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JUMPS AND COALESCENCE IN THE CONTINUUM: A NUMERICAL

STUDY

YURI KOZITSKY, IGOR OMELYAN†, AND KRZYSZTOF PILORZ

Abstract. The dynamics is studied of an infinite continuum system of jumping and
coalescing point particles. In the course of jumps, the particles repel each other whereas
their coalescence is free. As the equation of motion we take a kinetic equation, derived
by a scaling procedure from the microscopic Fokker-Planck equation corresponding to
this kind of motion. The result of the paper is the numerical study (by the Runge-
Kutta method) of the solutions of the kinetic equation revealing a number of interesting
peculiarities of the dynamics and clarifying the particular role of the jumps and the
coalescence in the system’s evolution. Possible nontrivial stationary states are also found
and analyzed.

1. Introduction

In a broader sense, a typical kinetic equation is a nonlinear integro-differential equation
describing the temporal evolution of the density function of a large (infinite) system of
‘particles’. At this level of description, the individual particles are not taken into account
and the system is considered as a medium, entirely characterized by its aggregate param-
eters like density. A prototype example is the celebrated Boltzmann equation [10] devised
by Ludwig Boltzmann in 1872 to describe large systems of physical particles. Since then
this approach has received various applications ranging from the theory of multiple-lane
vehicular traffic [23] to the description of evolving ecological systems [1, 7, 19, 20]. Usually,
kinetic equations are devised with the help of phenomenological or heuristic arguments,
and thus are only loosely related to so called ‘first principles’, e.g., by taking into account
appropriate conservation laws and symmetries. Due to Bogoliubov’s pioneering works [6],
see also [9], it has become clear that the Boltzmann equation can be derived (by a cer-
tain decoupling or truncating procedure) from an infinite chain of linear equations – the
BBGKY hierarchy – that describes the microscopic evolution of a particle system, see e.g.,
[25]. This approach was then extended to deriving kinetic equations describing ecological
systems from the corresponding microscopic equations of their random evolution [13, 19].

In view of various applications – also but not only those mentioned above – there exists
a permanent interest to the evolution of statistically large systems in the course of which
the constituents can merge. As an example, in ecological models merging can be used to
describe the predation [8]. The Arratia flow [2] provides an example of the motion of this
sort. Its recent study can be found in [5, 14, 15, 18] and in the works quoted therein. In
Arratia’s model, an infinite number of Brownian particles move in R independently up
to their collision, then merge and move together as single particles. Correspondingly, the
description of this motion is performed in terms of diffusion processes. In an accompanying
work [17], we propose an alternative model of this kind. In this model, an infinite system of
point particles located in R

d, d ≥ 1 undergo random evolution consisting in the following
two elementary acts, see Fig. 1:
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(a) Two particles (located at x and y) merge into a particle (located at z) with in-
tensity (probability per time) c1(x, y; z) – independent of the remaining particles.
Thereafter, this new particle participates in the motion.

(b) Similarly as in the Kawasaki model [4], single particles perform random jumps
with repulsion acting on the target point.

Figure 1. Elementary acts of evolution

For the microscopic description of this model, as the phase space one employs the set Γ of
all locally finite configurations γ ⊂ R

d, see [4, 16] and the next section. The microscopic
states of the system are then probability measures on Γ the set of which is denoted by P(Γ).
The evolution of states µ0 → µt is obtained by solving the Fokker-Planck equation. The
main result of [17] is the proof of the existence of the evolution of this type for a bounded
time horizon. However, by virtue of this result the most important and interesting details
of the collective motion of the system remain unrevealed. The aim of the present work is to
study the mentioned model numerically by employing the corresponding kinetic equation
derived from the microscopic theory developed in [17]. The main questions we address here
are: (a) which peculiarities of the motion are related to each of the mentioned elementary
acts of the evolution; (b) what is the role of the interaction (repulsion) in the possible
appearance of a spatial heterogeneity in the system. In a sense, this our research is a
continuation of the study in [21] – by similar numerical methods – of the spatial ecological
model the existential problems of which were settled in [16].

