
On the continuous-time limit of the Barabási–Albert random graph

Angelica Pachon1, Federico Polito2 & Laura Sacerdote2

1Faculty of Computing, Engineering and Science, University of South Wales, UK
2Mathematics Department “G. Peano”, University of Torino, Italy

May 28, 2022

Abstract

We prove that, via an appropriate scaling, the degree of a fixed vertex in the Barabási–Albert
model appeared at a large enough time converges in distribution to a Yule process. Using this
relation we explain why the limit degree distribution of a vertex chosen uniformly at random (as the
number of vertices goes to infinity), coincides with the limit distribution of the number of species
in a genus selected uniformly at random in a Yule model (as time goes to infinity). To prove this
result we do not assume that the number of vertices increases exponentially over time (linear rates).
On the contrary, we retain their natural growth with a constant rate superimposing to the overall
graph structure a suitable set of processes that we call the planted model and introducing an ad-hoc
sampling procedure.
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1 Introduction
One of the most popular models for network growth is the preferential attachment model proposed
by Barabási and Albert [2] to describe the web graph growth. In this model a newly created vertex
is connected to one of those already present in the graph with a probability proportional to their
degrees. An important characteristic related to a non-degenerate preferential attachment growth
mechanism is the presence of a power-law distribution for the asymptotic degree of a vertex selected
uniformly at random. This property is actually observed on World Wide Web data [2, 14, 21].
Furthermore, power-law distributions also occur frequently in other real-world phenomena and many
of them are strictly related to the preferential attachment paradigm [7, 9, 10, 20, 27]. This fact
determines an increasing interest on the Barabási–Albert model (BA model in the following) and for
random graphs growing with preferential attachment rules in general. Indeed, there is an already
extensive literature analyzing this class of random graphs. See for recent references Chapter 8 in
[32] and the papers cited therein; we also recall [12, 22, 24]. The typical techniques considered, also
implemented in the latter papers, are mainly of combinatorial type and based on the analysis of the
expectation of specific functions of the degree or in-degree, together with concentration inequalities
[5, 8, 11]. Other methods involve continuum and discrete approaches to study large but finite
growing graphs [23] and an embedding of the random graph processes into a continuous setting
involving a sequence of pure birth continuous Markov chains (see [1, 30, 3]). The technique of
embedding a discrete sequence of random variables in continuous time processes is known for almost
fifty years. When it is used on random graph processes, asymptotic results about properties of the
vertices are obtained through an efficient use of branching process methods (see e.g. [30, 3]). Despite
its generality, the application of this technique is not straightforward when the considered graph
corresponds to the Barabási–Albert model whose growth allows the simultaneous birth of m ≥ 1 new
links. To deal with this problem it would be necessary either to develop suitable “ad-hoc” coupling
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techniques or merge vertices. For this last procedure see [3] for preferential attachment networks.
In continuous time there are other well-known probabilistic models which are clearly related to
preferential attachment random graphs. Among them the Yule model for macroevolution [33]. The
relationship linking the Yule model with some discrete-time preferential attachment models is not
straightforward [28] but can be exploited to effectively study discrete-time preferential attachment
random graphs. In [28] we showed how a specific discrete-time model with preferential attachment,
the Simon model [31], is related (in a sense of weak convergence) to a set of Yule models.

The aim of this paper is to analyze specific aspects of the limiting behaviour of the BA model.
To pursue this goal we follow and improve the methodology of [28] and relate the BA and the
Yule models. Specifically, we couple the degree growth process of a vertex to a set of Markov
processes, and we introduce the planted tree, an auxiliary branching structure superimposed to the
random graph. Then, by means of this, we establish that the degree of a vertex chosen uniformly at
random converges in distribution to the size of a uniformly chosen genus in a m-Yule model (a Yule
model characterized by an infinite sequence of independent Yule processes, each starting with m
individuals). We underline that we do not describe the dynamics of the degree of fixed vertices and
the dynamics of the growth of the number of vertices with a given degree at the same time. Instead,
we create a separate mechanism to describe the dynamics of the growth of the number of vertices
with a given degree that does not need the Markov property of the degree processes.

We underline how this approach may prove to be useful in other cases as well, for example
when the embedding method does not apply. Embedding techniques are problematic for more
general preferential attachment models which are non-Markov, i.e., in which the emergence of future
connections to existing vertices does not depend solely on the present state of their degree (for
instance the connections could be affected by time delays of the random intervals at which the
degree of a vertex changes, see [4] and the references therein). Other cases in which the approach of
[28] and this paper might be applied are models with more general preferential attachment functions,
such as models involving individual fitness [6] and/or aging [16], but also models in which hybrid
rules are considered such as the uniform/preferential attachment [29].

The paper is organized as follows. The BA, the Yule and the m-Yule models are described in
Section 2. In Section 3, the main results are presented (the related proofs are contained Section 5)
together with a heuristic motivation of their validity. Summarizing the main results briefly, Theorem
3.1 shows that when infinitely many vertices have already appeared in the BA model, the degree
distribution of a vertex appearing subsequently coincides with the distribution of the number of
individuals in a Yule process starting with m initial individuals. Note that this result is consistent
with the known related result in the case of preferential attachment trees, that is when m = 1 (see
for example [30]). Theorem 3.2 proves the convergence to the same limit distribution of the degree
of a vertex chosen uniformly at random in the BA model (when the number of vertices diverges) and
of the size of a genus chosen uniformly at random in an m-Yule model when time goes to infinity.
We also prove that in the BA model the proportion of vertices with a given degree k converges
in probability (as the number of vertices diverges) to the probability that the degree of a vertex
chosen uniformly at random is equal to k. The exact form of the limit distribution of Theorem 3.2
is then given in Proposition 3.1. Furthermore, the above results can be extended to preferential
attachment random graphs for which Lemma 5.1 holds. This is mentioned in Remarks 3.4 and 3.5.
In Section 4, a method for the sampling procedure of a random vertex in a general random graph
model is proposed together with the notion of planted model. This method is a key tool to prove
our main results. More specifically, this procedure is used to prove the relation between a randomly
selected vertex in the BA model and a genus chosen uniformly at random from one of the m-Yule
models which in turn is chosen uniformly at random from the set of all m-Yule models present in
the planted model. Finally, as recalled above, Section 5 contains the proofs of the above-mentioned
results and the necessary auxiliary lemmas.
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2 Preliminaries
2.1 The Barabási-Albert model
In [2], the preferential attachment paradigm was proposed for the first time to model the growth of
the World Wide Web. To do so the authors introduced a random graph model in which the vertices
were added to the graph one at a time and joined to a fixed number of existing vertices, selected
with probability proportional to their degree. In such a model the vertices represented the web
pages and the edges their links. In [2] the model is described as follows:

Starting with a small number (m0) of vertices, at every time step add a new vertex with
m (≤ m0) edges that link the new vertex to m different vertices already present in the
system. To incorporate preferential attachment, assume that the probability that a new
vertex will be connected to a vertex i depends on the connectivity ki of that vertex, so
it would be equal to ki/

∑
j kj. Thus, after t steps the model leads to a random network

with t+m0 vertices and mt edges.

The model was then defined in rigorous mathematical terms by Bollobás et al. [5]. However, in
this paper we follow a large part of the literature in referring to the above model as the Barabási–
Albert model even though it should be more correctly named after the authors of [5]. Here we recall
their definition for the growth of the random graph process (Gtm)t≥1.
Definition 2.1. For each m ≥ 1 and for every n ∈ N, the process (Gtm)t≥1 is such that,

1. at time t = n(m+ 1) + 1 a new vertex vn+1 is added;
2. for i = 2, . . . ,m+ 1, at each time t = n(m+ 1) + i an edge from vn+1 to v is added with v

chosen with the following probabilities:

P(vn+1 −→ v) =


d(v, t− 1)

2(mn+ i− 1)− 1 , v 6= vn+1,

d(v, t− 1) + 1
2(mn+ i− 1)− 1 , v = vn+1.

(2.1)

In (2.1) d(v, t) denotes the degree of the vertex v in Gtm.
We explicitly underline that (Gtm)t≥1 starts at time t = 1 with a single vertex, v1, without loops.

However, since at time t = 2 the only existing vertex is v1, then a loop is produced.

2.2 The Yule model
In this section we recall a classical continuous-time stochastic process which will be proven in the
following to be strictly related to the BA random graph described in the preceding section. To avoid
misunderstandings, we denote here by T ∈ R+ the continuous-time variable, while t ∈ N∗ = {1, 2, · · ·}
indicates the discrete time.

The model we are concerned with was introduced in 1925 by Yule [33] to describe the macroevo-
lution of a population characterized by the presence of different genera and species belonging to
them. In order to describe it we first recall the well-known definition of a Yule process, i.e. a linear
pure birth process in continuous time. A Yule model will then be defined in terms of a collection of
independent Yule processes of possibly different birth intensities.
Definition 2.2. A Yule process {N(T )}T≥0 is a counting process in continuous time with state
space N∗, having initial condition N(0) = g, g ≥ 1, almost surely and infinitesimal transition
probabilities

P(N(T + h) = k + ` | N(T ) = k) =


kλh+ o(h), ` = 1,
o(h), ` > 1,
1− kλh+ o(h), ` = 0,

(2.2)

where λ > 0 is the birth intensity and h > 0.
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This process describes the growth of the size of a population in which, during any short time
interval of length h each member has probability λh+ o(h), independently one another, to create a
new individual. Note that the probability of simultaneous births is o(h).

