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Abstract

For a fixed p ∈ N, sequences of polynomials {Pn}, n ∈ N, defined by a (p + 2)-
term recurrence relation are related to several topics in Approximation Theory. A
(p+ 2)-banded matrix J determines the coefficients of the recurrence relation of any
of such sequences of polynomials. The connection between these polynomials and the
concept of orthogonality has been already established through a p-dimension vector
of functionals. This work goes further in this topic by analyzing the relation between

such vectors for the set of sequences {P
(j)
n }, n ∈ N , associated with the Darboux

transformations J (j), j = 1, ..., p, of a given (p+ 2)-banded matrix J .

1 Introduction

For a fixed p ∈ N we consider a sequence of polynomials {Pn}, n ∈ N, defined by a
(p + 2)-term recurrence relation

Pn+1(z) + (an,n − z)Pn(z) +

p∑

j=1

an,n−jPn−j(z) = 0 , n ∈ N ,

P−p = · · · = P−1 = 0 , P0 ≡ 1 .





(1)

These polynomials are related with several topics such as Hermite-Padé approximants
and vector continued fractions ( [5, 9]). In particular, this kind of polynomials plays an
essential role in the study of some integrable systems (see for instance [1–3]).

The relation between the concept of orthogonality and the sequences of polynomials
verifying a (p + 2)-term recurrence relation was established in [13] in the following well-
known result.

Lemma 1 With the above notation, the following statements are equivalent.

(i) {Pn}, n ∈ N, verify (1) with an,n−p 6= 0 for all n ∈ N.

(ii) There exists a vector of functionals ν = (ν1, . . . , νp) , where each νr ∈ P ′ , r =
1, . . . , p , is defined on the space of polynomials P verifying





νr
[
zkPn(z)

]
= 0 , k = 0, 1, . . . , kp+ r ≤ n , n ∈ N ,

νr
[
zkPkp+r−1(z)

]
6= 0 , k = 0, 1, . . .

(2)
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In the sequel, we call vector of p-orthogonality to any vector of functionals ν =
(ν1, . . . , νp) verifying (2). In this case, we say that {Pn} is a sequence of p-orthogonal
polynomials with respect to ν.

For a sequence of polynomials {Pn} defined in (1), the sequence of linear functionals
{Ln} , n = 0, 1, . . . , given by

Lj [Pi] = δi,j , i, j = 0, 1, . . . , (3)

plays an relevant role in the study of the orthogonality. {Ln} is called dual sequence , and it
is the unique sequence of functionals verifying (3). It is easy to check that the p first terms
Lr , r = 0, 1 . . . , p − 1 , of the dual sequence verify the orthogonality conditions (2). This
fact proves the existence of some vector of p-orthogonality associated with each arbitrary
sequence {Pn} of polynomials. However, the uniqueness of a vector functional as in (2) is
not guaranteed. In fact, P. Maroni characterized in [10] these vectors of p-orthogonality
as (ν1, . . . , νp) such that

ν1 = λ1,0L0

ν2 = λ2,0L0 + λ2,1L1
...

νp = λp,0L0 + λp,1L1 + · · ·+ λp,p−1Lp−1

(4)

being λi,j ∈ C and λi,i−1 6= 0 for i, j + 1 ∈ {1, . . . , p}.
Associated with (1), it is possible to define the (p+2)-banded matrix J whose entries

are the coefficients of the recurrence relation,

J =




a0,0 1
a1,0 a1,1 1
...

...
. . .

. . .

ap,0 ap,1 · · · ap,p 1

0 ap+1,1
. . .

. . .
. . .

0
. . .
. . .




, (5)

where we assume aj+p,j 6= 0 , j = 0, 1, . . .
The use of discrete Darboux transformations was proposed in [11, 12] with the focus

in the application to the Toda lattices. In [1–6] this study was extended to (p + 2)-
banded matrices as (5). In the present work we are concerned about finding relations
between the vectors of p-orthogonality associated with the Darboux transformations of
such matrices (5). Thereby this paper complements the analysis that has been done in [4]
for the Geronimus transformations. We include here the following summary, with the
more relevant concepts, for an independent reading.

Let C ∈ C be such that the main determinants of the infinite matrix J − CI verify

det (CIn − Jn) 6= 0 for each n ∈ N (6)

Due to the well-known fact that Pn(z) = det (zIn − Jn) , (6) is equivalent to C ∈ C is
not a zero of the sequence {Pn}. (Here and in the sequel, given a semi-infinite matrix A,
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we denote by An, n ∈ N, the finite matrix of order n formed with the first n rows and
columns of A.) In these conditions, there exist two lower and upper triangular matrices,
L and U respectively,

L =




1
l1,1 1
...

. . .
. . .

lp,1 lp,2 . . . 1

0 lp+1,2
. . .

. . .

0
. . .

. . .
. . .




,

and

U =




γ1 1
γp+2 1

γ2p+3
. . .
. . .




,

such that
J − CI = LU (7)

is the unique factorization of J −CI in these conditions (see [8] for details). In the sequel
we assume C ∈ C fixed.

In [6] the following factorization of L was given.

Lemma 2 [6, Theorem 1, pp. 118] In the above conditions, if lp+i,i+1 6= 0 for each
i = 0, 1, . . ., then there exist p bi-diagonal matrices

L(j) =




1
γj+1 1

γp+j+2 1

γ2p+j+3
. . .
. . .




