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Abstract

For a fixed p € N, sequences of polynomials {P,}, n € N, defined by a (p + 2)-
term recurrence relation are related to several topics in Approximation Theory. A
(p + 2)-banded matrix J determines the coefficients of the recurrence relation of any
of such sequences of polynomials. The connection between these polynomials and the
concept of orthogonality has been already established through a p-dimension vector
of functionals. This work goes further in this topic by analyzing the relation between
such vectors for the set of sequences {Pr(ﬂ )}, n € N, associated with the Darboux
transformations J), j = 1, ...,p, of a given (p + 2)-banded matrix .J.

1 Introduction

For a fixed p € N we consider a sequence of polynomials {P,}, n € N, defined by a
(p + 2)-term recurrence relation

P
Pn-i-l(z) + (anm - Z)Pn(z) + Zanm—jpn—j(z) =0, neN,
j=1 (1)
P,=---=P1=0, RK=1.

These polynomials are related with several topics such as Hermite-Padé approximants
and vector continued fractions ( [5,9]). In particular, this kind of polynomials plays an

essential role in the study of some integrable systems (see for instance [1H3]).
The relation between the concept of orthogonality and the sequences of polynomials

verifying a (p + 2)-term recurrence relation was established in [I3] in the following well-
known result.

Lemma 1 With the above notation, the following statements are equivalent.
(i) {Pn}, n € N, verify (@) with ap pn—p # 0 for all n € N.

(ii) There exists a vector of functionals v = (v1, ...,vp), where each v, € P',r =
1,...,p, is defined on the space of polynomials P verifying
Vr[ZkPn(Z)]:O, k=0,1,..., kp+r<n, néeN,

(2)
Uy [szkarr_l(z)] #0, k=0,1,...
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In the sequel, we call vector of p-orthogonality to any vector of functionals v =
(v1, ..., vp) verifying (2). In this case, we say that {P,} is a sequence of p-orthogonal
polynomials with respect to v.

For a sequence of polynomials {P,} defined in (IJ), the sequence of linear functionals
{L,},n=0,1,..., given by

Li[P]l=10;, 4,7=0,1,..., (3)

plays an relevant role in the study of the orthogonality. {£,} is called dual sequence , and it
is the unique sequence of functionals verifying (3]). It is easy to check that the p first terms
L.,r=0,1...,p—1, of the dual sequence verify the orthogonality conditions (2)). This
fact proves the existence of some vector of p-orthogonality associated with each arbitrary
sequence {P,} of polynomials. However, the uniqueness of a vector functional as in (2] is
not guaranteed. In fact, P. Maroni characterized in [I0] these vectors of p-orthogonality
as (v1, ...,Vp) such that

vi = A0Lo
va = XooLo+ ALy
vp = ApoLotApaLy A App1Lp

being A\; j € Cand X\;;—1 #0ford,j+1€{1,...,p}.
Associated with (), it is possible to define the (p + 2)-banded matrix J whose entries
are the coefficients of the recurrence relation,

a070 1
aio  ain 1

J=| %o 41 - a.p,p '1 , (5)
0 apy1n
0

where we assume a4, ; 70, j =0,1,...

The use of discrete Darboux transformations was proposed in [I1,12] with the focus
in the application to the Toda lattices. In [IHG] this study was extended to (p + 2)-
banded matrices as (Bl). In the present work we are concerned about finding relations
between the vectors of p-orthogonality associated with the Darboux transformations of
such matrices (B). Thereby this paper complements the analysis that has been done in [4]
for the Geronimus transformations. We include here the following summary, with the
more relevant concepts, for an independent reading.

Let C € C be such that the main determinants of the infinite matrix J — CI verify

det (CI, — J,) # 0 for each n € N (6)

Due to the well-known fact that P,(z) = det(zI, — J,), (@) is equivalent to C' € C is
not a zero of the sequence {P,}. (Here and in the sequel, given a semi-infinite matrix A,



we denote by A,, n € N, the finite matrix of order n formed with the first n rows and
columns of A.) In these conditions, there exist two lower and upper triangular matrices,
L and U respectively,

1
1171 1
L= lp71 lp72 PN 1 )
0 Ipt12
0
and
v 1
’Yp+2 1
U= ,
Y2p+3
such that
J—-—CI=LU (7)

is the unique factorization of J — C1 in these conditions (see [§] for details). In the sequel
we assume C' € C fixed.
In [6] the following factorization of L was given.