2. Theoretical Background

As mentioned above, the microscopic theory of our model is based on the Fokker-
Planck equation. The mesoscopic description employs a kinetic equation obtained from
the corresponding microscopic evolution equations by a scaling procedure, cf. [3, 13]. Its
solutions are evolving particle densities that will be the objects of our numerical study.

2.1. Microscopic description. The phase space of the dynamics which we study is the
set of locally finite subsets of Rd – configurations – defined as follows

Γ = {γ ⊂ R
d : |Λ ∩ γ| <∞ for any compact Λ ⊂ R

d},

where | · | denotes cardinality. It is equipped with the vague (weak-hash) topology see e.g.,
[4, 13]) and the corresponding Borel σ-field B(Γ). This allows one to employ probability
measures µ defined on (Γ,B(Γ)) as states of the considered system. The set of all such
measures is P(Γ). The evolution of the model is described by the Fokker-Planck equation

µt(F ) = µ0(F ) +

∫ t

0
µs(LF )ds, (2.1)
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in which F : Γ→ R is an appropriate test function, µ(F ) :=
∫
Γ Fdµ, and the operator L

specifies the model. In our case, it is

(LF )(γ) =
∑

{x,y}⊂γ

∫

Rd

c1(x, y; z)
(
F
(
γ\{x, y} ∪ z

)
− F (γ)

)
dz (2.2)

+
∑

x∈γ

∫

Rd

c̃2(x, y; γ)
(
F
(
γ\x ∪ y

)
− F (γ)

)
dy.

Here c1 ≥ 0 is the intensity of the coalescence of the particles located at x and y into a
new particle located at z. Note that c1 does not depend on the elements of γ other than
x and y. For simplicity, we assume that c1(x, y; z) = c1(y, x; z) = c1(x + u, y + u; z + u)
for all u ∈ R

d, i.e., c1 is translation invariant. For more general versions of this model –
that describe also coalescence with interactions – see [22]. The second summand in (2.2)
describes jumps performed by the particles. Similarly as in [4], we take it in the form

c̃2(x, y; γ) = c2(x− y)
∏

u∈γ\x

e−φ(y−u),

with φ and c2 being the repulsion potential and the jump kernel, respectively. By these
assumptions the model is translation invariant. The functions c1, c2 and φ take non-
negative values and are supposed to satisfy the following conditions:

∫

(Rd)2

c1(x1, x2;x3)dxidxj = 〈c1〉 <∞, (2.3)

cmax
1 := sup

x,y∈Rd

∫

Rd

c1(x, y; z)dz <∞,

〈c2〉 :=

∫

Rd

c2(x)dx <∞, 〈φ〉 :=
∫

Rd

φ(x)dx <∞,

|φ| := sup
x∈Rd

φ(x) <∞.

As the operator (2.2) is quite complex, the direct study of the Fokker-Planck equation
(2.1) is rather inaccessible. Instead, in [17] we realized the following construction. For
t < T (with some T < ∞) and µ0 belonging to a certain subset of P(Γ), the evolution
µ0 → µt was obtained as the evolution k0 → kt of the correlation functions corresponding
to these states. The basic aspects of this construction can be outlined as follows. Let Ω
stand for the set of all compactly supported continuous functions ω : Rd → (−1, 0]. Set

Fω(γ) =
∏

x∈γ

(1 + ω(x)), ω ∈ Ω.

Each Fω is bounded and continuous, hence integrable for each µ. Moreover, the collection
{Fω : ω ∈ Ω} is a measure-defining class, cf. [11, page 79]. The set of measures Pexp ⊂
P(Γ) we will work with is defined by the condition that its members enjoy the following
property: the map Ω ∋ ω 7→ µ(Fω) ∈ R can be continued to an exponential type entire

function defined on L1(Rd). Then, for µ ∈ Pexp, we set Bµ(ω) = µ(Fω) and derive L̃

from L according to the rule (L̃Bµ)(ω) = µ(LFω). Thereafter, we construct the evolution
Bµ0
→ Bt by solving the corresponding evolution equation. The next (and the hardest)

part of this scheme is to prove that Bt = Bµt for a unique µt ∈ Pexp. The advantage of
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using Pexp is that, for each of its members, the function Bµ admits the representation

Bµ(ω) = 1 +
∞∑

n=1

1

n!

