±

n,m[µ] are linearly independent.

10



4.2 Relations among contragenic functions for distinct

spheroids

The notion of contragenic harmonic functions was introduced in [1], arising
from the previously unobserved fact that in contrast to C-valued or H-valued
functions, there exist R3-valued harmonic functions which are not ambigenic.
Thus a function is called contragenic for a given domain Ω when it is or-
thogonal in L2(Ω) to all monogenic and antimonogenic functions in Ω. In
contrast to monogenicity and antimonogenicity, this is not a local property
and therefore cannot be characterized in general by direct application of any
differential operator. It is of interest to have a basis for the contragenic
functions, in order to express an arbitrary harmonic function in a calculable
way as a sum of an ambigenic function and a contragenic function. In the
following, we will write

N (n)
∗ [µ] = {polynomials of degree ≤ n in x0, x1, x1 which

are orthogonal in L2(Ωµ) to all ambigenic
functions in Ωµ},

for n ≥ 1 (nonzero constant harmonic functions are never contragenic, so we

will have no use for N (0)
∗ [µ] = {0}), and we have the successive orthogonal

complements
N (n)[µ] = N (n)

∗ [µ]⊖N (n−1)
∗ [µ],

which are composed of polynomials of degree precisely n. Thus N (n)
∗ [µ] =⊕n

k=1N
(k)[µ] and there is a Hilbert space orthogonal decomposition N∗[µ] =⊕∞

k=1N
(k)[µ] of the full collection of contragenic functions in L2(Ωµ). The

following explicit construction of a basis of the N (n)[µ], using as building
blocks the scalar components of the monogenic functions, can be found in
[4]. Write

an,0[µ] = 1,

an,m[µ] =

(
1

(n+m+ 1)2

‖V +
n,m+1[µ]‖[µ]

‖V +
n,m−1[µ]‖[µ]

)2

(18)

for 1 ≤ m ≤ n − 1, and an,m[µ] = 0 for m ≥ n since then V ±
n,m[µ] = 0

(this definition involves a slight modification of the notation in [4]), where
integration over the ellipsoid gives explicitly

‖V ±
n,m[µ]‖

2
[µ] = (1 + δ0,m)βn,mπµ

2n+3

∫ 1

µ

1

Pm
n (t)Pm

n+2(t) dt.

11



Here δm,m′ is the Kronecker symbol and

βn,m =
(n+m+ 1)(n+m+ 1)!(n−m+ 2)!

22n+1(1/2)n+1(1/2)n+2

.

Definition 4.3. For all n ≥ 1, the basic contragenic polynomials Z±
n,m[µ]

associated to Ωµ are

Z+
n,0[µ] =− A+

n,0[µ]e3

for m = 0, and

Z±
n,m[µ] =

1

2

(
∓ (an,m[µ] + 1)A±

n,m[µ] + (an,m[µ]− 1)A∓
n,m[µ]e3

)

for 1 ≤ m ≤ n− 1, where A±
n,m[µ] are defined by (17).

In [4] it was shown that {Z±
n,m[µ] : 0 ≤ m < n − 1} is an orthonor-

mal basis for N (n)[µ], and that the harmonic polynomials of degree ≤ n in
Ωµ decompose as orthogonal direct sums of the ambigenic and contragenic
polynomials of degree ≤ n. With the further notation

Ψ±
+,m = Φ±

m(φ)e1 ± Φ∓
m(φ)e2,

Ψ±
−,m = Φ±

m(φ)e1 ∓ Φ∓
m(φ)e2,

which satisfy the obvious relations Ψ±
+,me3 = ±Ψ∓

+,m, Ψ±
−,me3 = ∓Ψ∓

−,m,

e1V
±
n,m[µ] + e2V

∓
n,m[µ] = V̂n,mΨ

±
±,m[µ], e1V

±
n,m[µ] − e2V

∓
n,m[µ] = V̂n,mΨ

±
∓,m[µ]

(where the V̂n,m[µ] are given by (7)), the definitions give us almost immedi-
ately that

A+
n,0[µ] =

−2

n + 2
V̂n,1[µ]Ψ

+
+,1,

A±
n,m[µ] = (n +m+ 1)V̂n,m−1[µ]Ψ

±
−,m−1

−
1

n+m+ 2
V̂n,m+1[µ]Ψ

±
+,m+1, (19)