Yule [33] proposes to use independent copies of this process to model the growth of the number
of species belonging to each separate genus. In turn, the evolution of the appearing genera is
modelled by a further Yule process characterized by a possibly different birth intensity, say β, and
independent of the former. The stochastic process determined by the combination of these two
types of Yule processes is now known as a Yule model:

Definition 2.3. A Yule model describes the growth of the number of genera and species according
to the following rules:

1. genera (each comprising a single species) appear as a Yule process {Nβ(T )}T≥0 of parameter
β with one genus at time T = 0 almost surely;

2. each time a new genus appears, a copy of a Yule process of parameter λ with a single initial
progenitor starts. Those copies are independent one another and of the process of appearance
of genera. Each copy models the evolution of species belonging to the same genus.

In this paper we also consider an m-Yule model (denoted by {Y mλ,β(T )}T≥0), that is a process
similar to a classical Yule model but in which the birth processes describing the evolution of the
species belonging to each genus start from m ∈ N∗ initial species almost surely. To underline the
initial condition we will add a superscript m to the Yule process counting the number of species for
each genus: {Nm

λ (T )}T≥0. We explicitly remark that the letter m, used for the initial value of the
m-Yule model was already used to indicate the number of edges from a vertex in the BA model.
This choice is not a coincidence, in the next sections we will in fact show that, as soon as we create
a correspondance between the two models, the initial value Nm

λ (0), is determined by the parameter
m of the BA model. Finally, we would like to point out that the 1-Yule model coincides with the
original Yule model of [33].

3 Main results
In order to better introduce our main results, let us first describe a heuristic approach explaining
the relation between the discrete time process for the degree growth of a fixed vertex and a Yule
process. In the BA model, m directed edges sequentially connect each new vertex to the others with
probabilities proportional to the degrees of the existing vertices. Thus, at the time at which there
are n vertices, that is at time t = n(m + 1), we have mn directed edges, and by the preferential
attachment rule we have approximately

P[d(v, (n+ 1)(m+ 1)) = k + 1 | d(v, n(m+ 1)) = k] ≈ km

2mn = k

2n, (3.1)

where d(v, t) is the degree of v in the BA model. The approximation done in (3.1) consists in
connecting all the m edges simultaneously instead of sequentially, that is, we consider m chances
of increasing the degree of v from k to k + 1. Furthermore, we neglect the increase of the number
of vertices during the random time interval between the instants at which the degree of v changes
from k to k + 1. By formula (3.1) the distribution of this random time interval is geometric with
parameter k/(2n). In this approximations, when n→∞ we obtain a convergence to an exponential
random variable of parameter kλ, with λ = 1/2. Moreover, neglecting also the possibility of loops,
the initial degree of vi, i ≥ n, turns out to be equal to m. These two observations suggest for
large values of n to approximate the distribution of the degree of a vertex in the BA model by
the distribution of the number of individuals in a Yule process with parameter λ = 1/2 and initial
condition Nλ(0) = m. In Theorem 3.1, below, we make rigorous the above heuristics by proving
that the process describing the degree of a fixed vertex in the BA model converges in distribution
to the number of individuals in a Yule process with initial size m. Further, much interest is towards
the study of the asymptotic degree of a vertex chosen uniformly at random. In Theorem 3.2 we
show that the BA model is related to a sequence of suitably scaled m-Yule models. Exploiting this
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relation we prove that the asymptotic degree distribution of a vertex chosen uniformly at random in
the BA model coincides with the asymptotic distribution of the size of a genus chosen uniformly at
random in the m-Yule model.

Theorem 3.1. Let z(i, w) : N∗×R+ → N, w ∈ R+ be a function such that c(w) := limi→∞ z(i, w)/i
exists finite, with c(w) : R+ → R+ increasing in w. Let b ≥ 1 and w1 < w2 < · · · < wb be positive
real numbers. We have that

lim
i→∞

P [d (vi, (i+ z(i, w1))(m+ 1)) = k1, . . . , d (vi, (i+ z(i, wb))(m+ 1)) = kb] (3.2)

= P[Nm
1/2(log(1 + c(w1))) = k1, . . . , N

m
1/2(log(1 + c(wb))) = kb]

=
b∏
`=1

(
k` − 1

k` − k`−1

)
e
−
k`−1

2 log( 1+c(w`)
1+c(w`−1) )(1− e−

1
2 log( 1+c(w`)

1+c(w`−1) ))k`−k`−1
.

Here w0 = 0, k0 = m, and m ≤ k1 ≤ . . . ≤ kb ∈ N∗.

Remark 3.1. Notice that, for ` = 1, . . . , b, the required time change i 7→ i + z(i, w`) behaves
asymptotically as the linear function i 7→ i+ ic(w`). Moreover, the logarithm of its slope, 1 + c(w`),
is the time at which the Yule process is evaluated. Regarding the existence of the function z(i, w`),
possible choices can be z(i, w`) = biw`c or z(i, w`) = b(i− 1)w`c.

Remark 3.2. Theorem 3.1 states that the joint distribution of the degrees of vi at times z(i, w1)(m+
1), . . . , z(i, wb)(m + 1) after its first appearance in (Gtm)t≥1, converges, as i → ∞, to the joint
distribution of the number of individuals of a Yule process with m initial individuals and parameter
λ = 1/2, evaluated at the times log(1 + c(w1)), . . . , log(1 + c(wb)).

Theorem 3.2. Consider an m-Yule model {Y m1/2,1(T )}T≥0, and let Nm
T be the size of a genus

chosen uniformly at random at time T in {Y m1/2,1(T )}T≥0. Consider the random graph process
(Gtm)t≥1 defining the BA model with Nk,t vertices with degree k. Let d(Vt) be the degree of a vertex
chosen uniformly at random at time t in (Gtm). Then, for t = n(m+ 1) we have

pk := lim
n→∞

P(d(Vt) = k) = lim
T→∞

P(Nm
T = k), k ≥ m, (3.3)

and for C > m
√

8,

P
(

max
k

∣∣∣Nk,t
n
− P(d(Vt) = k)

∣∣∣ ≥ C√ (m+ 1) log(n(m+ 1))
n

)
= o(1). (3.4)

Furthermore, as n→∞, Nk,t/n→ pk in probability.

Using the previous theorem and directly exploiting the properties of the m-Yule model we are
able to recover the well-known result for the asymptotic degree distribution of the BA random
graph.

Proposition 3.1. Consider an m-Yule model {Y m1/2,1(T )}T≥0 and the size Nm
T of a genus chosen

uniformly at random at time T from it as in Theorem 3.2. Then,

pk = m(m+ 1)B(k, 3), k ≥ m, (3.5)

where B(a, b) is the Beta function.

Remark 3.3. Notice that the distribution (3.5) coincides with the degree distribution of the BA
model [5].

Remark 3.4. In Section 5 we prove the technical Lemma 5.1 on the behaviour of the degree process
for a fixed vertex. Theorems 3.1, 3.2 and Proposition 3.1 can also be proved for any random graph
process for which such Lemma 5.1 holds. Notice that if necessary, Lemma 5.1 can be extended to
the case in which the constant b2 can be taken equal to zero.

5



Remark 3.5. An alternative example in which Lemma 5.1 still holds is the “independent” model:
for each newly added vertex its m edges are connected to old vertices independently one another.
Formally, in Definition 2.1 replace (2.1) by

P(vn+1 −→ v) =


d(v, n(m+ 1))
2(mn+ 1)− 1 , v 6= vn+1,

d(v, n(m+ 1)) + 1
2(mn+ 1)− 1 , v = vn+1.

(3.6)

In Section 5, which is devoted to the proofs, Remark 5.1 explains why Lemma 5.1 holds for the
independent model.

4 Sampling a random vertex
Before going through the proofs of Theorem 3.1 and Theorem 3.2, we introduce here the general
notion of planted model and a fundamental procedure we will make use in the next section to prove
the relationship between two random quantities in the BA model and in the m-Yule model. In
particular, we will put in relation the degree of a vertex chosen uniformly at random in the BA
model and the number of species of a genus chosen uniformly at random from one of the m-Yule
models, also chosen uniformly at random from the set of all m-Yule models in the planted model.

For a greater generality we consider the case in which the number of edges added each time a
vertex appears, form a sequence {Mj}j≥1 of random variables taking values in N∗ almost surely.
This result can be easily specialized to the case of the BA model, that is Mj = m a.s. for every j.
An example is the random graph related to Simon model (see [28]): it can be related to a Yule
model where the above random variables are independent and geometrically distributed.

In order to describe the sampling procedure, we introduce first a model that we call the planted
model for the random graph (Gt)t≥1. The idea underlying the planted model is to superimpose a
tree structure on the graph which is independent of the degree processes.