, j = 1, 2, . . . , p , (8)

with γ(k−1)p+j+k 6= 0 for all k ∈ N, verifying

L = L(1)L(2) · · ·L(p) . (9)

Moreover, for each j ∈ {1, 2, . . . , p−1} it is possible to choose certain set of p− j elements
γj+1, γp+j+2, . . . , γ(p−j)p of L(j) such that the factorization (9) is unique for the fixed set
of p(p− 1)/2 points

γ2, γp+3 · · · · · · γ(p−1)p,

γ3, γp+4 · · · γ(p−2)p,
...

... . .
.

γp−1, γ2p,
γp.





(10)
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(7) and (9) provide the so called Darboux factorization of J − CI, defined as

J − CI = L(1)L(2) · · ·L(p)U, (11)

where L(1), L(2), . . . L(p) are bidiagonal matrices as in (8) given in Lemma 2 for certain
set (10) of p(p− 1)/2 fixed entries. Each circular permutation of a Darboux factorization
gives a new (p+ 2)-banded matrix,

J (j) = CI + L(j+1)L(j+2) · · ·L(p)UL(1)L(2) · · ·L(j), j = 1, 2, . . . , p . (12)

Definition 1 The permutations J (j) given in (12) are called Darboux transformation of
J − CI.

As a consequence of the Darboux transformations, for each j ∈ {1, . . . , p} it is possible

to define a new sequence of polynomials {P
(j)
n } verifying a (p+ 2) recurrence relation,

P
(j)
n+1(z) + (a

(j)
n,n − z)P

(j)
n (z) +

p∑

s=1

a
(j)
n,n−sP

(j)
n−s(z) = 0 , n ∈ N ,

P
(j)
−p = · · · = P

(j)
−1 = 0 , P

(j)
0 ≡ 1 .





(13)

Another way to write (13) is (
J (j) − zI

)
v(j) = 0 , (14)

where

v(j)(z) =
(
P

(j)
0 (z), P

(j)
1 (z), . . .

)T
, j = 0, 1, . . . , p .

Here and in the following, we extend the notation taking P
(0)
n = Pn , n ∈ N and J (0) = J .

Since Lemma 1, in the above conditions there exists some vector of p-orthogonality

ν(j) =
(
ν
(j)
1 , . . . , ν(j)p

)
, j = 1, . . . , p , (15)

such that the corresponding conditions of orthogonality like (2) are verified.
In this work we analyze some relations between the vectors of p-orthogonality ν =

(ν1, . . . , νp) associated to the polynomials {Pn} and the vectors of p-orthogonality (15),
j = 1, . . . , p, for a Darboux factorization of J −CI under some conditions.

Definition 2 Here and in what follows, (z − C)νi, i = 1, . . . , p, is a linear functional
defined on the space P[z] of polynomials as

(z − C)νi[q] = νi[(z − C)q]

for each q ∈ P[z].

We recall that it is possible to have several vectors of p-orthogonality associated with
each sequence of polynomials verifying a (p + 2)-term recurrence relation. If (ν1, . . . , νp)
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verifies (2) then for (c1, . . . , cp) ∈ C also (c1ν1, . . . , cpνp) verifies (2). In a more general
procedure, the coefficients λi,j of (4) and the determinants

∆(j)
m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λj+2,0 λj+3,0 · · · · · · λm,0 · · · λj+m+1,0
...

...
...

λj+2,j+1 λj+3,j+1 · · · · · · λm,1 · · · λj+m+1,j+1

0 λj+3,j+2
...

...
... 0

. . .
...

...
. . .

. . .
...

...
0 0 · · · 0 λm,m−1 · · · λj+m+1,m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

j = 0, 1, . . . , p− 1, m = 1, 2, . . . , p− j− 1, play an important role in this paper. Our main
contribution is the following.

Theorem 1 Let ν = (ν1, . . . , νp) be a vector of p-orthogonality for {Pn}, n ∈ N, as in (4)
such that

∆(j)
m 6= 0 , j = 0, . . . , p− 1, m = 1, . . . , p− j − 1. (16)

Then there exists a Darboux factorization (11) of J−CI such that, for each j = 1, 2, . . . , p,

ν(j) = (νj+1, . . . , νp, (z − C)ν1, . . . , (z − C)νj) (17)

is a vector of p-orthogonality for the sequence of polynomials {P
(j)
n }, n ∈ N, associated

with the Darboux transformation J (j) of J − CI given in (12) (where we understand
ν(p) = ((z − C)ν1, . . . , (z − C)νp) in (17)).

Definition 3 In the conditions of Theorem 1 we say that the vectors of p-orthogonality
(17) are the Darboux transformations of ν.

In Section 2 some auxiliary results are established. In particular, some connections

between the sequences {P
(j)
n }, j = 0, . . . , p, are given for each fixed Darboux factorization.

Finally, Theorem 1 is proved in Section 3.

2 Orthogonality and Darboux transformations

In this section we assume that (11) is a fixed Darboux factorization of J−CI corresponding
with a given set of entries (10) of the matrices L(1), . . . , L(p).

The following result establishes some relationships between the various sequences of
polynomials associated with the Darboux transformations of J −CI.

Theorem 2 We have the following relations between the sequences of polynomials {P
(j)
n }, j =

0, 1, . . . , p.

P (j+1)
n (z) =

P
(j)
n+1(z) +

p−1∑

s=0

g
(j)
n+1,n−s+1P

(j)
n−s(z)

z −C
, j = 0, 1, . . . , p− 1 , n ≥ 0 , (18)

P (p)
n (z) =

Pn+1(z)−
Pn+1(C)
Pn(C) Pn(z)

z − C
, n ≥ 0 , (19)
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where g
(j)
n+1,n−s+1 ∈ C for j = 0, 1, . . . , p− 1 , n ≥ 0 and s = 0, . . . , p− 1.