∫

(Rd)n
k(n)µ (x1, . . . , xn)ω(x1) · · ·ω(xn)dx1 · · · dxn. (2.4)

Here k
(n)
µ is the n-th order correlation function of state µ. It satisfies the Ruelle bound

[24]

0 ≤ k(n)µ (x1, . . . , xn) ≤ κ
n,

with an appropriate κ > 0. Since each k(n) is defined by (2.4) only Lebesgue-almost

everywhere, the latter estimate yields k(n) ∈ L∞((Rd)n), and k(n), n ≥ 2 is symmetric
with respect to the interchange of xi. For a compact Λ ⊂ R

d,

µ(NΛ) =

∫

Γ
NΛ(γ)µ(dγ) =

∫

Λ
k(1)µ (x)dx

is the expected value of the number of points contained in Λ if the system is in state µ.

Here NΛ(γ) = |γ ∩ Λ| is the number of the elements of γ contained in Λ. That is, k
(1)
µ

is the particle density in state µ. Note that µ(NΛ) may be infinite for a non-compact Λ,
which would indicate that the system is infinite in state µ. By the estimate above we have
that

‖k(n)µ ‖L∞((Rd)n) ≤ κ
n, n ∈ N. (2.5)

Let Γ0 stand for the set of all finite configurations. It is a measurable subset of Γ, equipped
with the topology induced thereon by the vague topology of Γ. The elements of Γ0 will
usually be denoted by η. Thus, η = {x1, . . . , xn} with distinct xj, and n = |η| is the

number of points in η. Let kµ : Γ0 → R be defined by kµ(η) = k
(n)
µ (x1, . . . , xn) for η

as above. This is the correlation function of state µ ∈ Pexp which characterizes it in a

complete way. For instance, for a Poisson measure πρ with density ρ : Rd → [0,+∞) we
have

kπρ(η) =
∏

x∈η

ρ(x). (2.6)

That is, πρ is completely characterized by its density (intensity function) ρ, cf. [11, page
45]. By (2.5) we conclude that kµ ∈ Kϑ with ϑ = logκ and Kϑ being a Banach space of
such maps equipped with the norm

‖k‖ϑ := sup
n≥0

(
e−nϑ‖k(n)µ ‖L∞((Rd)n)

)
.

Then the states µt ∈ Pexp satisfy the Fokker-Planck equation (2.1) with L given in (2.2)
and F = Fω if their correlation functions kt satisfy

d

dt
kt = L∆kt, kt|t=0 = kµ0

, (2.7)

which, in fact, is an infinite chain of equations for k
(n)
t , n ∈ N. In (2.7), L∆ has the form,

cf. [22],

L∆ = L∆
1 + L∆

2 .
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Here L∆
1 = L∆

11 + L∆
12 + L∆

13 + L∆
14 is the part responsible for the coalescence whereas

L∆
2 = L∆

21 + L∆
22 describes the jumps. Their summands are:

(L∆
11k)(η) =

1

2

∫

(Rd)2

∑

z∈η

c1(x, y; z)k(η\z ∪ {x, y})dxdy,

(L∆
12k)(η) = −

1

2

∫

(Rd)2

∑

x∈η

c1(x, y; z)k(η ∪ y)dydz,

(L∆
13k)(η) = −

1

2

∫

(Rd)2

∑

y∈η

c1(x, y; z)k(η ∪ x)dxdz,

(L∆
14k)(η) = −Ψ(η)k(η), Ψ(η) :=

∫

Rd

∑

{x,y}⊂η

c1(x, y; z)dz,

and

L∆
21k(η) =

∫

Rd

∑

y∈η

c2(x− y)
∏

u∈η\y

e−φ(y−u) (Qyk)(η\y ∪ x)dx,

L∆
22k(η) = −

∫

Rd

∑

x∈η

c2(x− y)
∏

u∈η\x

e−φ(y−u) (Qyk)(η)dy,

see [17] for more detail. In order to figure out the real meaning of (2.7), let us write down
the first two members of this chain of equations. The first one reads

d

dt
k
(1)
t (z) =

1

2

∫

(Rd)2
c1(x, y; z)k

(2)
t (x, y)dxdy (2.8)

