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Abstract

We study reflectionless properties at the boundary for the wave
equation in one space dimension and time, in terms of a well-known
matrix that arises from a simple discretisation of space. It is known
that all matrix functions of the familiar second difference matrix rep-
resenting the Laplacian in this setting are the sum of a Toeplitz matrix
and a Hankel matrix. The solution to the wave equation is one such
matrix function. Here, we study the behaviour of the correspond-
ing waves that we call Toeplitz waves and Hankel waves. We show
that these waves can be written as certain linear combinations of even
Bessel functions of the first kind. We find exact and explicit formulae
for these waves. We also show that the Toeplitz and Hankel waves
are reflectionless on even, respectively odd, traversals of the domain.
Our analysis naturally suggests a new method of computer simula-
tion that allows control, so that it is possible to choose — in advance
— the number of reflections. An attractive result that comes out of
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our analysis is the appearance of the well-known shift matrix, and also
other matrices that might be thought of as Hankel versions of the shift
matrix. By revealing the algebraic structure of the solution in terms
of shift matrices, we make it clear how the Toeplitz and Hankel waves
are indeed reflectionless at the boundary on even or odd traversals.
Although the subject of the reflectionless boundary condition has a
long history, we believe the point of view that we adopt here in terms
of matrix functions is new.

keywords Toeplitz waves, Hankel Waves, One–way waves,
Bessel functions, Matrix functions

MSC 65N06, 15A60, 65F30, 65F60

1 Introduction

“One–way waves” are similar to solutions of wave equations but they move
in only one direction, and exhibit no propagation in the opposite direction.
They are important in the subject of absorbing boundary conditions [4]. Tre-
fethen & Halpern study the well-posedness of one–way wave equations, and
they give a nice overview of the history [16]. The literature on reflectionless
boundary conditions, and on applications of Bessel function expansions to
waves, is extensive. We do not attempt a survey here. An incomplete list
of authors includes: Grote, Keller, Givoli, Bayliss & Turkel, Higdon, Ting
& Miksis, Lubich & Schadle, Alpert, Greengard & Hagstrom. Particular
attention is paid to the issue of whether or not the proposed reflectionless
boundary conditions are exact or approximate, and whether or not the condi-
tions are local or global. There are also important connections to the Kirchoff
formula and to the Dirichlet–to–Neumann map, and to Born series, that we
do not consider here.

We distinguish three settings:

• Fully continuous: both time and space are continuous. The reflec-
tionless boundary condition is the Sommerfeld condition, which in our
setting might be applied by imposing

du

dx
= ±du

dt
(1)
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on the solution u(x, t) at the left and right boundaries. The choice of
the plus or minus sign depends on whether the wave is traveling left or
right. Notice this condition (1) is local in time and local in space.

• Fully discrete: Both time and space have been discretized. Engquist
& Majda [5, Equation (5.3)] address the issue of the nature of the
condition in this setting. Their reflectionless boundary condition is not
a simple expression. It is not local in time and it is not local in space.

• Semi-discrete: time remains continuous and space is discretized. Intu-
itively, we expect the conditions to be local in time, and non-local in
space. This situation has been studied by Halpern [7, Section 3].

A well-known model in these settings is a set of masses connected by linear
springs, which can be generalised to higher dimensions through an array
of springs. The resulting framework is then a linear system of ordinary
differential equations.
The focus of our article is on the semi-discrete setting, where time remains
continuous. However, from equation (28) onwards we find it more convenient
to evaluate our expressions at certain discrete time points. (Note that our
evaluations here are exact for the semi-discrete setting, as opposed to what
is commonly done in the literature in the ‘fully-discrete’ setting where some
further approximation is introduced.) In our semi-discrete setting, the solu-
tion to the wave equation can be thought of as a matrix function [15]. Very
recently Nadukandi & Higham have shown how to efficiently compute these
wave–kernel matrix functions [11].

It is important to note that our purpose in this article is not to study
the reflectionless boundary condition per se, nor to study the big field of
inverse problems to which it relates; these topics already have an extensive
literature. The boundary condition in particular, is an old problem that has
been studied by many authors; among the early literature, perhaps the work
of Halpern [7] is closest to our own framework. Instead, our purpose is to
reveal the properties of the Toeplitz waves and the Hankel waves that we will
introduce later. During the course of our analysis, it transpires that these
Toeplitz and Hankel waves possess some attractive reflectionless properties.

We revisit the problem with a new perspective, by carefully revealing the
algebraic structure of those matrix functions. We find particularly explicit
and exact formulas. An attractive outcome of our perspective is to show
that the travelling wave can be considered as the sum of two waves that we
call the Toeplitz wave and the Hankel wave. We show that these waves can
be written as certain linear combinations of even index Bessel functions of
the first kind. These expansions, as we will explain, make it clear that the
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Toeplitz wave and Hankel wave are reflectionless on even, respectively odd,
traversals of the domain.

In section 2, we give some background on Toeplitz and Hankel matrix
functions. In section 3, we show how to write a travelling wave as the sum
of two waves that we call a Toeplitz wave and a Hankel wave. In section 4,
we give analytic expressions for the Toeplitz and Hankel waves in terms of
certain sums of even index Bessel functions of the first kind. In section 5, we
show simulations of these waves using the methods of Nadukandi & Higham
[11], and also using methods inspired by our analytic expressions. With our
analysis, we are now able to algebraically explain interesting behaviours that
have previously been observed in numerical simulations in the literature [9].
We also showcase another benefit of our analysis, namely that it suggests a
method of simulation that allows us to choose, in advance, the number of
reflections. The paper concludes in section 6 with some observations and
discussion for future work.