Proof.- In [6] was proved that

L(j+1)L(j+2) · · ·L(i)v(i)(z) = v(j)(z), 0 ≤ j < i ≤ p , (20)

where the product of the triangular matrix L(j+1)L(j+2) · · ·L(i) times the vector v(i)(z) is
understanding in a formal sense.

Moreover, from this, (12) and (14),

L(j+1)L(j+2) · · ·L(p)UL(1) · · ·L(j)v(j)(z) = (z − C)v(j)(z) , j = 0, 1, . . . , p , (21)

where we understand
ULv(p)(z) = (z −C)v(p)(z) (22)

when j = p. Replacing j by j + 1 in (21),

L(j+2)L(j+3) · · ·L(p)UL(1) · · ·L(j)L(j+1)v(j+1)(z) = (z − C)v(j+1)(z) , j = 0, 1, . . . , p− 1 ,

understanding L(j+2)L(j+3) · · ·L(p) = I when j = p−1. From this and (20) (for i = j+1),

L(j+2) · · ·L(p)UL(1) · · ·L(j)v(j)(z) = (z − C)v(j+1)(z) , j = 0, 1, . . . , p− 1, (23)

where L(2) · · ·L(p)Uv(0)(z) = (z − C)v(1)(z), this is, L(1) · · ·L(j) = I when j = 0.
On the other hand, it is easy to check that, for each k ∈ N, the row k of the infinite

matrix L(j+2) · · ·L(p)UL(1) · · ·L(j) is
(
g
(j)
k,1, g

(j)
k,2, . . . , g

(j)
k,k+1, 0, . . .

)
,

being g
(j)
k,k+1 = 1 and the entries g

(j)
k,s, s = 1, . . . , k, independent on z. Moreover, g

(j)
k,s = 0

for s ≤ k − p when k > p. In other words, L(j+2) · · ·L(p)UL(1) · · ·L(j) is a (p + 1)-banded

Hessenberg matrix, where it is easy to see that g
(j)
k,k−p+1 6= 0 since γr 6= 0 (r ∈ N) . Hence,

taking into account (23),

(z − C)P
(j+1)
k−1 (z) = g

(j)
k,k−p+1P

(j)
k−p(z) + · · ·+ g

(j)
k,k+1P

(j)
k (z)

which drives to (18) when k = n+ 1. Note that, in this case,

g
(j)
n+1,n−p+2 6= 0 . (24)

For j = 0 and i = p, (20) becomes

Lv(p)(z) = L(1) · · ·L(p)v(p)(z) = v(0)(z) .

Therefore
Uv(0)(z) = (z − C)v(p)(z) (25)

(see (22)) and, comparing the (n+ 1)-row in both sides of (25),

(z − C)P (p)
n (z) = γn(p+1)+1Pn(z) + Pn+1(z) (26)

The right hand side of (26) is a polynomial with a root in z = C. Thus

γn(p+1)+1 = −
Pn+1(C)

Pn(C)
. (27)

From (26) and (27) we arrive to (19). �
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Remark 1 (18) and (19) coincide in the classic case p = 1. Both relations extend [7,
(7.3), pp. 35], this is,

P (1)
n (z) =

Pn+1(z)−
Pn+1(C)
Pn(C) Pn(z)

z − C
,

where the sequence of Kernel polynomials {P
(1)
n } are defined in terms of {Pn}. In this

sense {P
(j)
n } , j = 1, . . . , p, are extensions of this classical sequence of Kernel polynomials.

The above remark justifies the following definition.

Definition 4 For each j = 1, . . . , p the polynomials {P
(j)
n } , n ∈ N, are called j-Kernel

polynomials.

For each sequence {P
(j)
n } , j = 0, 1, . . . , p , we denote by {L

(j)
n } the corresponding dual

sequence (taking L
(0)
n = Ln). Equivalently to the behavior of the sequences of polynomials,

the terms of the dual sequences are related to each other.

Lemma 3 With the above notation, for each j = 0, 1 . . . , p − 1 and n = 0, 1, . . . we have

L(j+1)
n = L(j)

n + γn(p+1)+j+2L
(j)
n+1 (28)

(z − C)L(j)
n = L

(j+1)
n−1 +

p−1∑

s=0

g
(j)
n+s+1,n+1L

(j+1)
n+s (29)

(z − C)Ln = L
(p)
n−1 −

Pn+1(C)

Pn(C)
L(p)
n (30)

Proof.- In [6], the relation

P
(j)
m+1 = P

(j+1)
m+1 + γm(p+1)+j+2P

(j+1)
m , m = −1, 0, 1, . . . , (31)

was proved (here, γ−(p+1)+j+2 = 0). Then

L(j+1)
n

[
P

(j)
m+1

]
= L(j+1)

n

[
P

(j+1)
m+1

]
+ γm(p+1)+j+2L

(j+1)
n

[
P (j+1)
m

]

=





0 , n 6= m, m+ 1
1 , n = m+ 1
γm(p+1)+j+2 , n = m.