Lemma 2 [6, Theorem 1, pp. 118] In the above conditions, if l,1ii+1 # 0 for each
1=0,1,..., then there exist p bi-diagonal matrices

1
Y+l 1
L(]) = 7p+‘]+2 1 . bl j = 17 27 o .. 7p7 (8)
V2p+i+3

with Yk—1)ptj+x 7 0 for all k € N, verifying
L=LWr®...® (9)

Moreover, for each j € {1,2,...,p—1} it is possible to choose certain set of p— j elements
Vi+1s Vptj+2s - - s Vp—j)p OF LY such that the factorization (3) is unique for the fired set
of p(p — 1)/2 points

Y2, W3 Y(p=L)p>
Y3, Tp+4 0 V(p—2)ps

’Yp—la 72]77

Yp-



(@) and (@) provide the so called Darbouz factorization of J — C1I, defined as
J—CI=1WL® ...y, (11)

where L), L) L®) are bidiagonal matrices as in [®) given in Lemma [2] for certain
set (IQ) of p(p — 1)/2 fixed entries. Each circular permutation of a Darboux factorization
gives a new (p + 2)-banded matrix,

JU) = I+ LU0+ W@ . L0 s =12 p. (12)

Definition 1 The permutations JU) given in [@2) are called Darbouz transformation of

J-CI.

As a consequence of the Darboux transformations, for each j € {1,...,p} it is possible
to define a new sequence of polynomials {PT(LJ )} verifying a (p + 2) recurrence relation,

PIL ) + (@il = )PP ) + 3l Pi(2) =0, neN,
s=1 (13)
PY —...=pY =0, pY=1
Another way to write (I3]) is
(J(j)—zl) ) =0, (14)

where -
U(])(Z):(PO(])(Z),Pl(])(Z),...> , j=0,1,...,p.

Here and in the following, we extend the notation taking PT(LO) =P,,neNand JO = J.
Since Lemma [Tl in the above conditions there exists some vector of p-orthogonality

V(]): (V%])??VI(’])) ’ ]:177])7 (15)

such that the corresponding conditions of orthogonality like (2) are verified.

In this work we analyze some relations between the vectors of p-orthogonality v =
(v1, ..., vp) associated to the polynomials {P,} and the vectors of p-orthogonality (IHl),
j=1,...,p, for a Darboux factorization of J — CI under some conditions.

Definition 2 Here and in what follows, (z — C)v;, i = 1,...,p, is a linear functional
defined on the space P|z] of polynomials as

(z = C)uilg] = vil(z = C)q
for each q € P[z].

We recall that it is possible to have several vectors of p-orthogonality associated with
each sequence of polynomials verifying a (p + 2)-term recurrence relation. If (vq, ..., vp)



verifies (2]) then for (c¢1,...,¢,) € C also (civy, ..., cp1p) verifies ([2)). In a more general
procedure, the coefficients A; ; of (@) and the determinants

Aj+20  Aj+30  r r Ampo r Ajtm410
Njr2,+1 Ajasg+l o Amd o Njbml g+l
A = 0 Aj+3,5+2 2 2 :
' 0
0 0 e 0 )\m,m—l T )\j—}—m-‘rl,m—l

i=0,1,....p—1,m=1,2,...,p—j—1, play an important role in this paper. Our main
contribution is the following.

Theorem 1 Letv = (vy, ...,1,) be a vector of p-orthogonality for {P,}, n € N, as in (@)
such that

Then there exists a Darbouz factorization (II) of J—C1I such that, for each j =1,2,...,p,
) = (Vjt1, - Vp, (2 = Cr, .o, (2 = O)yy) (17)

18 a vector of p-orthogonality for the sequence of polynomials {Py(Lj)}, n € N, associated
with the Darbouz transformation JU) of J — CI given in (IZ) (where we understand

v = ((z = Oy, ..., (2 — C)p) in (I0)).

Definition 3 In the conditions of Theorem [l we say that the vectors of p-orthogonality
([I7) are the Darbouz transformations of v.