2 Toeplitz–plus–Hankel matrix functions

This section collects together some of the key results from [15] concerning
Toeplitz-plus-Hankel matrix functions that we will need later.

The central difference approximation to the Laplacian, which in one space
dimension is simply the second derivative, − ∂2

∂x2
, is K/h2, where K is the

N ×N tridiagonal, symmetric positive definite Toeplitz matrix:

K =


2 -1
-1 2 -1

. . .
. . .

. . .

-1 2 -1
-1 2

 (2)

and

h =
1

N + 1
. (3)

We can diagonalize the matrix K = V ΛV > =
∑N

k=1 λkvkv
>
k where the

eigenvalues appear in the diagonal matrix Λ and where the eigenvectors
form the columns of V . Given a function f of a scalar argument, we define
a matrix function [8] via diagonalization:

f(K) = V f(Λ)V > =
N∑
k=1

f(λk)vkv
>
k . (4)
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The eigenvalues of the matrix in (2) are:

λk = 2− 2 cos(kπh), k = 1, . . . , N, (5)

and the eigenvectors are:

vk =
√

2h
(

sin(kπh), sin(2kπh), . . . , sin(Nkπh)
)>
, k = 1, . . . , N. (6)

With these explicit expressions, the (m,n) entry of the matrix function is

f(K)m,n = 2h
N∑
k=1

f(λk) sin(mkπh) sin(nkπh). (7)

Recall that Toeplitz matrices are those with constant diagonals, whereas
Hankel matrices have constant anti-diagonals. We now define the strong
Toeplitz-plus-Hankel property (as in [15]): a matrix has the strong Toeplitz-
plus-Hankel property when all matrix functions are the sum of a Toeplitz
matrix and a Hankel matrix. For the purpose of this definition and this
article, we only consider matrices that are diagonalizable, and by all matrix
functions, we only consider those functions that come via diagonalization,
as defined above. The strong Toeplitz-plus-Hankel property is equivalent to
requiring that each rank one projection matrix coming from the eigenvectors,
can be written as a sum of a Toeplitz matrix and a Hankel matrix. The matrix
K has this strong property, as we will now demonstrate.

Entries of the rank one symmetric matrices, denoted vkv
>
k that project

onto eigenspaces, are products of sines, of the form sin(mθ) sin(nθ). Recall
the trigonometric identity

2 sin θ1 sin θ2 = cos(θ1 − θ2)− cos(θ1 + θ2). (8)

Thus each entry in vkv
>
k can be written as the sum of a term of the form

cos((m− n)θ) that leads to a Toeplitz matrix, and another term of the form
cos((m + n)θ) that leads to a Hankel matrix. Thus, for k = 1, . . . , N , the
rank one matrix

vkv
>
k = Tk +Hk (9)

is the sum of a Toeplitz matrix, with (m,n) entries(
Tk
)
m,n

= h cos
(
(m− n)kπh

)
(10)

and a Hankel matrix (
Hk

)
m,n

= −h cos
(
(m+ n)kπh

)
, (11)
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recalling that h = 1
N+1

.
A sum of Toeplitz matrices is again a Toeplitz matrix, and similarly

Hankel matrices are closed under addition. Recalling (4), (7) and (9), we see
that as K has the strong Toeplitz-plus-Hankel property, all matrix functions
of K are the sum of a Toeplitz matrix and a Hankel matrix:

f(K) =
N∑
k=1

f(λk)(Tk +Hk) =
N∑
k=1

f(λk)Tk︸ ︷︷ ︸
Toeplitz

+
N∑
k=1

f(λk)Hk︸ ︷︷ ︸
Hankel

. (12)

A few observations are noteworthy. In general, a matrix cannot be written
exactly as the sum of a Toeplitz matrix and a Hankel matrix.
When it is possible to express a matrix exactly as the sum of a Toeplitz ma-
trix and a Hankel matrix, the Toeplitz-plus-Hankel splitting is not unique.
The reason is that there is a two dimensional space of matrices that are
simultaneously both Toeplitz and Hankel (examples of such matrices are dis-
played in (35)). One possible basis for that space is formed by two matrices:
the all ones matrix, in which every entry is 1, and the checkerboard matrix
in which every entry is of magnitude 1, together with an alternating pattern
of ± signs. Thus there is a somewhat arbitrary choice as to where to include
these matrices (they could go into either the Toeplitz part or the Hankel
part, possibly also with some weighting). In this article we always make the
particular choice that is implicit when we use (10) and (11).

It is helpful to consider the action of the Toeplitz and Hankel parts on a
vector ‘input.’ To illustrate this action, consider the so-called shift matrix,
which is an example of a Toeplitz matrix. In this particular example, we see
the action is a ‘forward shift’ that preserves the orientation of the input:

1
1

1
1




0
a
b
c
0

 =


0
0
a
b
c

 . (13)

Define N ×N shift matrices E1, · · · , EN−1 where Ek corresponds to the ma-
trix with 1 on the kth upper subdiagonal and 0 elsewhere. We will need these
matrices later in (32). Let E0 = I be the identity matrix. These matrices and
their transposes form a natural basis, {E0, E1, . . . , EN−1, E

>
1 , . . . E

>
N−1}, for

the space of N ×N Toeplitz matrices. That is, an arbitrary N ×N Toeplitz
matrix T , with first row t0, t1, . . . tN−1 and first column t0, t