−
∫

(Rd)2
c1(z, y;x)k

(2)
t (z, y)dxdy

+

∫

Rd

c2(x− z)
[
(Qzkt)

(1)(x)− (Qxk
(1)
t )(z)

]
dx,

where

(Qxkt)
(1)(y) = k

(1)
t (y) +

∞∑

n=1

1

n!

∫

(Rd)n
k
(n+1)
t (x1, . . . , xn, y) (2.9)

×




n∏

j=1

[
e−φ(x−xj) − 1

]

 dx1 · · · dxn.

The second member of the chain is
d

dt
k
(2)
t (x, y) =

1

2

∫

(Rd)2

[
c1(u, v;x)k

(3)
t (y, u, v) + c1(u, v; y)k

(3)
t (x, u, v)

]
dudv (2.10)

−
∫

(Rd)2

[
c1(x, u; v)k

(3)
t (x, y, u) + c1(y, u; v)k

(3)
t (x, y, u)

]
dudv

− Ψ(x, y)k
(2)
t (x, y)

+

∫

Rd

e−φ(x−y)
(
c2(u− x)(Qxkt)

(2)(y, u) + c2(u− y)(Qykt)
(2)(x, u)

)
du
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−
∫

Rd

(
c2(x− u)e−φ(y−u) + c2(y − u)e−φ(x−u)

)
(Qukt)

(2)(x, y)du,

where

Ψ(x, y) =

∫

Rd

(c1(x, y; z) + c1(y, x; z)) dz,

and

(Qzkt)
(2)(u, v) = k

(2)
t (u, v) +

∞∑

n=1

1

n!

∫

(Rd)n
k
(n+2)
t (u, v, x1, . . . , xn)

×
(

n∏

i=1

[
e−φ(z−xi) − 1

])
dx1 · · · dxn.

Noteworthy, unlike to the most of such equations, cf. [21, eqs. (1) and (2)], the right-hand
sides of (2.8) and (2.10) contain correlation functions of all orders.

Let us now return to studying (2.7). By the very definition of the norms ‖ · ‖ϑ the
Banach spaces Kϑ, ϑ ∈ R constitute an ascending scale of spaces such that Kϑ′ →֒ Kϑ

whenever ϑ′ < ϑ. Here →֒ denotes continuous embedding. By mean of the estimates

∣∣(L∆
1ik)(η)

∣∣ ≤
(
1

2
〈c1〉eϑ‖k‖ϑ

)
|η|eϑ|η|, i = 1, 2, 3,

∣∣(L∆
14k)(η)

∣∣ ≤
(
1

2
cmax
1 ‖k‖ϑ

)
|η|(|η| − 1)eϑ|η|,

as well as, cf. [4, eq. (3.18)],
∣∣(L∆

2 k)(η)
∣∣ ≤

(
2〈c2〉 exp

(
〈φ〉eϑ

)
‖k‖ϑ

)
|η|eϑ|η|,

one defines bounded linear operators L∆ : Kϑ′ → Kϑ and then places the Cauchy problem
(2.7) into the mentioned scale of Banach spaces. The results of [17] are contained in the
following two statements.

Theorem 2.1. For each ϑ0 ∈ R and ϑ∗ > ϑ0, and for an arbitrary k0 ∈ Kϑ0
, the problem

in (2.7) has a unique classical solution kt ∈ Kϑ∗
on [0, T ) with the bound T = T (ϑ∗, ϑ0)

dependent on ϑ0 and ϑ∗.

A priori the solution kt described in Theorem 2.1 need not be a correlation function of
any state, which means that the result stated therein has no direct relation to the evolution
of states of the system considered. The next statement removes this drawback.