In Section 2] some auxiliary results are established. In particular, some connections

between the sequences {Pr(Lj )}, j=0,...,p, are given for each fixed Darboux factorization.
Finally, Theorem [l is proved in Section [Bl

2 Orthogonality and Darboux transformations

In this section we assume that (L)) is a fixed Darboux factorization of J—C1I corresponding
with a given set of entries (I0) of the matrices L), ... L®),

The following result establishes some relationships between the various sequences of
polynomials associated with the Darboux transformations of J — C1.

Theorem 2 We have the following relations between the sequences of polynomials {P,(Lj)}7 ]
0,1,...,p.

PY(LQI(Z) + Z 91(1]421,n—s+1p1£]—)s(z)
s=0

G+ () — _ >
Pn (Z) Z _ C ) \.7 07 17 * 7p 17 n — 07 (18)
Poii(z) — Lol p )
pw(z) = Fa(C) . >0, (19)

z—C



wheregijJ)an_sJrl €eCforj=0,1,....0—-1,n>0ands=0,...,p—1.
Proof.- In [6] was proved that
LU+ [ G+2) . L(i)v(i)(z) — v(j)(z), 0<j<i<p, (20)

where the product of the triangular matrix LUt LU+2) ... L) times the vector v (2) is
understanding in a formal sense.

Moreover, from this, (I2]) and (I4]),
LU L2 gy M. L0y () = (2 — O (2), j=0,1,...,p, (21)
where we understand
ULv?)(2) = (z — C)v® () (22)
when j = p. Replacing j by j + 1 in (21]),
LU +3) . @y ... L(j)L(j+1)v(j+1)(z) = (2 — C)U(jJrl)(z) . j=0,1,....p—1,
understanding LU+2 LU+3) ... (") = T when j = p—1. From this and @20) (for i = j+1),
LU peyr® . L0 (2) = (z = OVt (2), j=0,1,...,p—1, (23)

where L®) ... LO U0 (2) = (z — C)vM(2), this is, LY ... LU) = I when j = 0.
On the other hand, it is easy to check that, for each k € N, the row k of the infinite
matrix LU+2 ... L®yr® ... 0) ig
(970, o) s gihr 0,),

being g,(gj;IlH = 1 and the entries g,(gj;i, s=1,...,k, independent on z. Moreover, g,(fg =0

for s < k — p when k > p. In other words, LU*? ... L)L ... LU) is a (p + 1)-banded
Hessenberg matrix, where it is easy to see that g,(g ll_p 41 7 Osince v, # 0 (r € N) . Hence,
taking into account (23)),

(2= ORI () = gD PP () 4+ Y, PO (2)

k—p
which drives to (I8) when k = n + 1. Note that, in this case,
9bnmpra 0. (24)
For j =0 and ¢ = p, ([20) becomes

Lo® (z) = LW ... L0 () = O (2) |

Therefore
Uv0(2) = (z — C)oP)(2) (25)
(see (22))) and, comparing the (n 4 1)-row in both sides of (25]),
(z = C)PP(2) = M@pr1) 41 Pu(2) + Para(2) (26)
The right hand side of (28] is a polynomial with a root in z = C. Thus
P11(C)
Yr(p+1)+1 = —%- (27)
From (26]) and 27) we arrive to (I9). O



Remark 1 (18) and (I9) coincide in the classic case p = 1. Both relations extend [7,
(7.8), pp. 35], this is,

Poyi(z) — Bl p ()

PO () = Pr(C)

() S ,

where the sequence of Kernel polynomials {PT(Ll)} are defined in terms of {P,}. In this
sense {PT(LJ)}, j=1,...,p, are extensions of this classical sequence of Kernel polynomials.

The above remark justifies the following definition.

Definition 4 For each j = 1,...,p the polynomials {P,(Lj)} ,n € N, are called j-Kernel
polynomials.

For each sequence {Pv(zj)},j = 0,1,...,p, we denote by {.C } the corresponding dual
0)

sequence (taking ££L = L,). Equivalently to the behavior of the sequences of polynomials,
the terms of the dual sequences are related to each other.