1 . . . , tN−1, is a
linear combination of these shift matrices: T = t0I + t1E1 . . . tn−1EN−1 +
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t1E>1 + . . . tN−1E>N−1. Thus, we can think of the action of the Toeplitz ma-
trix as a linear combination of these shifts [6]. Likewise, to illustrate the
action of a Hankel matrix, consider the ‘Hankel version of the shift matrix.’
In this example, we see a ‘backward shift’ (which is also known as a reversal
permutation) that reverses the orientation of the input:

1
1

1
1




0
a
b
c
0

 =


c
b
a
0
0

 . (14)

We define a set of such N ×N matrices, with ones on a backwards diagonal
and which we denote by Fk, and which are depicted later in (39). These
matrices are related to the shift matrices by multiplying by the anti-identity
matrix J , that is Fk = JEk for k = 1, . . . , N − 1, FN = JE0 = JI = J , and
FN+k = JE>k for k = 1, . . . , N − 1. The set of matrices {Fk} form a natural
basis for the space of N ×N Hankel matrices. That is, an arbitrary Hankel
matrix H can be written as a linear combination H = h1F1 + . . . h2N−1F2N−1,
where the weights hk in the combination come from the backward diagonals
of the Hankel matrix.

3 The wave equation is Toeplitz–plus–Hankel

This section summarizes observations from [9] that we will need later. It
transpires that the Toeplitz part of the solution to the wave equation can be
thought of as a type of solution that does not feel the boundaries on even
traversals of the domain, whereas the Hankel part of the solution does not
feel the boundaries on odd traversals of the domain.

Consider the wave equation

∂2

∂t2
u =

∂2

∂x2
u (15)

on the domain−1 ≤ x ≤ 1 with zero Dirichlet boundary conditions u(−1, t) =
u(1, t) = 0. In the semi-discrete setting, the continuous wave equation (15) is
approximated on an equally spaced grid of points −1, . . . ,−∆x, 0,∆x, . . . , 1,
with spacing ∆x = 2/(N − 1), by the linear system of ordinary differential
equations

d2

dt2
u = − K

∆x2
u (16)
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with the matrix from (2). It can be quickly checked by differentiating twice
that a solution to our semi-discrete model in (16) is the matrix function

u(t) = f(K)u(0) = cos

(
±t
√
K

∆x

)
u(0). (17)

Here we are also using the square root matrix function, and we restrict at-
tention to the special case of a wave equation involving a symmetric graph
Laplacian, of which the matrix K in (2) is an example. This solution (17)
could be compared with the representations of the solutions presented by
Nadukandi & Higham [11], who are able to efficiently compute solutions
to the wave equation, even in the more general situation where the graph
Laplacian matrix in question is not symmetric.

A second order differential equation such as (16) requires two initial con-
ditions. In our solution (17), we are assuming an initial condition u(0), and
we are also assuming zero initial velocity. If the initial velocity, u

′
(0), is not

zero then the solution involves an extra term:

u(t) = cos

(
t

√
K

∆x

)
u(0) + ∆xK−

1
2 sin

(
t

√
K

∆x

)
u

′
(0). (18)

Our article focuses on the solution in (17).
To connect this solution (17) to the matrix function point of view let us

make the particular choice of function

f(z) ≡ cos

(
t

√
z

∆x

)
. (19)

Define

T ≡
N∑
k=1

f(λk)Tk (20)

with Tk as in (10) but now h = ∆x = 2
N−1

, and

H ≡
N∑
k=1

f(λk)Hk, (21)

with Hk as in (11). The spacing ∆x = 2
N−1

is chosen so that the mesh
consists of N equally-spaced points, including the endpoints -1 and 1. Now
via (12), the solution (17) to the wave equation is the sum of a Toeplitz wave,
Tu(0), and a Hankel wave, Hu(0). That is,

u(t) = f(K)u(0) = Tu(0)︸ ︷︷ ︸
Toeplitz wave

+ Hu(0).︸ ︷︷ ︸
Hankel wave

(22)
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Next, we seek to to obtain explicit expressions for the Toeplitz and Hankel
waves in terms of certain finite sums of Bessel functions of the first kind.

4 Expressions for the Toeplitz and Hankel

waves as certain sums of Bessel functions

In this section we derive explicit representations of the Toeplitz and Han-
kel waves on a symmetric one dimensional domain with a symmetric initial
condition. We will show that the nonconstant Toeplitz wave traverses the
domain on odd traversals of the domain (the first traversal is a half traver-
sal), while the nonconstant Hankel wave appears on even traversals. These
explicit expressions are given as a finite sum of even Bessel functions of the
first kind and the number of traversals appears as a parameter on the to-
tal number of Bessel functions required. In order to construct the Toeplitz
and Hankel waves we need some preliminary lemmas and definitions, some
of which we collect from section 2, but here we specialise the expressions to
a more convenient form.

Lemma 4.1. Let K = tridiag(−1, 2,−1) be the N × N tridiagonal matrix
with 2 on the diagonal and -1 on the first upper and lower subdiagonals as
displayed in (2); then the eigenvalues λk, k = 1, · · · , N of K satisfy√

λk = 2 sin
kπ

2(N + 1)
, k = 1, · · · , N. (23)

Proof. From (5) and with

λk = 2− 2 cos
kπ

N + 1
= 2(1− cos

kπ

N + 1
) = 4 sin2 kπ

2(N + 1)
,

the result follows.