(32)

Moreover,
(
L(j)
n + γn(p+1)+j+2L

(j)
n+1

) [
P

(j)
m+1

]
= L(j)

n

[
P

(j)
m+1

]
+ γn(p+1)+j+2L

(j)
n+1

[
P

(j)
m+1

]

also drives to (32). That is, both sides of (28) coincide on the basis {P
(j)
m } , m ∈ N , of the

space P of polynomials. Therefore (28) is verified.
For m = 0, 1, . . . , taking into account (18),

(z −C)L(j)
n

[
P (j+1)
m

]
= L(j)

n

[
(z − C)P (j+1)

m

]

= L(j)
n

[
P

(j)
m+1

]
+

p−1∑

s=0

g
(j)
m+1,m−s+1L

(j)
n

[
P

(j)
m−s

]

=





0 , n 6= m+ 1,m,m− 1, . . . ,m− p+ 1 .
1 , n = m+ 1

g
(j)
n+s+1,n+1 , n = m− s , s = 0, 1, . . . , p − 1 .

(33)
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On the other hand,

(
L
(j+1)
n−1 +

p−1∑

s=0

g
(j)
n+s+1,n+1L

(j+1)
n+s

)[
P (j+1)
m

]
= L

(j+1)
n−1

[
P (j+1)
m

]
+

p−1∑

s=0

g
(j)
n+s+1,n+1L

(j+1)
n+s

[
P (j+1)
m

]

coincides with (33) for each m ∈ N. Therefore, (29) holds. We underline that this is true

even if n = 0 in (29), understanding L
(j+1)
−1 = 0 in this case.

As in (28)-(29), we apply both sides of (30) to a basis of polynomials. Then using (19),

(z − C)Ln

[
P (p)
m

]
= Ln

[
(z − C)P (p)

m

]

= Ln

[
Pm+1 −

Pm+1(C)

Pm(C)
Pm

]
(34)

= Ln [Pm+1]−
Pm+1(C)

Pm(C)
Ln [Pm] =





0 , n 6= m, m+ 1
1 , n = m+ 1

−
Pm+1(C)

Pm(C)
, n = m.

Further,

(
L
(p)
n−1 −

Pn+1(C)

Pn(C)
L(p)
n

)[
P (p)
m

]
= L

(p)
n−1

[
P (p)
m

]
−

Pn+1(C)

Pn(C)
L(p)
n

[
P (p)
m

]
,

which produces exactly the same result as in (34). Then (30) is proved. �

In the classic case p = 1, the functionals of orthogonality ν and ν(1), associated re-

spectively with {Pn} and the Kernel polynomials {P
(1)
n }, are related by

ν(1) = (z −C)ν .

The next result extends this fact to the general case p ∈ N. In fact, this lemma is
equivalently to Theorem 1 in the case j = p.

Lemma 4 Let ν = (ν1, ν2, . . . , νp) be a vector of p-orthogonality for {Pn}. Then

ν(p) = ((z − C)ν1, (z − C)ν2, . . . , (z − C)νp)

is a vector of p-orthogonality for the p-Kernel polynomials {P
(p)
n }.

Proof.- Due to (19), for each r = 1, 2, . . . , p we have

((z −C)νr)
[
zkP

(p)
mp+i

]
= νr

[
zk(z − C)P

(p)
mp+i

]
= νr

[
zk
(
Pmp+i+1 −

Pmp+i+1(C)

Pmp+i(C)
Pmp+i

)]

= νr

[
zkPmp+i+1

]
−

Pmp+i+1(C)

Pmp+i(C)
νr

[
zkPmp+i

]
,

where 



νr
[
zkPmp+i+1

]
= 0 , k ≥ 0 , kp+ r ≤ mp+ i+ 1,

νr
[
zkPmp+i

]
= 0 , k ≥ 0 , kp+ r ≤ mp+ i.

(35)
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Therefore, if kp+ r ≤ mp+ i then (35) holds and

((z − C)νr)
[
zkP

(p)
mp+i

]
= 0 , k ≥ 0, kp+ r ≤ mp+ i .

Moreover, using (18),

((z − C)νr)
[
zkP

(p)
kp+r−1

]
= νr

[
zkPkp+r

]
−

Pkp+r(C)

Pkp+r−1(C)
νr

[
zkPkp+r−1

]
,

where νr
[
zkPkp+r

]
= 0 (see (35)) and νr

[
zkPkp+r−1

]
6= 0 (see (2)). This is,

((z −C)νr)
[
zkP

(p)
kp+r−1

]
= −

Pkp+r(C)

Pkp+r−1(C)
νr

[
zkPkp+r−1

]
6= 0 .

This proves that (z −C)νr is the r-th entry of a vector of p-orthogonality associated with

the sequence of polynomials {P
(p)
n } and, consequently, ν(p) is one of such vectors. �

Remark 2 We underline that, in the case j = p, we have proved that the statement of
Theorem 1 is verified independently on the condition (16).

Lemma 5 For each j = 0, 1, . . . , p, let ν(j) =
(
ν
(j)
1 , ν

(j)
2 . . . , ν

(j)
p

)
be a vector of p-

orthogonality for {P
(j)
n }. Then, for j = 0, 1, . . . , p − 1 we have:

(a) ν̃(j+1) =
(
ν
(j+1)
1 , . . . , ν

(j+1)
p−1 , (z − C)ν

(j)
1

)
is a vector of p-orthogonality for {P

(j+1)
n }.

(b) ν̃(j) =
(
ν
(j)
1 , ν

(j+1)
1 . . . , ν

(j+1)
p−1

)
is a vector of p-orthogonality for {P

(j)
n }.