Lemma 3 With the above notation, for each j =0,1...,p—1 andn =0,1,... we have

ﬁgﬂ) = ﬁ(j) + ’Yn(p+1)+j+2£££1 (28)

(z-O) Ly = V) + Z 0 e £ (29)
P,

(z—-C)L, = e ﬂﬁ(ﬁ) (30)

n—1 Pn(cf) n

Proof.- In [6], the relation

PY = PUTD iy 2PYTY, m=—1,0,1,..., (31)
was proved (here, Y_(p41)4j42 = 0). Then
£y |:Pr(rz-)i-1:| = £yt [Pf(njﬁ)] + Ym(p41)+42L0 T [Pr(njm]
, nEm,m+1
= 1 , n=m+1 (32)
Ym(p+1)+j+2 > =M.

Moreover,
<£Szj) +’Yn(p+1)+j+2‘cg-3-l) {Pr(rw)r ] i) |:P7§i-)i-1} + ’Yn(p+1)+j+2££z];)rl {Pr(rﬁrl]

also drives to (32). That is, both sides of (28)) coincide on the basis {P } m € N, of the
space P of polynomials. Therefore (28] is verified.
For m =0,1,..., taking into account (IS]),

(= — )L [P,gﬁl)] = £V [(z - C’)P(j“)]

= LW [Pr(r‘L]+1:| +ng+1m s+1£( ! [P(]) ]

0 , n#EFm+1lmm-—1,... m—p+1.
=3 b , n=m+1 (33)
grglj_|)_5+1’n+1 , n=m-—s, s=01,...,p—1.



On the other hand,

( ]—H T Z gn+s+1 n+1££L]-:_sl)> |:Pr(r{+1)} = ﬁnjj_ll) [P,(r{-i_l)] +I§ giﬁsﬂ,nﬂﬁ&ﬁ;) [Pf(r{-i-l)}
s=0

coincides with (B3] for each m € N. Therefore, (29) holds. We underline that this is true

even if n = 0 in (29]), understanding E(] ™ = 0in this case.
As in (28))-(29), we apply both sides Of ([B0) to a basis of polynomials. Then using (I9]),

(= O)La |[PP] = L0 [z - )P

Pm-i-l(C)
= L, |:Pm+1 P (C) Py, (34)
0 , nEm, m+1
Pm—l—l(C) 1 n=m+1
= n [Pm n | Pm] = ’
Ellnal="p oy = i)
Pu(C) 7 '
Further,
® _ Par1(O) o)) [pw] — 20 [pw)] _ For1(C) 1) [ po
(e - Tpste) () = et [m] - Soticshew [,
which produces exactly the same result as in (34). Then (B0) is proved. t

In the classic case p = 1, the functionals of orthogonality v and v(!), associated re-
spectively with {P,} and the Kernel polynomials {P,gl)}, are related by

v =(z-CO).

The next result extends this fact to the general case p € N. In fact, this lemma is
equivalently to Theorem [Ilin the case j = p

Lemma 4 Let v = (v1, va, ..., 1) be a vector of p-orthogonality for {P,}. Then
() = (z=C)i, (z=C)va, ..., (2 — C)rp)
is a vector of p-orthogonality for the p-Kernel polynomials {P,(Lp)}.

Proof.- Due to ([I9), for each r =1, 2, ..., p we have

_ k p(p) _ k ®» 1 _ Prp+it1(C) ,
((z—=C)v )[ Pmpﬂ} = v [z (z—C) Pmpﬂ Vr|: < mp+it+1 — Popia(C) Prp+i
k Prptit1(C) k
= v |2 Popi B oV 2" Popi|
|: P+ +1] mp—]—z C) |: P+ :|

where

{ur[szmpHH]o , k>0, kp+r<mp+i+1,
(35)

Vp [2*Popyi] =0, k>0, kp+r<mp+i.



Therefore, if kp + r < mp + i then (B5]) holds and

(= Cpw) [P

mpﬂ]_o, k>0, kp+r<mp+i.

Moreover, using (I8]),

(== Own) [P, ] = vr [#Pipr] - % [ Payira]

where v, [2%Pypi,] =0 (see BH)) and vy [2*Pypir_1] # 0 (see [@)). This is,

} _ Py (©)

. k p(p) k
((Z C) ) [ Pkp+r 1 Pkp—i—r—l(c)yr |:Z Pkp—l-r—l} #0.