We now consider the spatially discretised wave equation based on the
central difference approximation on [−1, 1] with constant discretisation ∆x =

2
N−1

, N is odd. Note that in the case N is odd, then 0 is always in the set

of mesh points. Hence the discretised spatial operator is 1
(∆x)2

K and the
travelling wave is given by

u(t) = f

(
t

∆x

√
K

)
u(0), (24)
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where f denotes the matrix function cos
(

t
∆x

√
K
)

. We note that the eigen-

values of this matrix cos
(

t
∆x

√
K
)

are

f(λk) = cos

(
t

∆x

√
λk

)
= cos

(
2
t

∆x
sin

kπ

2(N + 1)

)
, k = 1, · · · , N. (25)

We can now define the Toeplitz and Hankel components of this matrix
function. They are

TP(t) =
N∑
k=1

cos

(
t

∆x

√
λk

)
Tk =

N∑
k=1

cos

(
2
t

∆x
sin

kπ

2(N + 1)

)
Tk

(26)

HK(t) =
N∑
k=1

cos

(
t

∆x

√
λk

)
Hk =

N∑
k=1

cos

(
2
t

∆x
sin

kπ

2(N + 1)

)
Hk.

Hence the Toeplitz and Hankel waves are

T (t) = TP(t)u0, H(t) = HK(t)u0 (27)

where the full wave is
u(t) = T (t) +H(t).

The choice of notation T (t) and H(t) indicates the close relationship to the
matrices appearing in (20), (21), and (22).

In what follows, we will sample time at equally-spaced time points with
t = j∆t, j a positive integer. We are now discretising in time, but note
that we are still evaluating the semi-discrete model (where time remains
continuous) exactly at these chosen discrete time points. This is as opposed
to what is usually termed a ‘fully discrete’ model, where some additional
approximation is introduced. We will also assume without loss of generality
that ∆t = ∆x.

Now the Toeplitz and Hankel waves are

T (j∆t) =
N∑
k=1

cos

(
2j sin

kπ

2(N + 1)

)
Tku0

(28)

H(j∆t) =
N∑
k=1

cos

(
2j sin

kπ

2(N + 1)

)
Hku0.
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The expressions in (28) lead us to consider Bessel functions Jl(t) of the
first kind. In the following, we list some lemmas which yield some important
properties of the Bessel functions.

Lemma 4.2. The Bessel functions of the first kind, α real, are

Jα(t) =
∞∑
m=0

(−1)m

m! Γ(1 + α +m)

(
t

2

)α+2m

.

For integer values of the index α, the following properties hold.

Jn(t) =
1

π

∫ π

0

cos(ns− t sin(s))ds.∫ ∞
0

1

t
Jn(t)Jl(t)dt =

2

π

sin(π
2
(n− l))

n2 − l2
.

µ−αJα(µt) =
∞∑
m=0

1

m!

(
(1− µ2)t

2

)m
Jα+m(t).

For non-negative integers n, Jn has an infinite number of zeros and Siegel’s
Theorem states that for any integers n ≥ 0 and p ≥ 1, Jn and Jn+p have no
common zeros other than t = 0. (See, for example, Abramowitz and Stegun
[1]). The following Lemma 4.3 gives us the well-known Bessel relation, which
will be fundamental for our analysis.

Lemma 4.3. The Bessel relation is given by

cos(t sinx) = J0(t) + 2
∞∑
l=1

J2l(t) cos(2lx).

As a consequence of Lemma 4.3,

cos(2j sin
kπ

2(N + 1)
) = J0(2j) + 2

∞∑
l=1

J2l(2j) cos(l
kπ

N + 1
). (29)

It is clear that we can use (29) in simplifying the expressions for the
Toeplitz and Hankel waves in (28). In particular we can rewrite (28) as

T (j∆t) = J0(2j)

(
N∑
k=1

Tk

)
u0 + 2

∞∑
l=1

J2l(2j)

(
N∑
k=1

cos

(
klπ

N + 1

)
Tk

)
u0.
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H(j∆t) = J0(2j)

(
N∑
k=1

Hk

)
u0 + 2

∞∑
l=1

J2l(2j)

(
N∑
k=1

cos

(
klπ

N + 1

)
Hk

)
u0.

Using the definition of the Toeplitz and Hankel matrices in (10) and (11)
and the trigonometric relation

2 cos θ1 cos θ2 = cos(θ1 + θ2) + cos(θ1 − θ2),

then we can write that component m, m = 1, · · · , N of the vectors T (j∆t)
and H(j∆t) are

(N + 1)Tm(j∆t) = J0(2j)
N∑
n=1

N∑
k=1

cos

(
(m− n)

kπ

N + 1

)
u0

+
∞∑
l=1

J2l(2j)
N∑
n=1

N∑
k=1

(
cos

(
(l +m− n)

kπ

N + 1

)
+ cos

(
(l − (m− n))

kπ

N + 1

))
u0 (30)

−(N + 1)Hm(j∆t) = J0(2j)
N∑
n=1

N∑
k=1

cos

(
(m+ n)

kπ

N + 1

)
u0

+
∞∑
l=1

J2l(2j)
N∑
n=1

N∑
k=1

(
cos

(
(l +m+ n)

kπ

N + 1

)
+ cos

(
(l − (m+ n))

kπ

N + 1

))
u0. (31)

A reminder about notation may be helpful here: Tm(t) denotes component
m of the time-varying vector that is the Toeplitz wave at time t that was
introduced in (28), whereas Tk is the matrix defined in (10).