Proof.- In the first place, because the first entries of the vector ν̃(j+1) coincide with the
corresponding to ν(j+1), to prove (a) it is enough to check

(z − C)ν
(j)
1

[
zkP (j+1)

n

]
= 0 , kp+ p ≤ n , (36)

(z − C)ν
(j)
1

[
zkP

(j+1)
(k+1)p−1

]
6= 0 . (37)

Indeed, using (18) of Theorem 2,

(z −C)ν
(j)
1

[
zkP (j+1)

n

]
= ν

(j)
1

[
zkP

(j)
n+1

]
+

p−1∑

s=0

g
(j)
n+1,n−s+1ν

(j)
1

[
zkP

(j)
n−s

]
,

where ν
(j)
1

[
zkP

(j)
n+1

]
= 0 for kp+ 1 ≤ n+1 and ν

(j)
1

[
zkP

(j)
n−s

]
= 0 for kp+1 ≤ n− s , s =

0, 1, . . . , p − 1 .
Then,

(z −C)ν
(j)
1

[
xkP (j+1)

n

]
= 0

for kp + 1 ≤ n− p+ 1 or, what is the same, (36) holds.
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For a similar reason,

(z − C)ν
(j)
1

[
zkP

(j+1)
kp+p−1

]
= ν

(j)
1

[
zkP

(j)
kp+p

]
+

p−1∑

s=0

g
(j)
kp+p,kp−s+pν

(j)
1

[
zkP

(j)
kp−s+p−1

]

= g
(j)
kp+p,kp+1ν

(j)
1

[
zkP

(j)
kp

]
6= 0 ,

which, taking into account (24), gives (37). Thus (a) is verified.
In the second place, take r ∈ {1, . . . , p− 1}, k ∈ {0, 1, . . . , } and n ∈ N. Using (31),

ν(j+1)
r

[
zkP (j)

n

]
= ν(j+1)

r

[
zkP (j+1)

n

]
+ γ(n−1)(p+1)+j+2ν

(j+1)
r

[
zkP

(j+1)
n−1

]
. (38)

In (2) we see

ν(j+1)
r

[
zkP (j+1)

n

]
= ν(j+1)

r

[
zkP

(j+1)
n−1

]
= 0 , kp+ r ≤ n− 1 . (39)

Hence (38) implies

ν(j+1)
r

[
zkP (j)

n

]
= 0 , kp+ r + 1 ≤ n . (40)

From (38)-(39), taking n = kp + r,

ν(j+1)
r

[
zkP

(j)
kp+r

]
= γ(kp+r−1)(p+1)+j+2ν

(j+1)
r

[
zkP

(j+1)
kp+r−1

]
6= 0 . (41)

Since (2), we have that (40) and (41) give ν
(j+1)
r = ν̃

(j)
r+1, which is the (r + 1)-th entry of

vector of p-orthogonality for {P
(j)
n }, n ∈ N (we recall that r + 1 ≤ p).

�

3 Proof of Theorem 1

Through Lemma 4 and Remark 2, the result is verified for j = p, independent on the
factorization (11). Then we want to find a Darboux factorization (11) such that (17) is

a vector of p-orthogonality for the corresponding sequence {P
(j)
n } of polynomials when

j = 1, . . . , p − 1.
We proceed recursively on j = 1, 2, . . . , p.

3.1 First step: j = 1

In this case, in (17) we have the vector of functionals

ν(1) = (ν2, . . . , νp, (z − C)ν1) . (42)

Due to Lemma 5, to prove Theorem 1 it is sufficient to show that ν2, . . . , νp are the first

p− 1 entries of a vector of p-orthogonality for {P
(j)
n }, where this sequence of polynomials

is corresponding to some Darboux transformation J (1) of J −CI. In this step, we choose
L(1) appropriately for our goal. This is, we will see how to fix the entries

γ2, γp+3, . . . , γ(p−1)p

10



of L(1) in (10) with the purpose to define L
(1)
m as in (28) and to find λ

(1)
m,k ∈ C, k =

0, 1, . . . ,m− 1, and λ
(1)
m,m−1 6= 0 such that

νm+1 =
m−1∑

k=0

λ
(1)
m,kL

(1)
k , m = 1, 2, . . . , p− 1 (43)

(see (4)).
Because ν is a vector of p-orthogonality for {Pn}, we know

νm+1 =
m∑

k=0

λm+1,kLk , m = 1, 2, . . . , p − 1. (44)

For any Darboux factorization, (28) holds taking j = 0. From this (43) is equivalent to

νm+1 = λ
(1)
m,0L0 +

m−1∑

k=1

(
γ(k−1)(p+1)+2λ

(1)
m,k−1 + λ

(1)
m,k

)
Lk + γ(m−1)(p+1)+2λ

(1)
m,m−1Lm.

Comparing the last expression with (44) for m = 1, . . . , p − 1, we have

λ
(1)
m,0 = λm+1,0, (45)

γ(k−1)(p+1)+2λ
(1)
m,k−1 + λ

(1)
m,k = λm+1,k , k = 1, . . . ,m− 1, (46)

γ(m−1)(p+1)+2λ
(1)
m,m−1 = λm+1,m. (47)

We rewrite (45)-(47) as

L
(1)
m+1




λ
(1)
m,0

λ
(1)
m,1
...

λ
(1)
m,m−1

0




=




λm+1,0

λm+1,1
...

λm+1,m−1

λm+1,m




, m = 1, . . . , p − 1 . (48)

In other words, (45)-(46) is




λ
(1)
m,0

λ
(1)
m,1
...

λ
(1)
m,m−1




=
(
L(1)
m

)
−1




λm+1,0

λm+1,1
...