This proves that (z — C)v, is the 7’ -th entry of a vector of p-orthogonality associated with
the sequence of polynomials {P } and, consequently, v (P) is one of such vectors. O

Remark 2 We underline that, in the case j = p, we have proved that the statement of
Theorem [1 is verified independently on the condition (IGl).

Lemma 5 For each j =0,1,...,p, let vV = <I/§j), Iéj) ...,V;,(,j)) be a wvector of p-
orthogonality for {P } Then, for j =0,1,...,p — 1 we have:

(a) DU = (1/9“), A VI(,j_ng), (z — C’)I/fj)) is a vector of p-orthogonality for {P,(ﬁ“)}.
(b) 79) = (1/9),14”1) cee ;l(,ﬁll)) is a vector of p-orthogonality for {P,gj)}.

Proof.- In the first place, because the first entries of the vector #U*1 coincide with the
corresponding to Ut to prove (a) it is enough to check

(z—CWm[fP”Hq — 0, kptp<n, (36)
(= — o [FPETY, ] # 0. (37)

Indeed, using (I8]) of Theorem 2]
(z - C)Vij) |:ZkPr(Lj+l)] = ( [ +1} + Zgn—i-ln s+1V1 [ZkPr(Lj—)s] )

where 1/( 2 [ kP,EJ_Bl] =0for kp+1<n+1and Vij) [sz,(Lj_)s] =0forkp+1<n-—s,s=
0,1,...,p—1.
Then,
(Z—C)I/ij) [ka,(LjH)] =0

for kp+1 <n—p+ 1 or, what is the same, (36]) holds.



For a similar reason,

p—1

(Z - C)Vij) |: kplgui;) 1] = Vij) |: Pkp-i—p] + Zogkp-i-p kp— s+p (]) |: Plgp) s+p— 1]

— 40 L) [k pl)
o gkp+pkp+l ! [ ;}750’

which, taking into account (24]), gives (87). Thus (a) is verified.
In the second place, take r € {1,...,p— 1}, k € {0,1,...,} and n € N. Using (31,

v [ZFPD] = v [FBI] 4+ inyagear ™D [PV (38)
In () we see
v [FRFHO] =y [PV — 0, kp4r<n-1. (39)

Hence (38) implies
D) [kaéj)] =0, kp+r+1<n. (40)

From (38)-(B9), taking n = kp +r,
: ; 1)
s [ kP(p)Jrr] = Ykprr- )14 [ gl 1] #0. (41)

Since (2)), we have that (40) and (III]) give yETD = 17521, which is the (r + 1)-th entry of

vector of p-orthogonality for {P } n € N (we recall that » +1 < p).
O

3 Proof of Theorem [

Through Lemma [ and Remark 2], the result is verified for j = p, independent on the
factorization (II). Then we want to find a Darboux factorization (II]) such that (I7)) is

a vector of p-orthogonality for the corresponding sequence {Pr(Lj )} of polynomials when
j=1,...,p—1
We proceed recursively on j =1,2,...,p.

3.1 First step: j =1

In this case, in [I7)) we have the vector of functionals
D= (g, vy (2= Chn) (42)

U

Due to Lemma [5] to prove Theorem [I] it is sufficient to show that v, ..., v, are the first

p — 1 entries of a vector of p-orthogonality for {P,(Lj )}, where this sequence of polynomials
is corresponding to some Darboux transformation J) of J — CI. In this step, we choose
LM appropriately for our goal. This is, we will see how to fix the entries

Y25 Vp+3s5 - .- 77(p—1)p

10



: : (1) : 1) _
of LM in () with the purpose to define £y, as in (28) and to find Ak € C k=
0,1,...,m —1, and AW = 0 such that

m,m—1
m—1
i = 3 ALY, m=12 p—1 (43)
k=0

(see @)).