Z+
n,0[µ] =

2

n+ 2
V̂n,1[µ]Ψ

−
+,1,

Z±
n,m[µ] = (n+m+ 1)an,m[µ]V̂n,m−1[µ]Ψ

∓
−,m−1

+
1

n+m+ 2
V̂n,m+1[µ]Ψ

∓
+,m+1, (20)

12



where 1 ≤ m ≤ n− 1.
Adding and subtracting instances of (19) and (20) gives by cancellation

decompositions of the harmonic polynomials V̂n,mΨ
±
+,m and V̂n,mΨ

±
−,m as the

sum of a contragenic and an ambigenic:

Lemma 4.4. Let n ≥ 1 and 1 ≤ m ≤ n+ 1. Then

V̂n,m−1[µ]Ψ
±
−,m−1 =

1

(n+m+ 1)(an,m[µ] + 1)

(
Z∓

n,m[µ] + A±
n,m[µ]

)
,

and

V̂n,m+1[µ]Ψ
±
+,m+1 =

n+m+ 2

an,m[µ] + 1

(
Z∓

n,m[µ]− an,m[µ]A
±
n,m[µ]

)
.

The definition of contragenic function does not imply that an L2-function
which belongs to the space N (n)

∗ [µ̃] should also be in N (n)
∗ [µ] when µ̃ 6= µ, be-

cause the notion of orthogonality is different for different spheroids. In other
words, we may not expect a formula like “Z±

n,m[µ̃] =
∑

zn,m,k[µ̃, µ]Z
±
n−2k,m[µ].”

The following result will enable us to give many examples for which Z±
n,m[µ̃] 6∈

N (n)
∗ [µ] for m ≥ 1. However, it also shows that the intersection of all of the

N (n)
∗ [µ] is nontrivial, giving what may be called universal contragenic func-

tions in the context of spheroids.
We will use the coefficients

zCn,0,k[µ̃, µ] =
n− 2k + 2

n+ 2
vn,1,k[µ̃, µ],

zCn,m,k[µ̃, µ] =





an,m[µ̃] + 1

an−2k,m[µ] + 1
vn,m,k[µ̃, µ], 0 ≤ 2k ≤ n−m− 1,

an,m[µ̃]

an−2k,m[µ] + 1
vn,m,k[µ̃, µ], n−m ≤ 2k ≤ n−m+ 1;

zAn,m,k[µ̃, µ] =





an,m[µ̃]− an,m[µ]

an−2k,m[µ] + 1
vn,m,k[µ̃, µ], 0 ≤ 2k ≤ n−m− 1,

an,m[µ̃]

an−2k,m[µ] + 1
vn,m,k[µ̃, µ], n−m ≤ 2k ≤ n−m+ 1;

(21)

(1 ≤ m ≤ n−1) to express the decomposition of contragenics for one spheroid
in terms of contragenics and ambigenics of any other.

13



Proposition 4.5. Let n ≥ 1. Then

Z+
n,0[µ̃] =

∑

0≤2k≤n−1

zCn,k[µ̃, µ]Zn−2k,0[µ];

and for 1 ≤ m ≤ n− 1,

Z±
n,m[µ̃] =

∑

0≤2k≤n−m+1

(
zCn,m,k[µ̃, µ]Z

±
n−2k,m[µ] + zAn,m,k[µ̃, µ]A

±
n−2k,m[µ]

)
.

Proof. Apply Theorem 3.6 to the first formula of (20) with µ̃ in place of µ
to obtain that

Z+
n,0[µ̃] =

2

n + 2

∑

0≤2k≤n−1

vn,1,k[µ̃, µ]V̂n−2k,1[µ]Ψ
−
+,1,

which after another application of (20) reduces to the first statement. In the
same way, for m ≥ 1,

Z±
n,m[µ̃] = (n+m+ 1)an,m[µ̃]

∑

0≤2k≤n−m+1

vn,m−1,k[µ̃, µ]V̂n−2k,m−1[µ]Ψ
±
−,m−1

+
1

n +m+ 2

∑

0≤2k≤n−m−1

vn,m+1,k[µ̃, µ]V̂n−2k,m+1[µ]Ψ
±
+,m+1. (22)

We observe from the definitions leading to Proposition 3.4 that

wn,m−1,l w
0
n−2l,m−1,k−l =

n +m− 2k + 1

n+m+ 1
wn,m,lw

0
n−2l,m,k−l,

so (15) tells us that

n+m+ 1

n+m− 2k + 1
vn,m−1,k[µ̃, µ] = vn,m,k[µ̃, µ]

=
n+m− 2k + 2

n+m+ 2
vn,m+1,k[µ̃, µ].