Theorem 2.2. Let µ0 ∈ Pexp be such that kµ0
∈ Kϑ0

and T (ϑ∗, ϑ0) be as in Theorem
2.1. Then the evolution kµ0

→ kt described in Theorem 2.1 has the property: for each
t < T (ϑ∗, ϑ0)/2, kt is the correlation function of a unique state µt ∈ Pexp.

The fact that the evolution described in Theorem 2.2 is only local in time stems from
technical limitations of the method used in the proof of this statement. We believe that
this drawback could be overcome.

2.2. Mesoscopic description. Theorem 2.2 states the existence of the evolution µ0 → µt

of the micro-states of our system obtained by solving the Fokker-Plank equation (2.1). In
order to get more detailed information regarding this evolution, we pass to the mesoscopic
level based on the kinetic equation which we derive now. Its naive (one may say more
direct) version can be outlined as follows. As is known, Poisson measures (with correlation
functions given in (2.6)) correspond to the states of systems of particles independently
distributed over Rd. Possible dependencies in a state µ can be captured by the deviations
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of k
(n)
µ ’s from the corresponding products of k

(1)
µ ’s. In particular, by the truncated second-

order correlation function, cf. [12],

τ (2)µ (x, y) = k(2)µ (x, y)− k(1)µ (x)k(1)µ (y),

Thus, a naive truncation (called also moment closure [19]) consists in putting by force

k
(n)
t (x1, . . . , xn) = k

(1)
t (x1)k

(1)
t (x2) · · · k(1)t (xn), n ≥ 2,

in the right-hand sides of (2.8), (2.9), and forgetting of (2.10) and of the equations for k
(n)
t ,

n ≥ 3. In physical language, it corresponds to a so called “mean-field approximation”, cf.
[21] where we get out beyond it. After making this ansatz, one obtains a single nonlinear

equation, see (2.11) below with ρt = k
(1)
t – instead of the infinite chain of linear equations

encrypted in (2.7). A more sophisticated version of passing to the kinetic equation in
(2.11) is based on the so-called Poisson approximation of the states, in which each µt is
approximated in a certain way by the Poisson state πρt with density ρt. Namely, we say
that µ ∈ Pexp is approximable by πρ (Poisson-approximable), if for some ϑ ∈ R there
exists a continuous mapping A : [0, 1] → Kϑ such that A(0) = kπρ and A(1) = kµ. The
approximation scheme can be depicted as follows

µ0
Poisson←−−−−−−−→

approximation
πρ0 → ρ0

↓ FPE ↓ KE

µt
Poisson←−−−−−−−→

approximation
πρt ← ρt

Its precise formulation is given in the next statement.

Theorem 2.3. Let µ0 ∈ Pexp be approximable by πρ0 . Then µt stated in Theorem 2.2 is
approximable by πρt for t < T (ϑ∗, ϑ0)/2, with T (ϑ∗, ϑ0) as in Theorem 2.1 and ρt being
the solution to kinetic equation (2.11) with initial condition ρ0.

The proof of this theorem – quite technical – is essentially based on the method devel-
oped in [17]. It will be presented in a separate work. Here we only note that the temporal
locality in this statement is also a matter of technical limitations of the method used in
the proof of Theorem 2.2.

The kinetic equation corresponding to (2.7) is

d

dt
ρt(x) =

1

2

∫

(Rd)2
c1(y, z;x)ρt(y)ρt(z)dydz (2.11)

−
(∫

(Rd)2
c1(x, y; z)ρt(y)dydz

)
ρt(x)

+

∫

Rd

c2(x− y) exp

(
−
∫

Rd

φ(y − u)ρt(u)du

)
ρy(y)dy

−
(∫

Rd

c2(x− y) exp

(
−
∫

Rd

φ(y − u)ρt(u)du

)
dy

)
ρt(x).