Because v is a vector of p-orthogonality for {P,}, we know
m
V1= Ameiple, m=12...,p—L (44)
k=0

For any Darboux factorization, (28) holds taking j = 0. From this (@3] is equivalent to

m—1
Vm+1 = )\g?oﬁo + Z <’Y(k—1)(p+1)+2)‘$?k_1 + Afi)k) Ly + ’Y(m—l)(p+1)+2>\$?m_1ﬁm-
k=1

Comparing the last expression with (@) for m =1,...,p — 1, we have

AS?O = Am+1,05 (45)
’Y(k—l)(p+1)+2kﬁ?k_l + Afi)k = Apt1k, k=1,...,m—1, (46)
1
’Y(m_l)(p+1)+2)\£n?m—l = )‘m-l-l,m- (47)
We rewrite (45)-(47) as
1)
)‘m 0 )\m—i-l,O
)‘1%?1 Am41,1
Ag)m—l )‘m-i-l,m—l
70 )‘m—l-l,m
In other words, (@5)-(40) is
1)
)‘%0 Am+1,0
A1 _ (Lgrll)> 1 Am41,1 I
1
)\in?m_l Amt1,m—1

or, what is the same,
1
Afn?k_l = Amt1,k—1 = Y(k—2)(p+1)+2 m+1,k—2 + V(k=3)(p+1)+2V(k—2) (p+ 1)+ 2 Am+1,k—3—

o DM ey pr e Y-y a2 Amrt0, 1<k<m, 1<m<p-—1. (49)

11



-1

Furthermore, taking into account the expression of the last row of (ngrl) , the following
relation joint with (9] are equivalent to (48],
At 1m = Ym=1)p+1)42 0m+Lm—1 + -+ (=)™ 2V p+1)42 - - - Vm=1)(p+1)+2Am+10 = O,

m=1,....,p—1.  (50)
Therefore, the proof of the case j = 1 is reduced to find entries 72,...,¥(p—1), of L
verifying the condition (B0) such that the coefficients )\g)k_l,k: = 1,...,m, provided in
(9] define a vector of functionals

v = <y£1),... Y (z — C)Vl)

I p_17

as in ([42]). We proceed recursively for m =1,2,...,p— 1.
For m = 1 in (50) we have A2 1 — 12X20 = 0, where we know from () that A; =
A2,0 # 0. Then, taking A := 1, we can define

Ag
= Ao 1—.
V2 2,1 A
Moreover, since ([@9) we define )\% = Ao and I/%l) = A2,0Lo has been constructed.

Now we will to prove that the first entries of L(}) can be choosen as
Apmi
7(m—1)(p+1)+2 = )\m+1’mAL N m = 1, 2, ceoy P — 1. (51)

m

Indeed, (BI)) is verified for m = 1. Assume that (51l holds for m < s < p — 1. Assume
also that

Y25 V(p+1)+25 « - V(s=1)(p+1)+2
have been choosen verifying (50). Then v, 41)4+2 can be defined taking m = s+ 1 in (50),

this is,
0 = Agp2541 — Vs(p+1)+2 [)\s+2,s - ’}’(5—1)(p+1)+2)\s+2,s—1+
+ o (D ey - V=1 ()2 hs 42,0 5
where, from (&Il), we see that

As [)\s+2,s — Vs—1)(p+1)+2As42,5—1 + - F (—1)s+1727(p+1)+2 X -7(3—1)(p+1)+2)\s+2,0]
is the development of the determinant A, by its last column. Thus

Ag
Vs(p+1)+2 = )‘s+2,s+1A ”
S

and () is verified in m = s + 1 and, consequently, for all m =1,2,...,p — 1.
In this way the entries

Y25 Y(p+1)425 -5 V(p=1)p

of L are chosen verifying (5I)) and the coefficients )‘S?k—h k=1,...,m, given in (49
define the vector of orthogonality

v = <y§1), . ,V(l) (z — C)V1>

p—1»

for a new sequence of polynomials {P,gl)}.

12



3.2 Steps 2,3,...,p—1.

In each one of the following steps, we want to find the first appropriate entries of the
corresponding bidiagonal matrix. This is, in the step 7 + 1, for j = 1,2,...,p — 1, we
assume that for each s = 1,2,...,j the entries

Vs+1s V(p+1)+s+1r -5 V(p—s—1)(p+1)+s+1
of L) have been defined such that
V) = (Ugy1,. . v, (2 = O,y (2 — Cwg)

is a vector of p-orthogonality for {P,gs)}. Then, we want to find the first p — j — 1 entries

Vi4+2s V(p+1)4+5+25 -+ Vp—j—1)p

of LUTY guch that vt in ([I7) is a vector of p-orthogonality for the corresponding

sequence {PT(Lj Jrl)}. Due to the case j + 1 = p is solved in Lemma [4 we assume j €
{1,2,...,p — 2} in the following. We differentiate two kind of entries in vU+D " This is,
we denote