We start by noting that, at each time of the form Ti =
∑i
r=1(Mr + 1), the graph GTi has exactly

i vertices, i ∈ N∗. We refer to them as the planted vertices. Let us now consider the value i to be
fixed; to obtain the tree structure at the following times Tn+1, n ≥ i, we attribute to vn+1 the role
of child of a vertex chosen uniformly at random from the set of the existing vertices {v1, v2, . . . , vn}.
Iterating this procedure we obtain chains of successive offsprings of each of the planted vertices
{v1, v2, . . . , vi}. Further, we call a vertex v that appeared after vj , j = 1, . . . , i, a descendant of vj if
both v and vj belong to the same ancestral line. We order the descendant of vj by renaming v as vj,`,
if v is the `-th descendant of vj and denote vj as vj,1, that is, vj is in turn, its first descendant. In
this way we construct i birth processes in discrete time, {b(vj ,Tn)}n≥i, j = 1, . . . , i. Here b(vj ,Tn),
j = 1, . . . , i, n ≥ i, is the total number of descendants of vj at time Tn. Table 1 shows an example
of the construction of the planted model. Note that we have:
• b(vj ,Ti) = 1, j = 1, . . . , i;
• P[b(vj ,Tn+1) = k + 1 | b(vj ,Tn) = k] = k/n, k ≥ 1, n ≥ i, j = 1, . . . , i.
The second equality holds because at time Tn+1, n ≥ i, each existing vertex in the set

{v1, v2, . . . , vn} may give birth to a new one with probability 1/n.
Note that, for a fixed i ≥ 1, the planted model is defined for n ≥ i. Thus for example, given a

value of i there is no process {b(vj ,Tn)}n≥i with j > i, because j has to be an element of {1, . . . , i}.
The dynamic of the planted model then proceeds for n ≥ i. Finally, note that the i discrete-time
birth processes are exchangeable.

4.0.1 Sampling from the planted model
Consider the following procedure. Given a realization of {b(vj ,Tn)}n≥i, j = 1, . . . , i,

1. choose one of the i discrete-time birth processes with probability proportional to the number
of its vertices;

6



n b(v1,Tn) b(v2,Tn) . . . b(vi,Tn)

i v1 = v1,1 1 v2 = v2,1 1 vi = vi,1 1
i+ 1 1 vi+1 = v2,2 2 1
i+ 2 1 2 . . . vi+2 = vi,2 2
i+ 3 vi+3 = v1,2 2 2 2
i+ 4 2 vi+4 = v2,3 3 2
. . . . . . . . . . . . . . . . . . . . . . . .

Table 1: (First line): The construction starts with i discrete-time birth processes at time Ti, each one with
one individual. (Second line): At time Ti+1 a new vertex vi+1 appears. The vertex vi+1 is assigned as a child
to one of the existing vertices {v1, v2, . . . , vi} with probability 1/i. In this table the appearing vertex vi+1
becomes a child of v2 and consequently it is renamed as v2,2, that is the second individual in the birth process
relative to v2. (Next lines): At times Tn+1, n ≥ i, the vertex vn+1 appears and it is assigned to one of the
existing vertices with probability 1/n. Observe that in this example b(v2,Ti+4) = 3. Given this information,
P[b(v2,Ti+5) = 4] = 3/(i+ 4).

2. choose a vertex uniformly at random among those belonging to the realization of the selected
birth process.

Our focus is on the selected vertex vj,`, j = 1, . . . , i, ` = 1, . . . , b(vj ,Tn) and on the selected birth
process. Let W be the index of the birth process chosen. Plainly, W takes values in {1, . . . , i}
almost surely.

Proposition 4.1. It holds,
1. P(W = j) = 1/i, j ∈ {1, . . . , i},
2. P({vj,` is selected}) = 1/n.

Proof. It immediately follows from the exchangeability of the i discrete-time birth processes.

Remark 4.1. The suggested algorithm is a way to select a vertex uniformly at random from GTn ,
n ≥ i, and refers to a given realization of the i birth processes {b(vj ,Tn)}n≥i, j = 1, . . . , i. Averaging
on all possible realizations of the i birth processes we actually select a vertex uniformly at random: we
first choose one of the i birth processes belonging to the planted model with uniform probability, then
we select a vertex among those belonging to the chosen birth process again with uniform probability.

5 Proofs
We first give a brief outline of the proofs of the main results described in Section 3. Regarding
Theorem 3.1, we start by showing that the transition probabilities of the degree process of a
fixed vertex with sufficiently large index in the BA model are bounded above and below (Lemma
5.1). With these bounds we construct two Markov processes coupled with the original degree
process (Lemma 5.2 and Corollary 5.1). In Lemma 5.3, we exploit this coupling to conclude that
the finite-dimensional distribution of the degree of a vertex in the BA model converges to the
finite-dimensional distribution of the number of individuals in a Yule process with initial population
size equal to m. Notice that this result is consistent with the analysis of preferential attachment
trees performed through continuous-time branching processes (see e.g. [30, 3]).

To prove Theorem 3.2 we proceed according to the following steps. First, by making use of the
planted model and the sample procedure from the planted model described in Section 4, we make
explicit the relationship between the deterministic appearance of new vertices in the BA model and
the random appearance of new births in a continuous-time Yule process. The key point is that, by
Theorem 4.1, the choice of a vertex with uniform distribution in the BA model is equivalent to
choosing a birth process from the planted model with uniform distribution and then choosing a
vertex among those belonging to the selected birth process, again with uniform distribution. Then,
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in Lemma 5.4 we prove that the number of individuals in each birth process of the planted model,
say {bji}i≥1, where bji = {b(vj , n(m+ 1))}n≥i, 1 ≤ j ≤ i, converges in distribution as i→∞, to the
size of a Yule process with parameter β = 1 and with one initial progenitor.

5.1 Auxiliary lemmas and the proof of Theorem 3.1
The proof of Theorem 3.1 can be summarized in two main steps. Within the structure of the BA
model we first identify two different counting processes in discrete time, one for the appearing of
in-links of each specific vertex and the other related to the creation of new vertices. Then, we prove
that these two processes converge to the two birth processes which are at the basis of the definition
of an m-Yule model.

Before starting the construction of the process for the appearance of in-links of a fixed vertex we
introduce the following definition.
Definition 5.1. We say that a vertex vi appears “complete” when it has appeared in the BA random
graph process together with all the directed edges originated from it.

Note that the degree of a complete vertex is at least m, and at time t = n(m+ 1), the BA model
has for the first time exactly n complete vertices.

Next we determine how the degree of a fixed vertex vi, for a sufficiently large i, changes during
the time until a new complete vertex appears.
Lemma 5.1. Let (Gtm)t≥1 be the random graph process defining the BA model and let d(vi, t) denote
the degree of an existing vertex vi at time t, i ≤ n. Given that d(vi, n(m+ 1)) = k, n > k ≥ m, for
sufficiently large i there exist constants b1 > b2 > 0 and c1, c2 > 0 such that

k

2(n+ 1) + c2

(
k

n

)2
< P[d(vi, (n+ 1)(m+ 1)) = k + 1|d(vi, n(m+ 1)) = k]

<
k

2n + c1

(
k

n

)2
, (5.1)

and, for m > 1,

b2

(
k

n

)2
≤ P[k + 2 ≤ d(vi, (n+ 1)(m+ 1)) ≤ k +m|d(vi, n(m+ 1)) = k] ≤ b1

(
k

n

)2
. (5.2)

Furthermore,

P[d(vn+1, (n+ 1)(m+ 1)) = m] =
m+1∏
`=2

(
1− 1

2(mn+ `− 1)− 1

)
= 1−Θ(1/n), (5.3)

where we make use of the asymptotic Big Theta notation [17].

Proof. Our aim is to determine the change of degree of a fixed vertex during the time interval
(n(m + 1), (n + 1)(m + 1)], i.e., during the time interval necessary to switch from n to (n + 1)
complete vertices.

Let us fix t = n(m+ 1) and follow the graph growth during the considered interval. At time
n(m+ 1) + 1 a new vertex vn+1 (without edges) appears. Then from time n(m+ 1) + 2 to time
(n + 1)(m + 1) a directed edge from vn+1 to an existing vertex vi, i ≤ n + 1, is added. The
vertex vi is chosen with probability given by (2.1). Let Y nvi be the total number of incoming
edges to vi, i ≤ n, added to vi during the time interval (n(m + 1), (n + 1)(m + 1)]. Note that
P[d(vi, (n+ 1)(m+ 1)) = k+ ` | d(vi, n(m+ 1)) = k] = P[Y nvi = ` | d(vi, n(m+ 1)) = k], ` = 0, . . . ,m.
To estimate the latter conditional probabilities for a sufficiently large i we distinguish the cases
Y nvi = 0, Y nvi = 1, and Y nvi ≥ 2.