Here the first two terms describe the coalescence whereas the remaining ones correspond
to the jumps. This equation is the object of the numerical study the results of which
are presented in the next section. Note that a heuristic derivation/justification of this
equation could hardly be done, which once again manifests advances of our method of
deriving kinetic equations from the corresponding microscopic theories.
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3. Simulations

3.1. Notions and techniques. The numerical study of (2.11) is performed by simula-
tions based on the fourth-order Runge-Kutta method. For further simplicity, we restrict
the study to the one-dimensional case. As to the intensity functions, we consider the
following specific cases. The coalescence intensity is taken in two forms

c1(x1, x2;x3) = a1(x1 − x2)δ
(x1 + x2

2
− x3

)
, (3.1)

c1(x1, x2;x3) = a1(x1 − x2)δ
(
ln(ex1 + ex2

)
− x3

)
. (3.2)

In both cases, δ stands for the Dirac δ-function, i.e., c1 is a distribution. In the case of
(3.1), the resulting point of the coalescence is at the middle of the coalescing particles,
which may be a natural choice for describing by x, y their spatial location. The case of
(3.2) represents the coalescence with the conservation of mass in the case where x = lnm,
m being particle’s mass. In both cases, instead of the δ-function, one can consider more
smooth functions to take into account possible dispersion. We adopt these forms to spare
the calculation time. Note that while the case of (3.1) can easily be generalized to d > 1,
the case of (3.2) is essentially one-dimensional. The kernels a1, c2 and φ were chosen to
be non-negative and symmetric functions – either Gaussian (3.3) or simple step-like (3.4):

Gλ,σ(x) =
λ

σ
√
2π

exp
(
− x2

2σ2

)
, (3.3)

Bλ,σ(x) =
λ

2σ
I[−σ,σ](x), (3.4)

where I stands for indicator, positive λ and σ are a strength and a range parameters,
respectively. For both forms of the kernels, we also use their shifted versions. To introduce
them, we define a symmetry-preserving shift operation Sh

(
Sh(f)

)
(x) =

1

2

(
f(x− h) + f(x+ h)

)
, h > 0,

and then set

Gλ,σ,h = Sh

(
Gλ,σ

)
,

Bλ,σ,h = Sh

(
Bλ,σ

)
.

Note that these choices correspond to the translation invariance of the system, cf. (2.3).
In order to imitate the behavior of infinite system, three different choices of boundary

conditions were applied, depending on the initial state of the system. In the case when
in given direction the entities are absent, the zero Dirichlet boundary condition was used.
In the case of homogeneous distribution in given direction, the boundary condition was
set to be the time-dependent value corresponding to the analytic homogeneous solution.
Finally, for the cyclic initial condition, the periodic (toroidal) boundary conditions were
applied. In the first two cases an automatic size adjustment was used to ensure safe
distance between the wavefronts and boundaries. The initial domain of simulations was
defined as segment [−L

2 ,
L
2 ] with various values of parameter L. In the case of triggering

the enlargement mechanism, the length of the segment was being doubled.
In the following parts, the results of the performed simulations with different choices of

initial conditions and described parameter functions are presented.

3.2. Jumps in the absence of coalescence. First, let us analyze the behavior of the
system when the entities are allowed only to jump. In the case of free jumps (φ = 0),
with the exception of some degenerated jump kernels, the system tends to homogeneity,
see Figure 2, left plot or Figure 3.
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In the case presented in the Figure 2, the initial density function was chosen to be a cyclic
step function ρ0(x+ 40k) = B1,1(x). The discontinuity of the initial condition dissipates
with time, transforming the initial density at the considered segment [−20, 20] into one
resembling a Gaussian, which tend to more and more homogeneous shape. Increase of the
strength or range parameter, as well as the shift of the jump kernel result in acceleration
of this process, see Figure 2, right plot. The toroidal boundary condition was applied on
both sides in order to imitate the cyclic density.

Figure 2. Free jumps without coalescence. Density ρT on [−10, 10] for
periodic B1,1-type initial condition with period 40. On the left: evolution
in time with G1,1 jump kernel. On the right: comparison at T = 20 with
different choices of jump kernel.
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When choosing a different initial condition, for example I(−∞,0], the system is tending
to a homogeneity as well, see Figure 3. The initial discontinuity vanishes with time and
one can observe the rise of S-shaped densities that preserve at the initial discontinuity
point the arithmetic mean of two initial values (0 to the right and 1 to the left). With
the flow of time, the density function flattens and it is expected that asymptotically the
system tends to this mid-value everywhere. Similarly as in the previous choice of the
initial condition, the higher values of kernel parameters increase the speed of change. In
this case on both sides the Dirichlet boundary condition with auto-enlargement procedure
was used (1 on the left and 0 on the right), as the homogeneous solution in the absence
of coalescence is constant.