λm+1,m−1


 , m = 1, . . . , p− 1 ,

or, what is the same,

λ
(1)
m,k−1 = λm+1,k−1 − γ(k−2)(p+1)+2λm+1,k−2 + γ(k−3)(p+1)+2γ(k−2)(p+1)+2λm+1,k−3−

· · ·+ (−1)k−1γ2γ(p+1)+2 . . . γ(k−2)(p+1)+2λm+1,0, 1 ≤ k ≤ m, 1 ≤ m ≤ p− 1. (49)
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Furthermore, taking into account the expression of the last row of
(
L
(1)
m+1

)
−1

, the following

relation joint with (49) are equivalent to (48),

λm+1,m − γ(m−1)(p+1)+2λm+1,m−1 + · · ·+ (−1)mγ2γ(p+1)+2 . . . γ(m−1)(p+1)+2λm+1,0 = 0,

m = 1, . . . , p − 1. (50)

Therefore, the proof of the case j = 1 is reduced to find entries γ2, . . . , γ(p−1)p of L(1)

verifying the condition (50) such that the coefficients λ
(1)
m,k−1, k = 1, . . . ,m, provided in

(49) define a vector of functionals

ν(1) =
(
ν
(1)
1 , . . . , ν

(1)
p−1, (z − C)ν1

)

as in (42). We proceed recursively for m = 1, 2, . . . , p− 1.
For m = 1 in (50) we have λ2,1 − γ2λ2,0 = 0 , where we know from (16) that ∆1 =

λ2,0 6= 0. Then, taking ∆0 := 1, we can define

γ2 = λ2,1
∆0

∆1
.

Moreover, since (49) we define λ
(1)
1,0 = λ2,0 and ν

(1)
1 = λ2,0L0 has been constructed.

Now we will to prove that the first entries of L(1) can be choosen as

γ(m−1)(p+1)+2 = λm+1,m
∆m−1

∆m

, m = 1, 2, . . . , p− 1. (51)

Indeed, (51) is verified for m = 1. Assume that (51) holds for m ≤ s < p − 1. Assume
also that

γ2, γ(p+1)+2, . . . , γ(s−1)(p+1)+2

have been choosen verifying (50). Then γs(p+1)+2 can be defined taking m = s+1 in (50),
this is,

0 = λs+2,s+1 − γs(p+1)+2

[
λs+2,s − γ(s−1)(p+1)+2λs+2,s−1+

+ · · ·+ (−1)s+1γ2γ(p+1)+2 . . . γ(s−1)(p+1)+2λs+2,0

]
,

where, from (51), we see that

∆s

[
λs+2,s − γ(s−1)(p+1)+2λs+2,s−1 + · · ·+ (−1)s+1γ2γ(p+1)+2 . . . γ(s−1)(p+1)+2λs+2,0

]

is the development of the determinant ∆s+1 by its last column. Thus

γs(p+1)+2 = λs+2,s+1
∆s

∆s+1

and (51) is verified in m = s+ 1 and, consequently, for all m = 1, 2, . . . , p− 1.
In this way the entries

γ2, γ(p+1)+2, . . . , γ(p−1)p

of L(1) are chosen verifying (51) and the coefficients λ
(1)
m,k−1, k = 1, . . . ,m, given in (49)

define the vector of orthogonality

ν(1) =
(
ν
(1)
1 , . . . , ν

(1)
p−1, (z − C)ν1

)

for a new sequence of polynomials {P
(1)
n }.
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3.2 Steps 2, 3, . . . , p− 1.

In each one of the following steps, we want to find the first appropriate entries of the
corresponding bidiagonal matrix. This is, in the step j + 1, for j = 1, 2, . . . , p − 1, we
assume that for each s = 1, 2, . . . , j the entries

γs+1, γ(p+1)+s+1, . . . , γ(p−s−1)(p+1)+s+1

of L(s) have been defined such that

ν(s) = (νs+1, . . . , νp, (z − C)ν1, . . . , (z − C)νs)

is a vector of p-orthogonality for {P
(s)
n }. Then, we want to find the first p− j − 1 entries

γj+2, γ(p+1)+j+2, . . . , γ(p−j−1)p

of L(j+1) such that ν(j+1) in (17) is a vector of p-orthogonality for the corresponding

sequence {P
(j+1)
n }. Due to the case j + 1 = p is solved in Lemma 4, we assume j ∈

{1, 2, . . . , p − 2} in the following. We differentiate two kind of entries in ν(j+1). This is,
we denote

ν(j+1) =
(
ν
(j+1)
1 , . . . , ν(j+1)

p

)

where

ν
(j+1)
k =





νj+k+1 , k = 1, . . . , p− j − 1,

(z − C)νj+k+1−p , k = p− j, . . . , p.
(52)

In the first place, we analyze the entries ν
(j+1)
k , k = 1, . . . , p− j−1, for which we want

to define L
(j+1)
s , s = 0, . . . , k − 1, as in (28) and to find λ

(j+1)
k,0 , . . . , λ

(j+1)
k,k−1 such that

ν
(j+1)
k =

k−1∑

s=0

λ
(j+1)
k,s L(j+1)

s . (53)

Since (17) and (52) we know that

ν
(j+1)
k = ν

(j)
k+1 , k = 1, . . . , p− j − 1 .