In the first case, considering the probabilities (2.1) we have

P[Y nvi = 0 | d(vi, n(m+ 1)) = k] =
m+1∏
`=2

(
1− k

2(mn+ `− 1)− 1

)
. (5.4)
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Since
∏m+1
`=2

(
1− k

2(mn+`−1)−1

)
≤
(

1− k
2(mn+m)−1

)m
, we get the upper bound for (5.4),(

1− k

2(mn+m)− 1

)m
= 1− mk

2m(n+ 1)− 1 +O

(
k2

n2

)
. (5.5)

Furthermore, since
∏m+1
`=2

(
1− k

2(mn+`−1)−1

)
≥
(

1− k
2(mn+1)−1

)m
, we get the lower bound(

1− k

2(mn+ 1)− 1

)m
= 1− mk

2mn+ 1 +O

(
k2

n2

)
. (5.6)

Now we move first to the third case. We observe that if m = 1 then P(Y nvi ≥ 2 | d(vi, n(m+ 1)) =
k) = 0. Thus, we calculate such probability for m > 1 only. Furthermore, since we do not need a
closed form of P(Y nvi ≥ 2 | d(vi, n(m+ 1)) = k), we limit ourselves to estimate its order of magnitude.
For each y = 2, . . . ,m, the event {Y nvi = y} means that vi gets y new incoming edges joining vi at
the times t = n(m + 1) + `, ` = 2, . . . ,m + 1. Given the value of the degree of vi at time t − 1,
considering (2.1), a new edge is attached to vi at time t = n(m+ 1) + ` with probability

pn,`vi := d(vi, n(m+ 1) + `− 1)
2(mn+ `− 1)− 1 . (5.7)

Let Ω be the space of all sequences of m dichotomous independent experiments, performed at times
t = n(m+ 1) + `, ` = 2, . . . ,m+ 1, with exactly y successes. Assume that pn,`vi , ` = 2, . . . ,m+ 1,
are the probabilities of success. Note that the cardinality of Ω is equal to that of the set of all
y-combinations from a given set of m distinct elements, i.e. |Ω|=

(
m
y

)
. Take the set {2, . . . ,m+ 1}

and consider its y-combinations, say Cy = {e1, . . . , e(my )} (e.g. ordered by their smallest element).
For each e ∈ Cy, let e(j) denote the position of the j-th success in e, j = 1, . . . , y. We have,

P(Y nvi = y|d(vi, n(m+ 1)) = k) =
∑
e∈Cy

y∏
j=1

pn,e(j)
vi

∏
`∈{2,...,m+1},`/∈e(1),...,e(y)

(1− pn,`vi )

=
(
m

y

)
Θ
(
ky

ny

)[
1−Θ

(
k

n

)]m−y
=
(
m

y

)
Θ
(
ky

ny

)m−y∑
`=0

(
m− y
`

)
(−1)`Θ

(
k`

n`

)
= Θ

(
ky

ny

)
, 2 ≤ y ≤ m. (5.8)

Hence,

P(Y nvi ≥ 2 | d(vi, n(m+ 1)) = k) = Θ
(
k2

n2

)
. (5.9)

Finally, by (5.6) and (5.9) we obtain that P(Y nvi = 1 | d(vi, n(m+ 1)) = k) is at most

1−
[
1− mk

2mn+ 1 +O

(
k2

n2

)]
−Θ

(
k2

n2

)
<

k

2n +O

(
k2

n2

)
, (5.10)

and by (5.5) and (5.9), P(Y nvi = 1 | d(vi, n(m+ 1)) = k) is at least

1−
[
1− mk

2m(n+ 1)− 1 +O

(
k2

n2

)]
−Θ

(
k2

n2

)
>

k

2(n+ 1) +O

(
k2

n2

)
. (5.11)

Therefore, for sufficiently large i we have that, for each k ≥ m, there exist b1 > b2 > 0 such that
(5.9) gives (5.2), and c1, c2 > 0 such that (5.10) and (5.11) give (5.1).
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In order to determine (5.3), let Xn
vn+1

be the number of incoming edges from vn+1 to itself
during the time interval (n(m+ 1), (n+ 1)(m+ 1)], that is the number of loops. Note that during
this period Xn

vn+1
can be at most equal to m, since at time n(m+ 1) + 1 no edge is added. Thus,

by (2.1), the probability of no loops for vn+1 during such time interval is given by

P(Xn
vn+1

= 0) =
m+1∏
i=2

(
1− 1

2(mn+ i− 1)− 1

)
= [1−Θ(1/n)]m = 1−Θ(1/n). (5.12)

If the number of loops for vn+1 is zero, this is equivalent to say that when vn+1 appears complete,
its degree is equal to m. Thus, by (5.12) we can write P[d(vn+1, (n+ 1)(m+ 1)) = m] = 1−Θ(1/n),
so that the proof is complete.

Remark 5.1. For the independent model described in Remark 3.5, note that the left-hand side of
formula (5.4) is equal to (5.6), formula (5.7) is equal to pn,2vi for all ` = 2, . . . ,m+ 1, P(Y nvi = 1 |
d(vi, n(m+ 1)) = k) is equal to (5.10) and

P[d(vn+1, (n+ 1)(m+ 1)) = m] =
(

1− 1
2(mn+ 1)− 1

)m
= 1−Θ(1/n). (5.13)

Now we consider the degree process {d(vi, n(m + 1))}n≥i, indexed by n, where d(vi, n(m +
1)) satisfies (5.1), (5.2) and (5.3). Let E = {m,m + 1, . . . } be the state space of the process
{d(vi, n(m+ 1))}n≥i and let M(E) be the class of probability measures on the space E endowed
with the σ-algebra F = P(E), the power set of E. The degree process {d(vi, n(m + 1))}n≥i is
defined on the product space (E∞,F∞) = (×∞n=iE,⊗∞n=iF). The process from time i to time
i + h, {d(vi, n(m + 1))}i+hn=i takes values in the product space (Eh,Fh) = (×i+hn=iE,⊗

i+h
n=iF). The

elements of the spaces (Eh,Fh) and (E∞,F∞) will be denoted by xi+h = (xi, xi+1, . . . , xi+h) and
x∞ = (xi, xi+1, . . . ), respectively. We say that xi+h ≤ yi+h if and only if xi+j ≤ yi+j for all
0 ≤ j ≤ h.

To prove Theorem 3.1, we proceed through two steps:

1. we define two Markov processes, on the same probability space as {d(vi, n(m + 1))}n≥i,
determined by suitable Markov kernels and we show that those two processes bound from
above and below the degree process of the BA model (Lemma 5.2 and Corollary 5.1);

2. we prove that those two processes, each of them evaluated at a convenient time, converge in
distribution as i→∞ (and therefore as n→∞) to a unique process evaluated at a unique
time (Lemma 5.3).

With respect to the first step, for any m > 1, we define pn+1 to be a positive function on En×E,
measurable with respect to Fn ⊗F , and given by

pn+1(xn, x) = pn+1(xn, xn + `) =


xn

2(n+1) + c2
(
xn
n

)2
, ` = 1,

b2
(
xn
n

)2
, ` = 2,

1− xn
2(n+1) − (b2 + c2)

(
xn
n

)2
, ` = 0,

0, otherwise.

(5.14)

Note that this function depends only on xn, the last element of xn, and n. Then we define the
following Markov transition kernel Kp

n+1 from En ×F into [0, 1]:

Kp
n+1(xn, B) =

∑
x∈B

pn+1(xn, x), xn ∈ En, B ∈ F . (5.15)

The mapping B → Kp
n+1(xn, B) is a measure Pn+1 ∈M(E) for every xn ∈ En. Similarly we define

the function

rn+1(zn, z) = rn+1(zn, zn + `) =


zn
2n + c1

(
zn
n

)2
, ` = 1,

b1
(
zn
n

)2
, ` = m,

1− zn
2n − (b1 + c1)

(
zn
n

)2
, ` = 0,

0, otherwise,

(5.16)
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that we associate to the Markov transition kernel Kr
n+1, where B → Kr

n+1(zn, B), is a measure
Rn+1 ∈M(E) for every zn ∈ En. Note that if xi ≤ zi, b2 < b1 and letting c1 > c2, then by (5.14)
and (5.16), xn ≤ zn, n > i. Take yn ∈ E such that, xn ≤ yn ≤ zn, n ≥ i. Then, from (5.14) and
(5.16), there exists a function qn+1(yn, y) = qn+1(yn, yn + `), such that:

pn+1(xn, xn + 1) < qn+1(yn, yn + 1) < rn+1(zn, zn + 1), (5.17)

pn+1(xn, xn + 2) <
m∑
`=2

qn+1(yn, yn + `) < rn+1(zn, zn +m),

qn+1(yn, yn) = 1−
m∑
`=1

qn+1(yn, yn + `),

whenever xn ≤ yn ≤ zn, n ≥ i. We associate this function to a further Markov transition kernel
Kq
n+1 in the same way as Kp

n+1 and Kr
n+1, where B → Kq

n+1(yn, B) is a measure Qn+1 ∈ M(E)
for every yn ∈ En.