The introduction of repulsive effect by setting non-zero φ usually slows down the flat-
tening process with addition of small local disturbances in the initial phase. However, in
some cases it may lead to appearance of self-propagating spatial heterogeneity that seems
to drastically change even the asymptotical behavior of the system. In order to observe
such phenomenon, we chose both the jump kernel c2 and the repulsion potential φ to be
shifted Gaussians, with the shift h and strength λ of repulsion exceeding the corresponding
values for jump kernel. The results are presented in Figure 4, where the appearance and
propagation of heterogeneity can be observed. One can expect that the system tends to
a non-homogeneous stationary solution. Note how the initial domain [−20, 20] was auto-
matically enlarged between T = 0 and T = 512 in order to avoid artificial behavior at the
boundary and increase simulation accuracy.

3.3. Pure coalescence. Let us turn to the pure coalescence without additional jump
term. In the standard cases when coalescence kernel is positive at zero, independently of
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Figure 3. Free jumps without coalescence. Density ρT on [−10, 10] for
initial condition I(−∞,0] with G1,1 jump kernel.
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Figure 4. Jumps with repulsion without coalescence. Density ρT on
[−40, 40] for initial condition I(−∞,0] with G1,1,2 jump kernel and G10,1,4

repulsion potential.
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the initial condition the system asymptotically tends to the trivial null density. However,
with special choice of initial condition together with shifted kernel, it is possible to obtain
non-trivial dynamics that seems to be tending to a stationary state, see Figure 5. Moreover,
even when asymptotic behavior is trivial, the finite time behavior may prove to be very
interesting, see 6.

For the simulation presented in Figure 5, we chose coalescence intensity of the form (3.1)
with the shifted step kernel and the initial density being a periodic step function. The
parameters of coalescence kernel were chosen in such a way that one part of the initial
density is left invariant, while another part diminishes producing peaks between initial
steps. The system seems to approach a non-trivial stationary state, as the differences
between subsequent iterations become very small (compare density at moments of time
T = 320 and T = 1280). In this case the toroidal conditions were used at the boundaries
of initial domain [-20, 20]. Note that by changing the shift of coalescence kernel one can
easily make the initial state invariant, e.g. choosing the shift h = 6 instead of h = 8.

Next, consider the second choice of the coalescence intensity (3.2). In this case, the
studied property represents the logarithm of mass and during the action of coalescence
no mass is being lost. The simulated density shows the distribution of mass and how it
evolves in time.

As an example, consider initial density ρ0 to be I(−∞,0] and observe its change in time,
see Figure 6. Pick a weak coalescence kernel with strength λ = 0.02 and range σ = 0.2.
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Figure 5. Pure spatial coalescence. Density ρT on [-7, 12] for periodic
B4,1-type initial condition with period 10 and B1,0.8,8 coalescence kernel.
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Figure 6. Pure coalescence with preservation of mass. Density ρT on
[−1, 4] for initial condition I[0,∞). Coalescence kernel used on the left:
G0.02,0.2, on the right: B0.02,0.2.
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The sudden change from 0 to 1 in the density at point 0 (there are no entities of mass
smaller than 1) produces an interesting irregularity close to this discontinuity with the flow
of time. While the density is approaching zero, a specific pattern in density remains and
propagates with weaker and weaker amplitude to the right. Note that choice of B0.02,0.2

(Figure 6 on the right) kernel produces more irregular shape than G0.02,0.2 (on the left).
Notice that due to the choice of initial condition, despite the mass preserving choice

of coalescence intensity, the density diminishes to zero pointwise, giving asymptotically
at T → ∞ null density. This behavior shows dishonesty of considered system with such
choice of initial condition. Of course, at any time T < ∞ the total mass is constantly
infinite.