In order to make further progress we use the following lemma, which is
known as the Lagrange identity, and a subsequent lemma.

Lemma 4.4. Let

L(θ) :=
N∑
k=1

cos kθ.

If the angle is not an integer multiple of 2π, i.e. θ 6= 2ρπ, ρ an integer, then

L(θ) = −1

2
+

sin((N + 1
2
)θ)

2 sin θ
2

.

Otherwise, if θ = 2ρπ, then L(θ) = N .

12



Proof. Consider
∑N

k=1 e
ikθ. Then use De Moivre’s Theorem and equate real

and imaginary parts.

Lemma 4.5. For θ = p π
N+1

, with p an integer, the following identity holds
true:

L(θ) =


N , p = 2ρ(N + 1), ρ = 0, 1, 2, · · ·
0 , p is odd
−1 , p is even (and p 6= 2ρ(N + 1), ρ = 0, 1, 2, · · · )

Proof. If θ = p π
N+1

with p = 2ρ(N+1), then θ = 2pρπ and clearly L(θ) = N .
Otherwise using the relationship

sin(A−B) = sinA cosB − cosA sinB

gives

L(θ) = −1

2
+

sin((N + 1)θ − θ
2
)

2 sin θ
2

= −1

2
+ sin pπ

cos θ
2

2 sin θ
2

− 1

2
cos pπ

= −1

2
(1 + cos pπ).

which is 0 or −1 according to the parity of p.

We will use Lemma 4.5 to simplify the Toeplitz wave and the Hankel
wave formulation given in (30) and (31). In the case of the Toeplitz wave,
θ can take on the values (m− n) π

N+1
, (l +m− n) π

N+1
, (l − (m− n)) π

N+1
so

p = m−n, l+m−n or l− (m−n). Therefore we must take care when these
values of p are of the form p = 2ρ(N + 1), ρ = 0, 1, 2, · · · . Similarly, in the
case of the Hankel wave, the corresponding p values are m+ n, l+m+ n or
l − (m+ n).
We now introduce a parameter R ∈ {0, 1, 2, . . . , }. The integer R will be used
as an upper limit for the number of terms in a sum, in the expressions below.
We will separate the cases in which the indices take the values p = 2ρ(N+1),
ρ = 0, 1, · · · , R− 1, from the other values of p.

We note m− n can take on values k, say, where k = −(N − 1), · · · ,−1,
0, 1, · · · , (N − 1). Hence for ρ = 0, 1, . . . with p = 2ρ(N + 1) then

2l = 4(N + 1)ρ∓ 2k

and the corresponding L(θ) = N in these cases. We will now simplify the
expression (N + 1)T (j∆t) in vector form.

13



If m− n = 0 then there is a component of the Toeplitz wave

N

(
J0(2j) + 2

R−1∑
ρ=1

J4(N+1)ρ(2j)

)
u0.

Similarly, if |m−n| = k, k = 1, · · · , N−1, then we can use the shift matrices
E1, · · · , EN−1 where Ek introduced earlier.

Introducing the vectors νk, k = 0, · · · , N − 1, where

ν0 = u0

νk = (Ek + E>k )u0, k = 1, · · · , N − 1

leads to the first part of the Toeplitz wave as

F = N

((
J0(2j) + 2

R−1∑
ρ=1

J4(N+1)ρ+2k(2j) + J4(N+1)ρ−2k(2j)

)
νk

)
. (32)

We will write the factor at the front as (N + 1 − 1). Subtracting off this
term and reincorporating into (30) and then using Lemma 6 with L(θ) either
0 or -1 and finally dividing throughout by N + 1 leads to

T (j∆t) = (J0(2j) + 2
R−1∑
ρ=1

J4(N+1)ρ(2j))ν0 (33)

+
N−1∑
k=1

(
J2k(2j) +

R−1∑
ρ=1

(J4(N+1)ρ+2k(2j) + J4(N+1)ρ−2k(2j))

)
νk

− X,

where

(N + 1)X = (J0(2j)A+ 2
∞∑
l=1

J4l(2j)A+ 2
∞∑
l=1

J4l−2(2j)B)u0, (34)

where A and B are the N×N matrices (as an aside, notice that these matrices
have the special property that they are simultaneously both Toeplitz and
Hankel)

A =


1 0 1 0 1 · · ·
0 1 0 1 0 · · ·
1 0 1 0 1 · · ·
...

...
...

...
...

. . .

 , B =


0 1 0 1 0 · · ·
1 0 1 0 1 · · ·
0 1 0 1 0 · · ·
...

...
...

...
...

. . .

 . (35)
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The expression for the term X above in eq. (34) is complicated. It will
be helpful to simplify this expression for X because this will simplify the
expression we obtain later for the Toeplitz wave. This simplification is made
possible by Lemma 4.6 and Lemma 4.7, as follows.

Lemma 4.6. The following relationships hold:

J0(t) + 2
∞∑
L=1

J4l(t) =
1

2
(1 + cos t)

2
∞∑
l=1

J4l−2(t) =
1

2
(1− cos t).

Proof. From Lemma 4.3, the Bessel relations, we have

cos(t sin π) = 1 = J0(t) + 2
∞∑
l=1

J4l−2(t) + 2
∞∑
l=1

J4l(t),

cos(t sin
π

2
) = cos t = J0(t)− 2

∞∑
l=1

J4l−2(t) + 2
∞∑
l=1

J4l(t).

The relationships claimed in the lemma are obtained by addition and sub-
traction of these two equalities, and noticing cancelation of terms.