In order to prove that there exist two processes bounding respectively from above and below the
degree process of the BA model we first need the following result:

Lemma 5.2. Let Xi, Yi, and Zi, be random variables on E with distributions Pi, Qi and Ri,
respectively, and satisfying P(Xi = Yi = Zi) = 1. Then there exist random variables Xn+1, Yn+1,
and Zn+1, n ≥ i, taking values in E, such that the conditional distributions of Xn+1 given Xn = xn,
Yn+1 given Yn = yn, and Zn+1 given Zn = zn, are exactly pn+1(xn, ·), qn+1(yn, ·), and rn+1(zn, ·),
respectively. Moreover,

P(Xn ≤ Yn ≤ Zn, n = i, i+ 1, . . . ) = 1. (5.18)

Proof. We seek to prove a stochastic ordering for Kp
n+1(xn, ·), Kq

n+1(yn, ·) and Kr
n+1(zn, ·). For

this aim, take the set B ∈ F such that B := {b, b+ 1, . . . }, where b is any integer b ≥ m. Then,

Kp
n+1(xn, B) =

∑
j≥b

pn+1(xn, j) =


1, b ≤ xn,
xn

2(n+1) + (c2 + b2)
(
xn
n

)2
, b = xn + 1,

b2
(
xn
n

)2
, b = xn + 2,

0, b ≥ xn + 3,

(5.19)

Kq
n+1(yn, B) =

∑
j≥b

qn+1(yn, j) =



1, b ≤ yn,∑m
i=` qn+1(yn, yn + `), b = yn + `,

` = 1, . . . ,m− 1,
qn+1(yn, yn +m), b = yn +m,

0, b ≥ yn +m+ 1,

(5.20)

and

Kr
n+1(zn, B) =

∑
j≥b

rn+1(zn, j) =


1, b ≤ zn,
zn
2n + (c1 + b1)

(
zn
n

)2
, b = zn + 1,

b1
(
zn
n

)2
, b = zn + 2,

0, b ≥ zn + 3.

(5.21)

Since Xi = Yi = Zi a.s., b2 < b1, and c2 < c1, then by (5.14), (5.16) and (5.17), we obtain that
xn ≤ yn ≤ zn, n ≥ i. Thus comparing the three kernels (5.19), (5.20) and (5.21), we have

Kp
n+1(xn, B) ≤ Kq

n+1(yn, B) ≤ Kr
n+1(zn, B).

Equivalently, Kp
n+1(xn, ·) is stochastically smaller than Kq

n+1(yn, ·), and the latter is in turn
stochastically smaller than Kr

n+1(zn, ·), whenever xn ≤ yn ≤ zn. To show that (5.18) holds we
finally apply Theorem 2 in [19].
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Figure 1: The first line represents the time axis of the BA model. The second line shows the number of
complete vertices in the BA model. The third and fourth lines correspond to the partitions of (0, T x2 ] and (0, T xi ],
respectively.

Let us consider the process {d(vi, n(m+1))}n≥i and its probability space (Ω,A,P). On the same
probability space let us define two Markov processes {d1(vi, n(m+1))}n≥i and {d2(vi, n(m+1))}n≥i,
with their initial states such that P(d1(vi, i(m+ 1)) = d(vi, i(m+ 1)) = d2(vi, i(m+ 1))) = 1, and
transition probabilities given by (5.16) and (5.14), respectively.

Corollary 5.1. For i sufficiently large, there exist versions {d̃1(vi, n(m + 1))}n≥i, {d̃2(vi, n(m +
1))}n≥i, {d̃(vi, n(m + 1))}n≥i of the processes {d1(vi, n(m + 1))}n≥i, {d2(vi, n(m + 1))}n≥i and
{d(vi, n(m+ 1))}n≥i, respectively, such that

P[d̃2(vi, n(m+ 1)) ≤ d̃(vi, n(m+ 1)) ≤ d̃1(vi, n(m+ 1)), n = i, i+ 1, . . . ] = 1. (5.22)

Proof. It immediately follows by applying Lemma 5.2 to {d1(vi, n(m+1))}n≥i, {d2(vi, n(m+1))}n≥i,
and {d(vi, n(m+ 1))}n≥i.

Lemma 5.3. Let {d̃(vi, n(m + 1))}n≥i, be the process of Corollary 5.1, w ∈ R+ and let z(i, w) :
N∗×R+ → N∗ be a function such that c(w) := limi→∞ z(i, w)/i exists finite, where c(w) : R+ → R+

is an increasing function in w. Let b ≥ 1 and w1 < w2 < · · · < wb be positive real numbers. Then,
the random vector (

d̃(vi, (i+ z(i, w1))(m+ 1)), . . . , d̃(vi(i+ z(i, wb))(m+ 1))
)

converges in distribution to (Nm
1/2(log(1+c(w1))), . . . , Nm

1/2(log(1+c(wb)))) as i→∞. Here Nm
1/2(T ),

T ≥ 0, is the number of individuals at time T in a Yule process with parameter 1/2 and m initial
individuals.

Proof. In order to prove the convergence, we make use of the processes {d̃1(vi, n(m+ 1))}n≥i and
{d̃2(vi, n(m+ 1))}n≥i and of their behaviour as i goes to infinity. We focus now only on the process
{d̃1(vi, n(m+ 1))}n≥i as the case of {d̃2(vi, n(m+ 1))}n≥i can be treated analogously.

Let i be fixed and let T 0
i = 0. For every x ≥ 1 we introduce the times T xi =

∑i+x−1
n=i 1/n. In

this way we obtain a partition of (0, T xi ],

(0, T xi ] = (0, T 1
i ] ∪ (T 1

i , T
2
i ] ∪ . . . ∪ (T x−1

i , T xi ]. (5.23)

The intervals of this partition have lengths hn = 1/n, n = i, i+ 1, . . . , i+ x− 1 (see Figure 1).
We introduce the point process {N1,i(T )}T≥0, jumping at times T xi , x ≥ 1, and determined by

the following rules:
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1. At time T = 0 the process starts with an initial random number of individuals supported on
{m,m+ 1, . . . , 2m} and with distribution only asymptotically degenerate on m, i.e.

P(N1,i(0) 6= m) = 1−
m+1∏
`=2

(
1− 1

2(mi+ `− 1)

)
= O(1/i). (5.24)

2. The transition probabilities of this point process coincide with (5.16) when n = i+ x− 1 and
zn = k, for every fixed k ∈ N∗, k ≥ m, and x ≥ 1. We write these probabilities here using
asymptotic notation. For each x ≥ 1, let hi,x = T xi − T

x−1
i = 1/(i+ x− 1), then we can write

P[N1,i(T xi ) = k + ` | N1,i(T x−1
i ) = k] =


k
2hi,x + o(hi,x), if ` = 1,
o(hi,x), if ` = m,

1− k
2hi,x + o(hi,x), if ` = 0,

0, otherwise.

(5.25)

Observe that the sample paths of {N1,i(T )}T≥0 and those of {d̃1(vi, n(m+1))}n≥i are non-decreasing
right-continuous and integer-valued step functions. However, the lengths of the steps in {d̃1(vi, n(m+
1))}n≥i always equal unity, while those of {N1,i(T )}T≥0 admit the rational values hi,x.

Using the well-known relation
∑M
n=1 1/n = log(M) + γ + O(1/M), where γ is the Euler–

Mascheroni constant, we have that

T xi = log
(

1 + x

(i− 1)

)
+O(1/i),

so, if z(i, w`) ≥ 1 for ` = 1, . . . , b,

T
z(i,w`)
i = log

(
1 + z(i, w`)

(i− 1)

)
+O(1/i)→ log(1 + c(w`)), (5.26)

as i→∞.
Analogously, we introduce the times T yi =

∑i+y−1
n=i 1/(n + 1), y ≥ 1, and T 0

i = 0. We divide
(0, T yi ] into y disjoint subintervals of lengths h∗i,y = 1/(i+ y),

(0, T yi ] = (0, T 1
i ] ∪ (T 1

i , T 2
i ] ∪ . . . ∪ (T y−1

i , T yi ].

We introduce the point process {N2,i(T )}T≥0, jumping at times T yi , y ≥ 1, and determined by the
following properties:

1. This process starts with an initial random number of individuals supported on {m,m +
1, . . . , 2m} and such that

P(N2,i(0) 6= m) = 1−
m+1∏
`=2

(
1− 1

2(mi+ `− 1)

)
= O(1/i). (5.27)

2. Its transition probabilities coincide with (5.14) when n = i+ y − 1 and xn = k, for every fixed
k ∈ N∗, k ≥ m, and y ≥ 1. Hence, for each y ≥ 1, h∗i,y = T yi − T

y−1
i = 1/(i+ y), we write

P[N2,i(T yi ) = k + ` | N2,i(T y−1
i ) = k] =


k
2h
∗
i,y + o(h∗i,y), ` = 1,

o(h∗i,y), ` = 2,
1− k

2h
∗
i,y + o(h∗i,y), ` = 0,

0, otherwise.

(5.28)

Then we get that T yi = log(1 + y/i) +O(1/i). Therefore, if z(i, w`) ≥ 1 for ` = 1, . . . , b,

T z(i,w`)
i = log

(
1 + z(i, w`)

i

)
+O(1/i)→ log(1 + c(w`)), (5.29)
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as i→∞.
Note that N1,i(T xi ) and N2,i(T yi ) have the same law and initial condition as d̃1(vi, (i+x)(m+1))

and d̃2(vi, (i+ y)(m+ 1)), x, y ≥ 0, respectively. In addition, by (5.24) and (5.27), these processes
start with m initial individuals, as i→∞.