From this and Lemma 4.4 we have that

(n+m+ 1)vn,m−1,k[µ̃, µ]V̂n−2k,m−1[µ]Ψ
±
−,m−1

=
1

an−2k,m[µ] + 1
vn,m,k[µ̃, µ](Z

∓
n−2k,m[µ] + A±

n−2k,m[µ]),
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and

1

n +m+ 2
vn,m+1,k[µ̃, µ]V̂n−2k,m+1[µ]Ψ

±
+,m+1

=
1

an−2k,m[µ] + 1
vn,m,k[µ̃, µ](Z

∓
n−2k,m[µ]− an−2k,m[µ]A

±
n−2k,m[µ]).

Inserting these two relations into the respective sums of (22) gives the desired
result.

Proposition 4.5 provides us with some information about the intersection
of the spaces of contragenic functions up to degree n.

Theorem 4.6. Let n ≥ 1. The following statements hold:

(i) Z+
n,0[µ] ∈ N (n)

∗ [0] for all µ;

(ii) Z±
n,m[µ] /∈ N

(n)
∗ [0] when µ 6= 0 and 1 ≤ m ≤ n− 1.

Proof. The first statement is an immediate consequence of the first formula
of Proposition 4.5.

Now consider a basic element Z±
n,m[µ] of N

(n)
∗ [µ], with µ 6= 0 and 1 ≤

m ≤ n− 1. A particular instance of the second formula of Proposition 4.5 is

Z±
n,m[µ] =

∑

0≤2k≤n−m+1

(
zCn,m,k[µ, 0]Z

±
n−2k,m[0] + zAn,m,k[µ, 0]A

±
n−2k,m[0]

)
.

Suppose that Z±
n,m[µ] ∈ N (n)

∗ [0]. Then since the right hand side is orthogonal
to all Ω0-ambigenics,

∑

0≤2k≤n−m+1

zAn,m,k[µ, 0]A
±
n−2k,m[0] = 0,

and so by the linear independence, zAn,m,k[µ, 0] = 0 for all k. The case in (21)
where 2k is n−m or n−m+1 tells us that an,m[µ] = 0, which is manifestly

false by (18). Consequently, Z±
n,m[µ] 6∈ N (n)

∗ [0] as claimed.

Note that Theorem 4.6 does not assert that Z+
n,0[µ] lies in the top-level

slice N (n)[0] of N (n)
∗ [0].
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Corollary 4.7. Let n ≥ 1. Then

dim
⋂

µ∈[0,1)∪R+

N (n)
∗ [µ] ≥ n.

Proof. The result is an immediate consequence of the fact that Theorem 4.6
is applicable to arbitrary µ, so the intersection contains a fixed n-dimensional
subspace of N (n)

∗ [0].

It also follows from Theorem 4.6 that the common intersection N0 =⋂
N∗[µ] of the full spaces of contragenic functions on spheroids is infinite

dimensional, containing all of the contragenic polynomials Z+
n,m[µ] for which

m = 0. It seems likely that these contragenic polynomials have special char-
acteristics because of their simpler structure, cf. (20). This phenomenon is
not yet fully understood. Further questions relating to the exact relations
among the spaces N (n)

∗ [µ] still remain open. If the method of the proof of
Theorem 4.6 is applied to linear combinations of the Z±

n,m[µ] instead of just
to these generators individually, transcendental equations related to (18) ap-
pear. It is not yet known how the angles between the orthogonal complements
of the mode-0 subspace N n

0 [0] in N (n)
∗ [µ], or of their union N0[0] in N [µ],

vary with µ.
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