We can now simplify X by applying Lemma 4.6.

Lemma 4.7.

X =
1

2(N + 1)
(αe+ β cos(2j)w),

where e = (1, 1, · · · , 1)>, w = (1,−1, 1,−1, · · · , 1)>, α = e>u0, β = w>u0.

Proof. From (34) and Lemma 4.6

(N + 1)X =
1

2
(1 + cos 2j)Au0 +

1

2
(1− cos 2j)B u0

=
1

2
(A+B)u0 +

1

2
cos 2j(A− b)u0

=
1

2
e e> u0 +

1

2
cos 2jww> u0,

and the result is proved.

We can now write the characterisation of the Toeplitz wave over the R
traversals in two ways: either in terms of the vectors νk (Theorem 4.1) or
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increasing values of the Bessel indices (Corollary 4.1.1). A reason to seek
results such as these is that they allow us to express the wave as a sum over
the number of traversals, which is useful later in computer simulations when
we want to control the number of reflections, for example.

Theorem 4.1. The Toeplitz wave over R traversals is

T (j∆t) = (J0(2j) + 2
R−1∑
ρ=1

J4(N+1)ρ(2j))ν0

+
N−1∑
k=1

(
J2k(2j) +

R−1∑
ρ=1

(J4(N+1)ρ+2k(2j) + J4(N+1)ρ−2k(2j))

)
νk

− 1

2(N + 1)
(α e+ β cos(2j)w), (36)

where α = e>u0, β = w>u0, e = (1, · · · , 1)>, w = (1,−1, · · · , 1)>, ν0 = u0,
and νk = (Ek + E>k )u0, k = 1, · · · , N − 1.

We can rewrite (36) in the ascending index of the Bessel function.

Corollary 4.1.1. The Toeplitz wave over R traversals is

T (j∆t) =
N−1∑
l=0

J2l(2j)νl +
R−1∑
ρ=1

(
N−1∑
l=0

J4(N+1)ρ−2l(2j)νl

+
N−1∑
l=0

J4(N+1)ρ+2l(2j)νl

)
− 1

2(N + 1)
(αe+ β cos(2j)w). (37)

We can observe from (37) that the J4(N+1)ρ term is repeated twice and
there are always three missing terms when moving to the next traversal - e.g.
J2N , J2(N+1), J2(N+2) or J6N+4, J6N+6, J6N+8, etc.

We can now construct the Hankel wave based on (31). We must consider
the cases where p = 2ρ(N+1), ρ = 0, · · · , R−1 where now p = m+n, l+m+n
or l − (m+ n). Let m+ n = k; then k can take values 2, 3, · · · , 2N . Hence

l ± k = 2ρ(N + 1)

so
2l = 4(N + 1)ρ∓ 2k, k = 2, · · · , 2N, ρ = 0, · · · , R− 1. (38)

For these values L(θ) = N .
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Let F1, · · · , F2N−1 be the N ×N Hankel matrices in which 1’s are on the
kth backwards subdiagonal of Fk, and all other entries are zero. That is,

F1 =


1 0 · · · 0
0 0 · · · 0

· · ·
0 0 · · · 0

 , F2 =


0 1 0 · · · 0
1 0 0 · · · 0

· · ·
0 0 0 · · · 0

 , · · · ,

FN =


0 · · · 0 1
0 · · · 1 0

. .
.

1 · · · 0 0

 , · · · , F2N−1 =


0 0 · · · 0 0
0 0 · · · 0 0

· · ·
0 0 · · · 0 1

 . (39)

Then we can construct the vector H(j∆t) for these values of l given in (38).
It is easy to show that this leads to the term

−
2N−1∑
k=1

(Fk + F2n−k)
R−1∑
ρ=0

J4ρ(N+1)+2k+2(2j)u0.

By the same argument as for the Toeplitz wave, the remaining component is

1

2(N + 1)
(αe+ β cos(2j)w).

This leads to Theorem 4.2.

Theorem 4.2. The Hankel wave over R traversals is

H(j∆t) =
1

2(N + 1)
(αe+ β cos(2j)w)

−
2N−1∑
k=1

(Fk + F2n−k)
R−1∑
ρ=0

J4ρ(N+1)+2k+2(2j)u0. (40)

In a way that is analogous to what we did for the Toeplitz wave, we rewrite
(40) for the Hankel wave in the ascending index of the Bessel function.

Corollary 4.2.1. The Hankel wave over R traversals is

H(j∆t) =
1

2(N + 1)
(αe+ β cos(2j)w)

−
R−1∑
ρ=0

2N−1∑
l=1

J4ρ(N+1)+2l+2(2j)ψl, (41)

where
ψl = (Fl + F2N−l)u0, l = 1, · · · , N − 1

and so ψ2N−l = ψl, l = 1, · · · , N .
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In the case of the Hankel wave we can see that similarly to the Toeplitz
wave there are three missing terms when moving to the next traversal - e.g.
J4N+2, J4N+4, J4N+6, but the indices are shifted by 2(N+1) from the Toeplitz
case, which of course corresponds to a shift by the length of the domain.

5 Simulations: The reflectionless properties

of the Toeplitz and Hankel waves

We can now perform computer simulations of the semi-discrete model (16)
by computing the solution in (17). That solution (17) and thus a simulation
are computed via the wave-kernel matrix function software of Nadukandi &
Higham [11]. For reference, the solution coming from d’Alembert’s formula
(as if the problem were on the whole real line with no boundaries) is also
included. Separately, we can also simulate the Toeplitz waves in two different
ways, using either (20) or the Bessel expansions (36). Likewise, we can
simulate the Hankel waves in two different ways, using either (21) or (40).
The sum of the Toeplitz wave and the Hankel wave is always exactly equal
to the solution to the wave equation with Dirichlet conditions, as in (22),
and this property is consistent with results of the simulations, as expected.