We emphasize that by (5.26) and (5.29) both T
z(i,w`)
i and T z(i,w`)

i converge to the same time
T` = ln(1 + c(w`)), ` = 1, . . . , b. Moreover, as i increases, (5.25) and (5.28) are closer and closer
to the infinitesimal transition probabilities of a Yule process (see (2.2)) with intensity 1/2. Since
the transition probabilities and the initial condition determine uniquely the finite-dimensional
distributions of a Markov process, then as i→∞, the finite-dimensional distribution of N1,i(T xi )
and N2,i(T yi ), converge to the finite-dimensional distribution of a Yule process with intensity 1/2.
In other words, (

N1,i(T z(i,w1)
i ), . . . ,N1,i(T z(i,wb)

i )
)
→
(
Nm

1/2(T1), . . . , Nm
1/2(Tb)

)
, (5.30)

in distribution, as i→∞, where Nm
1/2(T ) is the number of individuals of a Yule process at time T

with intensity 1/2 and initial population size equal to m. Analogously,(
N2,i(T z(i,w1)

i ), . . . ,N2,i(T z(i,wb)
i )

)
→
(
Nm

1/2(T1), . . . , Nm
1/2(Tb)

)
, (5.31)

in distribution. To rigorously prove (5.30) and (5.31) it is enough to focus on (5.30) only, as
(5.31) follows in a similar way. Recall that {N1,i(T )}T≥0 starts with an initial random integer
number of individuals R ∈ {m,m+ 1, . . . , 2m}. Let {N1,i

m (T )}T≥0 denote the process {N1,i(T )}T≥0
conditioned to N1,i(0) = m. Set Li,m = 0, while for k > m define

Li,k = min{T ≥ Li,k−1:N1,i
m (T ) > k − 1}. (5.32)

Since the jumps of the process {N1,i
m (T )} are of size either 1 or m, then observe the following: if at

time Li,k the jump is of size 1, i.e., if N1,i
m (Li,k)−N1,i

m (Li,k−1) = 1, then N1,i
m (Li,k) = k. On the

other hand, if N1,i
m (Li,k)−N1,i

m (Li,k−1) = m, then it follows that N1,i
m (Li,k) = k +m− 1, and we

have
Li,k = Li,k+1 = · · · = Li,k+m−1. (5.33)

Let now Ui,j = Li,j+1 − Li,j , j ≥ m. If (5.33) holds,

Ui,k = Ui,k+1 = · · · = Ui,k+m−1 = 0. (5.34)

Note that we can write

Li,k =
k−1∑
j=m

Ui,j , k > m. (5.35)

In addition if we consider only the times Li,k, such that Li,k < Li,k+1, k ≥ m, then we can
reconstruct N1,i

m (T ) for every T ≥ 0:

N1,i
m (T ) = k, if Li,k ≤ T < Li,k+1. (5.36)

Now we are going to write the finite-dimensional distributions of the original process {N1,i(T )}T≥0.
Consider the times 0 = T0 < T1 < T2 < · · · < Tb, where T` = ln(1 + c(w`), ` = 1, . . . , b, and let
c ∈ Rb. Taking into account the initial position of the process, we see that the random vector(
N1,i(T1), . . . ,N1,i(Tb)

)
has, over Rb, the joint distribution

P[
(
N1,i(T1), . . . ,N1,i(Tb)

)
= c] = P[

(
N1,i
m (T1), . . . ,N1,i

m (Tb)
)

= c] + ε1, (5.37)

where ε1 ≤ O(1/i) by (5.24). Let m = k0 ≤ k1 ≤ . . . ≤ kb ∈ N∗. By the Markov property we obtain

P[N1,i
m (T`) = k`, ` = 1, . . . , b] =

b∏
`=1

P[N1,i
m (T`) = k` | N1,i

m (T`−1) = k`−1], (5.38)
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where k0 = m. Observe that by (5.35) and (5.36), we can write the conditional probabilities
P[N1,i

m (T`) = k` | N1,i
m (T`−1) = k`−1] as follows. For ` = 1 we have

P[N1,i
m (T1) = k1 | N1,i

m (0) = m] = P[Li,k1 ≤ T1]− P[Li,k1+1 ≤ T1] (5.39)

= P

k1−1∑
j=m

Ui,j ≤ T1

− P

 k1∑
j=m

Ui,j ≤ T1

 ,
while for ` = 2, . . . , b,

P[N1,i
m (T`) = k` | N1,i

m (T`−1) = k`−1] (5.40)
= P[Li,k` ≤ T` < Li,k`+1 | Li,k`−1 ≤ T`−1 < Li,k`−1+1]
= P[Li,k` − Li,k`−1+1 ≤ T` − T`−1 < Li,k`+1 − Li,k`−1 | N

1,i
m (T`−1) = k`−1]

= P[Li,k` − Li,k`−1+1 ≤ T` − T`−1 | N1,i
m (T`−1) = k`−1]

− P[Li,k`+1 − Li,k`−1 ≤ T` − T`−1 | N1,i
m (T`−1) = k`−1]

= P

 k`−1∑
j=k`−1+1

Ui,j ≤ T` − T`−1 | N1,i
m (T`−1) = k`−1


− P

 k∑̀
j=k`−1

Ui,j ≤ T` − T`−1 | N1,i
m (T`−1) = k`−1

 .
Observe also that if N1,i

m (T`−1) = k`−1, ` ≥ 1, then the random variable Ui,k`−1 is strictly positive,
while for j > k`−1, Ui,j ≥ 0. We focus on the limit distribution only of Li,k1 =

∑k1−1
j=m Ui,j as

the others follow similarly. Recall that the process {N1,i(T )}T≥0 jumps at times of the form
T xi =

∑i+x−1
n=1 1/n, x ≥ 1, and let z(i, w1) be such that limi→∞ T

z(i,w1)
i = T1 = ln(1 + c(w1)), and

hence |T1−T z(i,w1)
i |< 1/(i+ z(i, w1)), for i large enough. Consider the interval (0, T1]× . . .× (0, T1]

and the partition (0, T z(i,w1)
i ]× . . .× (0, T z(i,w1)

i ] in Rk1−m. Then

P

k1−1∑
j=m

Ui,j ≤ T1

 ∼ P[(Ui,m, . . . , Ui,k1−1) ∈ B
T
z(i,w1)
i

] (5.41)

=
∑

B
T
z(i,w1)
i

p(um, . . . , uk1−1),

where B
T
z(i,w1)
i

= {(um, . . . , uk1−1) : um,+ . . . ,+uk1−1 ≤ T z(i,w1)
i } and p(um, . . . , uk1−1) is the joint

probability function of (Um, . . . , Ui,k1−1). By conditioning, the right side of (5.41) can be written as

z(i,w1)∑
um=1

z(i,w1)∑
um+1=um

. . .

z(i,w1)∑
uk1−2=uk1−3

P [Ui,m = Tumi ]P
[
Ui,m+1 = T

um+1
i − Tumi | Ui,m = Tumi

]
(5.42)

× . . .× P

Ui,k1−2 = T
uk1−2
i − Tuk1−3

i |
k1−3∑
j=m

Ui,j = T k1−3
i


× P

Ui,k1−1 ≤ T z(i,w1)
i − Tuk1−2

i |
k1−2∑
j=m

Ui,j = T k1−2
i

 .
By (5.25) and since the event {Ui,m = Tumi } means that at times T 1

i , . . . , T
um−1
i , the process N1,i

m (T )
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did not jump, but at time Tumi it did,

P[Ui,m = Tumi ] =
[
um−1∏
`=1

(
1− m

2 hi,` + o(hi,`)
)](m

2 hi,um + o(hi,um)
)

(5.43)

= m

2 hi,um exp
(
um−1∑
`=1

ln
(

1− m

2 hi,` + o(hi,`)
))

+ o(hi,um).

Using Taylor expansion for ln(1− y) and ey, and rearranging the terms we obtain that

P[Ui,m = Tumi ] = m

2 hi,um exp
(
−m2 T

um
i

)
+ Err1, (5.44)

where Err1 ≤ O(h2
i,um

). Next, we calculate P[Ui,j = T
uj
i −T

uj−1
i | Li,j = T

uj−1
i ], j = m+1, . . . , k1−1.