Vo+1>::(yg44%,,,ij+w>
where
Vitk+1 ) kzlaup_j_la
Igj+1) _ (52)
(Z - C)Vj-i-k-‘rl—p ) k= D—JyeesD-
In the first place, we analyze the entries l/,gj +1) ,k=1,...,p—7j—1, for which we want

to define Egjﬂ), s=0,...,k—1, as in (28) and to find )\(]H), . ,)\,(g,j_l)l such that

k—1
J+1 Z )\ J‘H ]+1 (53)
s=0

Since ([I7)) and (52]) we know that

,g”l) —V,g]_gl, k=1,....p—j—1.
Hence,
) k
It }:Mﬁ” ., k=1,...,p—j—1. (54)
r=0
Using (28) in (53),
k—1
- - , .
Y = )‘I(cjj ) </~'gj) +7s(p+1)+j+2£g]421) =
s=0
k—1 X k X
‘ , i+
= ZA,(j: L9 + Z’Y(s—l)(p+1)+j+2)\1(m iﬁ(])
s=0 s=1
k—1
ST - - , )
= ey + <)\1(f: '+ 7(s—l)(p+1)+j+2>\1(f,:—i) LY + 012N LE
s=1
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Comparing with (54]),

)\](53_1) ’ s = 07
)\/E:]-i)-l,s = )\1(6]7:1) + ’Y(S—l)(p+1)+j+2A](g{:__1:)[ y S$= 17 s 7k - 17 (55)
] )\(J“"U —k
V(k—1)(p+1)+j+2 ke k—1 s .

Similarly to what was done in (45])-(47), (53] can be rewritten as

)\](jar Y )‘1(3421,0
ALY A1
Ll(cj-:_ll) : — : Jk=1,...,p—7—1, (56)
)\g,j_l)l Ai(f]ll,k—l
0 )‘lg]ll,k
or, what is the same,
)\,(g 8— 2 )‘1(921,0
' AU N2
Al _ MELL L k=1,...p—j—1, (57)
A,(g,—:_l)l )‘I(f];l)-l,k—l

with the additional condition

. y 1 .
)‘l(cj—i)—l,k = 'Y(k—l)(p+1)+j+2)‘zgj,;—)17 k=1,....,p—j—1. (58)
Therefore, finding
+1 +1
A

as in (B3) comes down to choose the entries
Yi+25 -5 V(p—j—1)p

of Lg_t-l) with the aim of (57)-(58]) take place. We note that (57) defines the coefficients

/\ng :1), $s=0,...,k—1, because Lg_t-l) is an invertible matrix. Then, (58)) is equivalent to
. —1 . .
the fact that the last row of <L,(€]:11)) multiplied by (/\,(62170, . ,/\,(6217 k) vanishes. This
is,
)\(J) _ )\(J) . + )\(]) . : (59)
E+1,k k+1,k—17(k—1)(p+1)+j+2 k+1,k—27 (k=2)(p+1)+5+27 (k—1) (p+1)+j+2

— DL g gz ez =00 k=12 p .

Now we show that in the above conditions the following matrix equality is verified for

14



j=12,...,p—land s=1,2,...,

4 4
)‘2],1 )‘3],1 )‘s]+1,1
() :
oo | 0
0
0 0 0 AV, A9
Aj+2,0  Aj+30 As0 tt Ajtst10
Aj+2,541  Aj43j+1 As,j+1 Ajtst1,5+1
= 0 Ajsje : '
0
0 0 e 0 )\s,s—l )\j—l—s-‘rl,s—l
In fact, as in (B0), it is easy to see
r (r—1)
A;ﬁ% )‘i(c+11,())
A;(Q A1
L), : = - Jk=1,....p—7r, r=12,...,j+1.
r r—1
A,(C,;)g_l )‘I(c-(i-l,l)cl)—l
0 vy
Then, considering each infinite matrix L"),
r r—1
A A;}Hl,%
A,(Q Akt1,1
e N I e T R R N N R
’ 1
0 A
0 0

)\](Qj% >\j+k,0
OIS N I R k=1,....p—
k’(’)“_l Ajtk,j+k—1
0

15

.., LM to (@) and then taking r = j we arrive to

(60)