Consider the simulation in fig. 1. The simulation begins with a smooth
symmetric Gaussian, centered on x = 0 as an initial condition. Figure 1
shows the solution at three time-points: before, during, and after the first
moment at which the wave reaches the boundary. The following points are
notable.

• Before the wave reaches the boundary (this corresponds to t ≤ 1), the
solution is “purely Toeplitz” and the Hankel part of the solution is
a spatial and temporal constant that is nearly zero – this constant is
discussed in section 6.

• After the wave reaches the boundary, the opposite is true: the solution
is “purely Hankel,” and the Toeplitz part of the solution is a constant.
(And this constant is of the opposite sign to the constant in the dot
point above.) This corresponds to 1 ≤ t ≤ 3.

• If the simulation is run for larger time values, then this behaviour is
repeated, in the sense that on any even traversal the Toeplitz wave is
constant, while on any odd traversal the Hankel wave is constant.

Naively, one might be tempted to incorporate the condition (1) into sim-
ulations in the semi-discrete setting, in the hope of achieving a reflectionless
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boundary condition. Unfortunately this leads to disappointment; such a sim-
ulation does show reflections at the boundary (albeit small reflections that
can be reduced by refining the discretization). The issue is that the condi-
tion (1) is only reflectionless in the fully continuous setting, whereas in com-
puter simulations, there must be some type of discretization (for example,
in the semi-discrete setting, we might try a finite difference approximation).
With this in mind, the reflectionless behaviour that can be achieved with the
Toeplitz and Hankel waves on even or odd traversals of the domain (fig. 1) for
which we have derived exact methods of simulation, and an accompanying
analysis to explain the behaviour, is especially satisfying.

In fig. 2 we show the Toeplitz wave (top left) computed via (20) or (36)
with R = 3 and t = 3.7 on the third traversal, and the Hankel wave computed
via (21) or (40) with R = 3 and t = 5.7 on the fourth traversal (top right).
The good agreement that we see numerically between these two different
methods of computing the solution is a check that the theorems and formulas
that we present are correct. The bottom left panel shows the Toeplitz wave
computed via (20) or (36) with R = 3 and t = 2πR + 1. This purpose of
this example is to illustrate that the formulas (36) we derive are a constant,
near zero, for all t > 2πR+1, whereas the exact solution to the semi-discrete
problem may be complicated for large t. This panel also showcases our ability
to control and choose in advance the number (through the choice of R) of
reflections in a simulation. The effect of reducing the spatial discretization
error can be seen by comparing the top right panel (N = 301) with the
bottom right panel (N = 1001). (Note that our formulas for the semi-
discrete problem are exact, and the computations of the solution to the semi-
discrete problem shown here are so accurate that they may be regarded as
exact solutions. The phrase discretization error here is used to indicate the
comparison of the solution of the continuous problem to the semi-discrete
solution.) With a smaller N , and thus a larger dicretization error, we see
that the semi-discrete problem becomes more oscillatory.

The integer R ∈ {0, 1, 2, . . .} appears in our formulas (36) and (40) as
the number of terms in a sum. That number R can be chosen by the user.
The figures illustrate that R can be thought of as the number of full wave
traversals of the whole domain. For example, the choice R = 0 would allow
simulation of the top panel of fig. 1, starting from an initial condition that is
symmetric about x = 0, and simulating the first half traversal of the domain.
Whereas to use the formulas to simulate the bottom panel of fig. 1, would
require choosing R ≥ 1 .

Two benefits that our analysis brings to these simulations are notewor-
thy. First, we are able to choose in advance the number of reflections. For
example, we could ask for a simulation that allows exactly two reflections, by
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choosing R = 2. In such a simulation, after the second reflection, the Toeplitz
waves and the Hankel waves (computed using our formulas that involve sum-
mation to an upper limit R) vanish for all larger values of time. This is not
possible with existing methods of simulation, such as via the software for the
wave-kernel matrix functions [11] that we have also included for comparison
here. Second, we are able to explain why the Toeplitz wave is reflection-less
(on even traversals of the domain) in simulations. For example, we are able
to explain why the Toeplitz wave is perfectly reflection-less the very first time
it hits the boundary. This would not be possible without the expressions for
the Toeplitz wave that we derived.

6 Discussion and Future Work

Based on our previous analysis, we can make a number of observations.

• The term X = 1
2(N+1)

(αe + β cos(2j)w) is a function of the spatial
discretisation error in the sense that as N increases, this term converges
linearly to some limit that depends on the initial condition.

• For the initial condition

u0 =
1√
2πσ

e−
x2

2σ2 , x ∈ [−1, 1], σ = 0.05

then we can show

α = e> u0 =
1

2
(N − 1)

and β = w>u0 is essentially 0 for even modest values of N , e.g. N =
101. Thus X is 1

4
(1 − 2

N+1
) which converges to 1

4
as N → ∞. It is

interesting that this term is not zero.

• Note that the sum of the Toeplitz wave and the Hankel wave is the full
wave and the X term cancels. The constant component of the Toeplitz
and Hankel waves as N becomes large is −1

4
or 1

4
, respectively.