Hence,

ν
(j+1)
k =

k∑

r=0

λ
(j)
k+1,rL

(j)
r , k = 1, . . . , p− j − 1 . (54)

Using (28) in (53),

ν
(j+1)
k =

k−1∑

s=0

λ
(j+1)
k,s

(
L(j)
s + γs(p+1)+j+2L

(j)
s+1

)
=

=

k−1∑

s=0

λ
(j+1)
k,s L(j)

s +

k∑

s=1

γ(s−1)(p+1)+j+2λ
(j+1)
k,s−1L

(j)
s =

= λ
(j+1)
k,0 L

(j)
0 +

k−1∑

s=1

(
λ
(j+1)
k,s + γ(s−1)(p+1)+j+2λ

(j+1)
k,s−1

)
L(j)
s + γ(k−1)(p+1)+j+2λ

(j+1)
k,k−1L

(j)
k .
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Comparing with (54),

λ
(j)
k+1,s =





λ
(j+1)
k,0 , s = 0,

λ
(j+1)
k,s + γ(s−1)(p+1)+j+2λ

(j+1)
k,s−1 , s = 1, . . . , k − 1,

γ(k−1)(p+1)+j+2λ
(j+1)
k,k−1 , s = k .

(55)

Similarly to what was done in (45)-(47), (55) can be rewritten as

L
(j+1)
k+1




λ
(j+1)
k,0

λ
(j+1)
k,1
...

λ
(j+1)
k,k−1

0




=




λ
(j)
k+1,0

λ
(j)
k+1,1
...

λ
(j)
k+1,k−1

λ
(j)
k+1,k




, k = 1, . . . , p − j − 1 , (56)

or, what is the same,

L
(j+1)
k




λ
(j+1)
k,0

λ
(j+1)
k,1
...

λ
(j+1)
k,k−1




=




λ
(j)
k+1,0

λ
(j)
k+1,1
...

λ
(j)
k+1,k−1




, k = 1, . . . , p − j − 1 , (57)

with the additional condition

λ
(j)
k+1,k = γ(k−1)(p+1)+j+2λ

(j+1)
k,k−1 , k = 1, . . . , p− j − 1 . (58)

Therefore, finding

λ
(j+1)
k,0 , . . . , λ

(j+1)
k,k−1

as in (53) comes down to choose the entries

γj+2, . . . , γ(p−j−1)p

of L
(j+1)
p−j with the aim of (57)-(58) take place. We note that (57) defines the coefficients

λ
(j+1)
k,s , s = 0, . . . , k− 1, because L

(j+1)
p−j is an invertible matrix. Then, (58) is equivalent to

the fact that the last row of
(
L
(j+1)
k+1

)
−1

multiplied by
(
λ
(j)
k+1,0, . . . , λ

(j)
k+1,k

)
vanishes. This

is,

λ
(j)
k+1,k − λ

(j)
k+1,k−1γ(k−1)(p+1)+j+2 + λ

(j)
k+1,k−2γ(k−2)(p+1)+j+2γ(k−1)(p+1)+j+2 (59)

− · · · + (−1)kλ
(j)
k+1,0γj+2γ(p+1)+j+2 . . . γ(k−1)(p+1)+j+2 = 0 , k = 1, 2, . . . , p− j .

Now we show that in the above conditions the following matrix equality is verified for
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j = 1, 2, . . . , p− 1 and s = 1, 2, . . .,

L(1)
s . . . L(j)

s




λ
(j)
2,0 λ

(j)
3,0 · · · · · · · · · λ

(j)
s+1,0

λ
(j)
2,1 λ

(j)
3,1 · · · · · · · · · λ

(j)
s+1,1

0 λ
(j)
3,2

. . .
...

... 0
. . .

. . .
...

...
. . .

...

0 0 · · · 0 λ
(j)
s,s−1 λ

(j)
s+1,s−1




=




λj+2,0 λj+3,0 · · · · · · λs,0 · · · λj+s+1,0
...

...
...

λj+2,j+1 λj+3,j+1 · · · · · · λs,j+1 · · · λj+s+1,j+1

0 λj+3,j+2
. . .

...
...

... 0
. . .

. . . · · ·
...

...
. . .

. . .
...

...
0 0 · · · 0 λs,s−1 · · · λj+s+1,s−1




. (60)

In fact, as in (56), it is easy to see

L
(r)
k+1




λ
(r)
k,0

λ
(r)
k,1
...

λ
(r)
k,k−1

0




=




λ
(r−1)
k+1,0

λ
(r−1)
k+1,1
...

λ
(r−1)
k+1,k−1

λ
(r−1)
k+1,k




, k = 1, . . . , p− r, r = 1, 2, . . . , j + 1 .

Then, considering each infinite matrix L(r),

L(r)




λ
(r)
k,0

λ
(r)
k,1
...

λ
(r)
k,k−1

0
0
...




=




λ
(r−1)
k+1,0

λ
(r−1)
k+1,1
...

λ
(r−1)
k+1,k−1

λ
(r−1)
k+1,k

0
...




, k = 1, . . . , p− r, r = 1, 2, . . . , j + 1 . (61)

Applying iteratively L(r), . . . , L(1) to (61) and then taking r = j we arrive to

L(1) · · ·L(j)




λ
(j)
k,0
...

λ
(rj)
k,k−1

0
...




=




λj+k,0
...
...

λj+k,j+k−1

0
...




, k = 1, . . . , p− j.
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From this, for s ∈ N, taking k = 2, 3, . . . , s + 1,

L(1) · · ·L(j)




λ
(j)
2,0 λ

(j)
3,0 · · · λ

(j)
s+1,0

λ
(j)
2,1 λ

(j)
3,1 · · · λ

(j)
s+1,1

0 λ
(j)
3,2

. . .
...