Let Ji,j be the size of the jump at time Li,j . By (5.33) and (5.34), if Ji,j > 1, then Ui,j = 0,
otherwise, if Ji,j = 1 then Ui,j > 0. In addition, by (5.25) and (5.32) we have that for every x ≥ 1,

P[Ji,j > 1 | Li,j = T xi ] = P[N1,i
m (T xi ) = j +m− 1 | N1,i

m (T x−1
i ) = j − 1] = o(hi,x). (5.45)

Thus, conditioning on Ji,j and using (5.45) we get

P[Ui,j = T
uj
i − T

uj−1
i | Li,j = T

uj−1
i ] (5.46)

= P[Ui,j = T
uj
i − T

uj−1
i | Li,j = T

uj−1
i , Ji,j = 1] + Err2,

where Err2 ≤ o(hi,uj ). Observe that the conditional event {Ui,j = T
uj
i −T

uj−1
i | Li,j = T

uj−1
i , Ji,j =

1} means that at times Tuj−1+1
i , T

uj−1+2
i , . . . , T

uj−1
i , the process N1,i

m (T ) did not jump, but at time
T
uj
i it did. Therefore, by (5.25) and applying similar arguments to those used to obtain (5.43) and

(5.44) we have

P[Ui,j = T
uj
i − T

uj−1
i | Li,j = T

uj−1
i , Ji,j = 1] (5.47)

=

 uj−1∏
`=uj−1+1

(
1− j

2hi,` + o(hi,`)
)( j

2hi,uj + o(hi,uj )
)

= j

2hi,uj exp
[
− j2(Tuji − T

uj−1
i )

]
+ Err3,

where Err3 ≤ O(h2
i,uj

). Thus, by (5.46) and (5.47)

P[Ui,j = T
uj
i − T

uj−1
i | Li,j = T

uj−1
i ] = j

2hi,uj exp
[
− j2(Tuji − T

uj−1
i )

]
+ Err4, (5.48)

where Err4 ≤ O(h2
i,uj

). Following these same steps we can also find that

P[Ui,j > T
uj
i − T

uj−1
i | Li,j = T

uj−1
i ] = exp

[
− j2(Tuji − T

uj−1
i )

]
+ Err5, (5.49)

where Err5 ≤ O(h2
i,uj

). Now, by substituting (5.44), (5.48) and (5.49) in (5.42) we arrive at

P

k1−1∑
j=m

Ui,j ≤ T1

 ∼ z(i,w1)∑
um=1

z(i,w1)∑
um+1=1

. . .

z(i,w1)∑
uk1−2=1

hi,umhi,um+1

m

2 exp
[
−m2 T

um
i

]
(5.50)

× (m+ 1)
2 exp

[
−(m+ 1)

2 (Tum+1
i − Tumi )

]
1{Tum+1

i
≥Tum

i
}

× . . .× hi,uk1−2

(k1 − 2)
2 exp

[
−(k1 − 2)

2 (Tuk1−2
i − Tuk1−3

i )
]

×
[
1− exp

(
−(k1 − 1)

2 (T zi,w1
i − Tuk1−2)

i

)]
1{T

zi,w1
i

≥T
uk1−2
i

} + Err6,
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where Err6 ≤ O
(
hi,z(i,w1)

∏k1−2
`=m hi,`

)
. Taking the limit as i → ∞, the right-hand side of (5.50)

becomes ∫ T1

0

∫ T1

ym+1

. . .

∫ T1

yk1−2

m

2
(m+ 1)

2 exp
(
−m2 ym

)
exp

(
−m+ 1

2 (ym+1 − ym)
)

(5.51)

× . . .× (k1 − 2)
2 exp

(
−k1 − 2

2 (yk1−2 − yk1−3)
)

×
[
1− exp

(
−k1 − 1

2 (T1 − yk1−2)
)]

dyk1−2 . . . dym,

as the right side of (5.50) is the Riemann sum for the above definite integral. We observe that this
integral also corresponds to P[Ym+· · ·+Yk1−1 ≤ T1], where the random variables Yj , j = 1, . . . , k1−1,
are independent and exponentially distributed with parameter j/2, respectively. Therefore,

lim
i→∞

P

k1−1∑
j=m

Ui,j ≤ T1

 = P[Ym + · · ·+ Yk1−1 ≤ T1], (5.52)

and in an analogous way we also obtain

lim
i→∞

P

 k1∑
j=m

Ui,j ≤ T1

 = P[Ym + · · ·+ Yk1 ≤ T1]. (5.53)

From this and (5.39) we get

lim
i→∞

P[N1,i(T1) = k1 | N1,i(0) = m] = lim
i→∞

P[N1,i
m (T1) = k1] (5.54)

= P

k1−1∑
j=m

Yj ≤ T1

− P

 k1∑
j=m

Yj ≤ T1


= P

k1−1∑
j=m

Yj ≤ T1 <

k1∑
j=m

Yj

 .
In a Yule process with parameter λ and starting with m initial individuals, the interarrival or
sojourn times are independent random variables exponentially distributed with parameter λj, j ≥ m,
respectively. Thus, (5.54) corresponds to

P[Nm
1/2(T1) = k1 | Nm

1/2(0) = m], (5.55)

where Nm
1/2(T ) is the number of individuals in a Yule process with parameter 1/2 and starting

with m initial individuals. Following analogous steps from (5.39) to (5.55) we also find that for
` = 2, . . . , b,

lim
i→∞

P[N1,i(T`) = k` | N1,i(T`−1) = k`−1] = P[Nm
1/2(T`) = k` | Nm

1/2(T`−1) = k`−1]. (5.56)

Consequently, from (5.37), (5.38), (5.54), (5.55), (5.56), and since the Yule process is Markov, we
conclude that

lim
n→∞

P[N1,i
m (T`) = k`, ` = 1, . . . , b] =

b∏
`=1

P[Nm
1/2(T`) = k` | Nm

1/2(T`−1) = k`−1] (5.57)

= P[Nm
1/2(T`) = k`, ` = 1, . . . , b].

Now, once proven the convergence to the Yule process of intensity 1/2, we immediately have that(
d̃1(vi, (i+ z(i, w`))(m+ 1)), ` = 1, . . . , b

)
→
(
Nm

1/2(T`), ` = 1, . . . , b
)
, (5.58)
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and (
d̃2(vi, (i+ z(i, w`))(m+ 1)), ` = 1, . . . , b

)
→
(
Nm

1/2(T`), ` = 1, . . . , b
)
, (5.59)

in distribution, as i→∞.
Observe that at time n(m+1), n ≥ i, by (5.22) the random variables d̃1(vi, n(m+1)), d̃(vi, n(m+

1)) and d̃2(vi, n(m+ 1)) are almost surely ordered, that is

P[d̃2(vi, (i+ z(i, w`))(m+ 1)) ≤ d̃(vi, (i+ z(i, w`))(m+ 1)) (5.60)
≤ d̃1(vi, (i+ z(i, w`))(m+ 1)), ` = 1, . . . , b] = 1.

This implies that for k ≥ m,

P(d̃1(vi, (i+ z(i, w`))(m+ 1)) ≤ k`, ` = 1, . . . , b) (5.61)
≤ P(d̃(vi, (i+ z(i, w`))(m+ 1)) ≤ k`, ` = 1, . . . , b)
≤ P(d̃2(vi, (i+ z(i, w`))(m+ 1)) ≤ k`, ` = 1, . . . , b).

Thus, from (5.58), (5.59) and (5.61) we obtain the convergence in distribution of the random vector(
d̃(vi, (i+ z(i, w`))(m+ 1)), ` = 1, . . . , b

)
→
(
Nm

1/2, (T`), ` = 1 . . . , b
)
, (5.62)

as i→∞.

Proof of Theorem 3.1. Using Lemma 5.1, Corollary 5.1 and Lemma 5.3 we obtain the conver-
gence to the b-finite-dimensional distributions of a Yule process, for all b ≥ 1. To obtain the exact
formula we make use of the independence of the increments and of the distribution of the number
of individuals in a Yule process with k` initial progenitors, ` = 0, . . . , b. Thus,

P[Nm
1/2(log(1 + c(w1))) = k1, . . . , N

m
1/2(log(1 + c(wb))) = kb]

=
b∏
`=1

P
(
N
k`−1
1/2

(
log
(

1 + c(w`)
1 + c(w`−1)

))
= k`

)
.

Finally, we use equation (3.5) in [15], Section XVII.3.

5.2 A lemma and the proof of Theorem 3.2
In this section we make use of the planted model described in Section 4. Notice that the BA random
graph model corresponds to the case in which all the random variables Mj , j ≥ 1, are concentrated
on m, so that Tn = n(m+ 1) almost surely.

Formally, let (Gtm)t≥1 be the random graph process defining the BA model as in subsection 2.1.
For each 1 ≤ j ≤ i consider the birth processes in discrete time {b(vj , n(m + 1))}n≥i, with state
space given by N∗ and determined by the transition probabilities

P[b(vj , (n+ 1)(m+ 1) = k + ` | b(vj , n(m+ 1)) = k] =
{
k
n , ` = 1,
0, otherwise,

(5.63)

and initial condition b(vj , i(m+ 1)) = 1 almost surely. Recall that i is taken large so that Lemma
5.1 holds.

Lemma 5.4. Let z(i, w) : N∗ × R+ → N be a function such that c(w) := limi→∞ z(i, w)/i exists
finite, where c(w) : R+ → R+ is an increasing function in w, and let w1 < · · · < wb, b ∈ N∗, be
positive real numbers. For every 1 ≤ j ≤ i we have

(b(vj , (i+ z(i, w`))(m+ 1)), ` = 1, . . . , b)→ (N1
1 (log(1 + c(w`))), ` = 1, . . . , b) (5.64)

in distribution as i → ∞, where N1
1 (T ) is the number of individuals of a Yule process at time T ,

with one initial individual and parameter 1.
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Proof. For each 1 ≤ j ≤ i, we prove convergence in distribution in the same way as we did in the
proof of Lemma 5.3 for N1,i(T xi ), but now with N1(0) = 1, i.e. the process starts with only one
individual, and transition probabilities given by (5.63). Therefore, as i→∞, the probabilities (5.63)
become the infinitesimal transition probabilities of a Yule process with intensity 1, starting with
one individual. Since the process is Markov, the transition probabilities and the initial condition
determine uniquely the finite-dimensional distributions.