• The user of our formulas in (36) and (40) can choose the value of the
parameter R ∈ {0, 1, 2, . . . , }. This is a way to control the number of
traversals of the domain of the Toeplitz and Hankel waves.

• For t > 2πR, the exact formulas that we present in (36) and (40)
are constant. For t < 2πR, the exact formulas in (36) and (40) that
we derive are exactly the Toeplitz and Hankel waves, and these sum
exactly to the solution of the semi-discrete problem.
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Figure 1: Before (top), during (middle) and after (bottom) the wave first
reaches the boundary. The Toeplitz wave is reflectionless on the even traver-
sals.
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Figure 2: Top: The Toeplitz wave at t = 3.7 (left) and Hankel wave at
t = 5.7 (right). The solid line is computed via (20) (Toeplitz wave) and (21)
(Hankel wave), and the crosses are computed via (36) (Bessel expansion for
Toeplitz wave) and (40) (Bessel expansion of Hankel wave). Top panel is
computed with R = 3 and N = 301. Bottom left: Toeplitz wave with R = 3,
N = 1001, and t = 2πR + 1. Bottom Right: The same as top right, except
that N = 1001.
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• For the Toeplitz wave, the matrices Ek and E>k , k = 1, · · · , N − 1
act as shift matrices that allow the wave to move. In the case of
the Hankel wave, the corresponding matrices are the Hankel matri-
ces F1, · · · , F2k−1. Thus one way to think about wave propagation is
through these elementary Toeplitz and Hankel matrices.

• There is a rich theory on the sums of Bessel functions of the form

f(z) = a0J0(z) + 2
∞∑
k=1

akJk(z). (42)

These are called Neumann series [12]. Here

ak =
1

2πi

∫
|z|=c

f(t)θk(t) dt,

c is an appropriate contour, and the θk(t) are Neumann polynomials
given by

θ0(t) =
1

t

θk(t) =
1

4

[ k
2

]∑
l=0

(k − l − 1)!

l!
k

(
2

t

)k−2l+1

.

There are generalisations of (42) (see Watson [17]) of the form

zηf(z) = a0Jη(z) + 2
∞∑
k=1

akJη+k(z).

More recently Pogany and Süli [14] have given integral representations for
certain Neumann series including

∞∑
k=0

akηJη+2k+1(z), η ≥ −1

2

akη = 2(η + 2k + 1)

∫ ∞
0

t−1f(t)Jη+2k+1(t)dt.

Al-Jarrah et al. [2] have considered Neumann series in the context of the
Fourier cosine transform

Fc(x) =

√
2

π

∫ ∞
0

f(t) cos(xt)dt (43)
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and derived formulas for

Fc(0) + 2
∞∑
k=1

Fc(2πkη)

for a given f(t). We note that Bessel functions can be cast in the form of
(43).

Since the Toeplitz and Hankel waves, defined over a finite number of
traversals, can be considered as certain finite sums of even Bessel functions
of the first kind, these are then finite Neumann series and some of this theory
could be of interest in this context. We speculate that generalisations of these
ideas might be applicable to other applications of Bessel function expansions
to waves [10], or to the analysis of time series data arising in wave phenomena
[13].
It is worth making some final remarks about the subject of inverse problems.
As mentioned in the Introduction, it is not the purpose of our article to
study inverse problems. That would require extending our analysis here to a
wave equation with variable coefficients, and also extending to higher dimen-
sions. Nonetheless, if we view our analysis here as a first step towards inverse
problems, then we can make the following observations about how such an
extension, in one dimension, may be carried out in future work. Commonly,
a wave propagates at different speeds, c2(x), at different spatial locations. In
an inverse problem, this speed c2(x) might initially be unknown, and the goal
is to estimate c2(x) at many points x, based on known observational data
about the wave. One tool in that process of estimation, is called a forward
solver, which given c2(x) at all locations, is then able to simulate the waves.

As a simple example, suppose that the domain consists of two halves, and
that the wave speed is c2 = 1 in the first half of the domain and c2 = 2 in
the second half. One possible model of this situation can come from scaling
our finite matrix K by a diagonal matrix that encodes the wave speed. For
example, C = diag(1, · · · , 1, 2, · · · , 2) and L = CK. It is tempting to apply
our ‘Toeplitz-plus-Hankel’ analysis to this situation. However, the matrix
L cannot be written exactly as the sum of a Toeplitz matrix and a Hankel
matrix. Thus, it is impossible to write all matrix functions exactly as a sum
of a Toeplitz part and a Hankel part. We can still compute the solution to
this wave equation with variable speed as a matrix function by, for example,
employing the wave-kernel matrix functions of Nadukandi & Higham [11],
but we should not expect that matrix function to be simply Toeplitz-plus-
Hankel. In other words, we cannot expect to repeat our previous analysis for
the constant coefficient case verbatim in this new variable coefficient case.

Nevertheless, it seems likely that the analysis that we have presented can
be generalised to handle this setting of variable coefficients. The starting
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point will be to again examine the algebraic structure of the solutions, and
in analogy with the way we investigated vv> here, particularly to examine
the rank one projection matrices coming from the spectral decomposition
of the operator L. Encouragingly, the non-symmetric matrix in L is an
example of a tridiagonal k–Toeplitz matrix (in our simple example, it is a
2–Toeplitz matrix), for which exact expressions for the eigenvalues and for
the eigenvectors are known [3]. The first step is to compute expressions for
the rank one projection matrices coming from those eigenvectors, and this
will be the subject of future work.
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