... 0 · · ·
...

...
. . . λ

(j)
s+1,s

0
...




=




λj+2,0 λj+3,0 · · · λj+s+1,0
...

...
...

λj+2,j+1 λj+3,j+1 · · · λj+s+1,j+1

0 λj+3,j+2
. . .

...
... 0 · · ·

...
...

. . . λj+s+1,j+s

0
...




.

Therefore, due to L(1) · · ·L(j) is an infinite lower triangular matrix, we have

(
L(1) · · ·L(j)

)
s
= L(1)

s · · ·L(j)
s

and we arrive to (60).
As a consequence of (60),

∆(j)
s =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ
(j)
2,0 λ

(j)
3,0 · · · · · · · · · λ

(j)
s+1,0

λ
(j)
2,1 λ

(j)
3,1 · · · · · · · · · λ

(j)
s+1,1

0 λ
(j)
3,2

. . .
...

... 0
. . .

. . .
...

...
. . .

...

0 0 · · · 0 λ
(j)
s,s−1 λ

(j)
s+1,s−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, j = 1, . . . , p − 1, s ∈ N.

Taking k = 1 in (59), we have λ
(j)
2,1 −λ

(j)
2,0γj+2 = 0. Because we know that λ

(j)
2,1 6= 0 (see

(4)) and ∆
(j)
1 = λ

(j)
2,0 6= 0, it is possible to take

γj+2 = λ
(j)
2,1

∆
(j)
0

∆
(j)
1

(where we define ∆
(j)
0 := 1). Iterating the procedure, assuming

γm(p+1)+j+2 = λ
(j)
m+2,m+1

∆
(j)
m

∆
(j)
m+1

, m = 0, 1, . . . , s, (62)

with s < p− j − 2 and taking k = s+ 2 in (59),

λ
(j)
s+3,s+2 − γ(s+1)(p+1)+j+2

[
λ
(j)
s+3,s+1 − λ

(j)
s+3,sγs(p+1)+j+2+

· · ·+ (−1)s+1λ
(j)
s+3,0γj+2 . . . γs(p+1)+j+2

]
= 0.
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where γ(s+1)(p+1)+j+2 can be defined as

γ(s+1)(p+1)+j+2 = λ
(j)
s+3,s+2

∆
(j)
s+1

∆
(j)
s+1

[
λ
(j)
s+3,s+1 − · · · + (−1)s+1λ

(j)
s+3,0γj+2 . . . γs(p+1)+j+2

] .

(63)
Further, from (62) it is easy to check that the denominator in (63) is the development of

the determinant ∆
(j)
s+2 by its last column. Thus γm(p+1)+j+2 can be defined as in (62) for

m = 0, 1, . . . , p − j − 2.

Finally, we study the entries ν
(j+1)
k , k = p− j, . . . , p of ν(j+1). We want to prove

(z − C)νj+k+1−p

[
zsP (j+1)

n

]
= 0, n ≥ sp+ k (64)

(z − C)νj+k+1−p

[
zsP

(j+1)
sp+k−1

]
6= 0, (65)

because this means, from (2), that (z − C)νj+k+1−p is the entry k of a vector of p-

orthogonality for {P
(j+1)
n }.

Lemma 4 implies

(z − C)νj+k+1−p

[
zsP

(p)
m

]
= 0, m ≥ sp+ j + k + 1− p

(z − C)νj+k+1−p

[
zsP

(p)
sp+j+k−p

]
6= 0.





(66)

In addition, since (31), for any Darboux factorization,



P
(j+1)
0

P
(j+1)
1
...


 = L(j+2)




P
(j+2)
0

P
(j+2)
1
...


 = · · · = L(j+2)L(j+3) . . . L(p)




P
(p)
0

P
(p)
1
...


 .

Thus, P
(j+1)
n can be expressed in terms of the entries in the (n+1)-th row of L(j+2)L(j+3) . . . L(p)

and the sequence {P
(p)
n }. From this, taking into account that L(j+2)L(j+3) . . . L(p) is a lower

triangular (p− j)-banded matrix, we see

P (j+1)
n =

n∑

r=n+j−p+1

αrP
(p)
r , n ≥ 0 (with αn = 1).

Hence,

(z − C)νj+k+1−p

[
zsP (j+1)

n

]
=

n∑

r=n+j−p+1

αr(z − C)νj+k+1−p

[
zsP (p)

r

]
(67)

and, using (66), we see that each term on the right hand side of (67) vanishes when
n ≥ sp+ k. Thus (64) is verified.

To see (65), if n = sp + k − 1 in (67), then using (66) on the right hand side of (67)
we have

sp+k−1∑

r=sp+k+j−p

αr(z − C)νj+k+1−p

[
zsP (p)

r

]
= αsp+k+j−p(z − C)νj+k+1−p

[
zsP

(p)
sp+j+k−p

]
6= 0 .

�
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Remark 3 Note that, if ∆
(j)
s 6= 0 for s = 0, 1, . . . , p −m− 1 and j = 1, · · · ,m− 1, then

there exist m bidiagonal matrices L(1), . . . , L(m) such that

J − CI = L(1) · · ·L(m)L̃U,

where L̃ is a lower triangular matrix (non bidiagonal, in general). However, if ∆
(m)
s = 0

for some s ∈ {0, . . . , p − m − 2} then we can not assure the existence of a Darboux
factorization (11) of J −CI such that ν(m+1) is defined as in (17).
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