Remark 5.2. To prove the first part of Theorem 3.2 we will make use of the result of Theorem 3.1.
The idea is to take n := n(i, w), a function of i and a positive real number w, such that, i/n(i, w)→
1/(1 + c(w)) as i→∞, with c(w) as in Theorem 3.1. Thus, limw→∞ limi→∞ i/n(i, w) = 0.

Proof of Theorem 3.2. We start proving (3.3). Consider the BA model at time t = n(m+ 1),
n ≥ i, and the planted model of Section 4. Recall that in the planted model we have i discrete-time
birth processes {b(vj , n(m + 1))}n≥i, j = 1, . . . , i, which are exchangeable. By Theorem 4.1, the
event of choosing a vertex uniformly at random in the BA model is equivalent to that of selecting
first uniformly at random one of the i processes {b(vj , n(m+1))}n≥i, j = 1, . . . , i, and then choosing
uniformly at random a vertex belonging to it. Therefore, the degree of Vt can be studied through
the analysis of the degree of a random vertex chosen with uniform probability between the vertices
in any of the i processes {b(vj , n(m+ 1))}n≥i, j = 1, . . . , i. Let V jt be a vertex chosen uniformly at
random from the vertices in the j-th process {b(vj , n(m+ 1))}n≥i, and let ε(i, n) be a function we
will use to measure the error. Using the notation of Section 4.0.1, where W denotes the index of
the birth process chosen and Yj is a random variable taking values in {1, 2, . . . , n− i+ 1} denoting
the number of vertices in b(vj , n(m+ 1)), we have

P[d(Vt) = k] =
i∑

j=1
P[d(V jt ) = k, V jt 6= vj ,W = j] (5.65)

+
i∑

j=1
P[d(V jt ) = k, V jt = vj ,W = j]

= P[d(V 1
t ) = k | V 1

t 6= v1,W = 1]
i∑

j=1
P[V jt 6= vj ,W = j]

+
i∑

j=1
P[d(V jt ) = k | V jt = vj ,W = j]P[V jt = vj ,W = j]

= P[d(V 1
t ) = k | V 1

t 6= v1,W = 1] + ε(i, n).

The last two equalities are obtained by considering the following two observations. First, permuting
the labels of the i birth processes {b(vj , n(m+ 1))}n≥i, j = 1, . . . , i, will not change the distribution
of the process of the new vertices and their degrees, thus for j = 1, . . . , i, we can write P[d(V jt ) =
k | V jt 6= vj ,W = j] = P[d(V 1

t ) = k | V 1
t 6= v1,W = 1]. Second,

i∑
j=1

P[d(V jt ) = k | V jt = vj ,W = j]P[V jt = vj ,W = j] ≤
i∑

j=1
P[V jt = vj ,W = j] (5.66)

=
i∑

j=1

n−i+1∑
`=1

1
`

`

n
P(Yj = `) = i

n
,

that is, ε(i, n) = O(i/n).
Note that the degree of the planted vertices behaves differently as they have appeared in the

very early history of the graph evolution. Also, in the limit, the number of planted vertices becomes
negligible compared to the total size of the graph.

Now take n(i, w) = i+z(i, w), where z(i, w) is defined as in Lemma 5.3, Lemma 5.4 and Theorem
3.1. As i→∞,

19



• by Lemma 5.4 we have that b(v1, n(m + 1)), converges in distribution to the size of a Yule
process evaluated at time T = log(1 + c(w)), with intensity 1 and starting with one initial
individual;

• by Lemma 5.3, the degree of each vertex belonging to {b(v1, n(m + 1))}, given that it is
different to v1, converges in distribution to the size of a Yule process with intensity 1/2 and m
initial individuals.

The above Yule processes describe an m-Yule model {Y m1/2,1(T )}T≥0 of parameters λ = 1/2 and
β = 1. For i→∞, the degree of V 1

t given that V 1
t 6= v1, converges in distribution to the size of a

genus chosen uniformly at random in the m-Yule model at time T = log(1 + c(w)), given in turn
that such a random genus is different to the first genus appeared, g1. Thus, if Nm

T denotes the size
of a genus GT chosen uniformly at random at time T in {Y m1/2,1(T )},

lim
i→∞

P(d(V 1
t ) = k | V 1

t 6= v1,W = 1) = P(Nm
log(1+c(w)) = k | Glog(1+c(w)) 6= g1). (5.67)

By (5.65) and (5.67),

lim
i→∞

P(d(Vt) = k) = P(Nm
log(1+c(w)) = k | Glog(1+c(w)) 6= g1) + ε(w), (5.68)

where ε(w) = O (1/(1 + c(w))). Since c(w) is an increasing function and a Yule process is supercrit-
ical, then

lim
w→∞

P(Nm
log(1+c(w)) = k) = lim

w→∞
P(Nm

log(1+c(w)) = k | Glog(1+c(w)) 6= g1). (5.69)

Therefore, by (5.68) and (5.69),

lim
w→∞

lim
i→∞

P(d(Vt) = k) = lim
w→∞

P(Nm
log(1+c(w)) = k). (5.70)

To prove (3.4) note that

E
( 1
n

n∑
i=1

I{d(vi,t)=k}

)
= ENk,t

n
= 1
n

n∑
i=1

P(d(vi, t) = k) = P(d(Vt) = k).

Let Ft be the natural filtration generated by the process {Nk,t}t≥1 up to time t, and define
Zs = E(Nk,t | Fs). Observe that Zs is a martingale as E[E(Nk,t | Fs) | Fr] = E(Nk,t | Fr), for
r ≤ s ≤ t. Considering that at each time interval (s− 1, s] a new vertex vs appears and m directed
edges from it are attached to existing vertices, then vs is attached to at most m different vertices, say
v1, . . . , vm. This does not affect neither the degree of the other existing vertices w 6= v1, . . . , vm, nor
the attachment probabilities related to them. Thus, it follows that |Zs−Zs−1|≤ 2m. Since Zt = Nk,t
and Z0 = ENk,t, then by taking x = C

√
t log t, with C > m

√
8 and applying the Azuma–Hoeffding

inequality (see Lemma 4.1.3 in [13]), we obtain

P
(∣∣∣Nk,t

n
− ENk,t

n

∣∣∣ > C

√
(m+ 1) log(n(m+ 1))

n

)
≤ o
( 1
n

)
. (5.71)

Now observe that Nk,t = 0 when k ≥ n(m+ 1), n ≥ 1. Therefore,

P
(

max
k

∣∣∣Nk,t
n
− ENk,t

n

∣∣∣ > C

√
(m+ 1) log(n(m+ 1))

n

)
(5.72)

= P
(

max
k<n(m+1)

∣∣∣Nk,t
n
− ENk,t

n

∣∣∣ > C

√
(m+ 1) log(n(m+ 1))

n

)
≤
n(m+1)−1∑

k=1
P
(

max
k<t

∣∣∣Nk,t
n
− ENk,t

n

∣∣∣ > C

√
(m+ 1) log(n(m+ 1))

n

)
.

Concluding, by (5.71) we get the desired result.
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5.3 Proof of Proposition 3.1
Proof. Let us consider an m-Yule model {Y m1/2,1(T )}T≥0. It is known that by conditioning on the
number of genera present at time T , the random times at which novel genera appear are distributed
as the order statistics of i.i.d. random variables distributed with distribution function given by (see
e.g. [25] or [26] and the references therein)

P(T ≤ τ) = eτ − 1
eT − 1 , 0 ≤ τ ≤ T. (5.73)

As above, let Nm
T denote the size of a genus chosen uniformly at random at time T . Then, for

every k ≥ m and recalling the distribution of a Yule process starting with m initial individuals,

P(Nm
T = k) =

∫ T

0
P(Nm

1/2(T ) = k | Nm
1/2(τ) = m)P(T ∈ dτ) (5.74)

=
∫ T

0

(
k − 1
m− 1

)
e−m

T−τ
2 (1− e

T−τ
2 )k−m eτ

eT − 1dτ

= 1
1− e−T

∫ T

0

(
k − 1
m− 1

)
e−ye−m

y
2 (1− e−

y
2 )k−mdy.

By letting z = 1− e−
y
2 , we can write (5.74) as

P(Nm
T = k) = 2

1− e−T

∫ 1−e−T
2

0

(
k − 1
m− 1

)
zk−m(1− z)m+1dz. (5.75)

Our interest is in the asymptotic behaviour when T →∞. In this case (5.75) reduces to

lim
T→∞

P(Nm
T = k) = 2

(
k − 1
m− 1

)
B(k −m+ 1,m+ 2) (5.76)

= m(m+ 1)B(k, 3),

where B(a, b) denotes the Beta function.
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