From this, for s € N, taking £k =2,3,...,s+ 1,

)\gj()) )\gj()) )\(J_Blo Aj42,0  Aj+30 T Ajbs+1,0
AN A Migoict Niasitt - Aitesl
0 AY) : Jr2gHL At Jts+1,5+1
372 ’ ’ . . .
oo g _ 0 Ajisgre
: : .
NO) S
3—61,3 : .. )\j+s+1,j+s
0

Therefore, due to LY -+ LU) is an infinite lower triangular matrix, we have

L. @) — .. 0)
( ) =0 L

s

and we arrive to (G0).
As a consequence of (G0,

5
)\2],1 )‘?jl )‘sj+1,1
‘ 0 A :
AV = 3.2 , j=1,....p—1, seN.
0
0 0 0 AL,

Taking k& = 1 in (59)), we have )\gji — Ag{%’yﬁg = 0. Because we know that )\gjz # 0 (see
M)) and Agj) = )\g{% # 0, it is possible to take
()
() A
Yi+2 = )\2,1—-
Ag])
(where we define A(()j )= 1). Iterating the procedure, assuming

| AQ)
Vm(p+1)+j+2 = )‘n]"b+27m+1A(T ;o m=0,1...,s, (62)
m+1

with s < p — j — 2 and taking k = s 4+ 2 in (59)),

Agj_gg,s.g T V(s (p+1)+5+2 [Aﬁs,sﬂ - )‘g23,s78(p+1)+j+2+

ot (—1)S+1)\§23,0’Yj+2 o Ysp+1)+i+2| = 0-
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where Y1 1)(p+1)4j+2 can be defined as

| A
V(s+1)(p+1)+j+2 = A§Q3,S+2 () () S_—:__i () '
As-l—l )‘s+3,s+l — ( ) )‘s+3 0Yi+2-- Vs (P+1)+j+2]

(63)
Further, from (62]) it is easy to check that the denominator in (3] is the development of

the determinant Agﬁg by its last column. Thus 7y, (p41)4j+2 can be defined as in (62)) for
m=0,1,....,p—7—2.

Finally, we study the entries V,gjﬂ) ,k=p—4,...,pof vU+D | We want to prove
(2 = C)Wjthti—p [28P£j+1)} =0, n>sp+k (64)
1)
(2 = Cjrnsip |2 PYTL | #0, (65)

because this means, from (), that (2 — C)vjqry1-p is the entry k of a vector of p-
orthogonality for {P,(L] 1) }.
Lemma [ implies

(2= Cwsipriy [P =0, m=sp+jthk+1-p

(2 = OVWitks1-p [Z Ps,(5+g+k pi| # 0.
In addition, since (3I), for any Darboux factorization,

P(]"‘l) P(]+2) P(p)

P(a+1) _ [+ p(J+2) Oy A N () p1(P>

Thus, PY™ can be expressed in terms of the entries in the (n41)-th row of LUT2 LU+3) L)

and the sequence {Pr(Lp )}. From this, taking into account that LUT2 LU+3) | L®) is a lower
triangular (p — j)-banded matrix, we see

n

PU+ — Z PP n>0 (with a, =1).
r=n+j—p+1
Hence,
(z = C)Wjskr1-p [ZSPT(Lj+1)] = Z ar(z = C)Witk+1-p [zspr(p)] (67)
r=n+j—p+1

and, using (60), we see that each term on the right hand side of (G7]) vanishes when
n > sp+ k. Thus (64) is verified.
To see (60)), if n = sp+ k — 1 in (67), then using (66 on the right hand side of (67))
we have
sp+k—1
> oz = Okt [Zspr(p)} = Qspihtj—p(z — CWjtkt1-p [2 Ps(ﬁﬁk p] #0.
r=sp+k+j—p
O
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Remark 3 Note that, ingj) #0 fors=0,1,....p—m—1andj=1,--- ,m—1, then
there exist m bidiagonal matrices LW L sych that

J—CI=LW...[W [y,

where L is a lower triangular matriz (non bidiagonal, in general). However, if Aﬁm) =0
for some s € {0,...,p — m — 2} then we can not assure the existence of a Darbouz
factorization (IT)) of J — CI such that vV is defined as in (IT).
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