3.4. Jumps and coalescence. So far we discussed some phenomena that occur sep-
arately for jumps and coalescence. It is interesting that in each considered case, the
introduction of both jump and coalescence nonzero intensities seems to have a regulating
effect on the system that puts it on the path leading to homogeneity.

First, consider the case of initial density ρ0 = I(−∞,0], where the choice of shifted repul-
sion potential significantly stronger than jump kernel leads to the appearance of periodic
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Figure 7. Jumps with shifted repulsion kernel in presence of coalescence.
Density ρT on −70, 10 for I(−∞,0] initial condition. Jump kernel G1,1,2 with
repulsion potential G10,1,4 and G0.05,1,2 coalescence kernel.

0

0.2

0.4

0.6

0.8

1

1.2

−70 −60 −50 −40 −30 −20 −10 0 10

T = 0
T = 8

T = 32
T = 192

T = 256
T = 320

spatial heterogeneity (Figure 4). Introduce to the system relatively weak coalescence ker-
nel G0.05,1,2 (with the choice (3.1) of coalescence intensity) in comparison to G1,1,2 jump
kernel or G10,1,4 repulsion potential. The results are presented in Figure 7, where the ini-
tial simulation domain was chosen as previously to be [−20, 20], Dirichlet zero boundary
condition was used on the right and time-dependent boundary condition being the solution
to homogeneous problem on the left. Due to the action of coalescence, the density level
reduces and the heterogeneous irregularities start to appear. The addition of coalescence
seems to speed up the process of their formation, cf. density at T = 192 in Figure 7
and at T = 512 in Figure 4. However, under the unceasing influence of coalescence, the
density starts to flatten out (cf. T = 192, 256 and 320) and the system obtains much more
homogeneous structure with inevitable null density at the time limit T →∞.

Turn to the case of stationary state appearance for shifted coalescence kernel in the
absence of jumps. The reason of this phenomenon is that after initial dynamic evolution
of density, the shape of coalescence kernel prevents the remaining positive density areas to
reach each other, which results in stagnation of the system, see Figure 5. The introduction
of even small nonzero jump intensity breaks this impasse. It makes the density in those
areas to spread with the flow of time, which allows the coalescence to operate again, leading
the system to null density limit at T → ∞, see Figure 8. Note that the peaks between
initial steps still appear, increasing the frequency of higher density areas for 0 < T <∞.

The addition of nonzero jump kernel proves to have a regulating effect in the case of
mass preserving dynamics presented in Figure 6 as well. The irregularities that were
appearing and propagating due to the coalescence, quickly fades in the presence of jumps,
see Figure 9. Introduction of jumps results in more homogeneous tendency to ultimate
null density at time limit. It also leads to appearance of entities with mass smaller than
1.

4. Conclusions

The performed simulations show the possibilities of nontrivial dynamics for the Poisson
approximation of coalescing random jumps. The simulated solutions for the obtained ki-
netic equation were presented for several cases of initial conditions and intensities involved.
The presented results can be summarized in the form of following observations:

(1) In the case of free jumps the system tends to a homogeneous density along the
whole system. The increase of strength, range or shift of jump kernel speeds up
this tendency.

(2) For repulsive jumps with shifted repulsion intensity and inhomogeneous initial
density, persisting spatial heterogeneity may appear that expand with the flow of
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Figure 8. Coalescence with free jumps. Density ρT on [−7, 12] for B4,1-
type initial condition with period 10. B1,0.8,8 coalescence kernel and J0.2,1
jump kernel.
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Figure 9. Coalescence with preservation of mass in presence of free jumps.
Density ρT on [−1, 4] for initial condition I[0,∞). Coalescence kernelG0.02,0.2

and G0.01,0.2 jump kernel.
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time and probably tends to a cyclic (in space) stationary state. The introduction
of even relatively weak coalescence, seems to have a regulating effect that while
speeds up the emergence of this phenomenon, prevents it to persist.

(3) In the case of pure spatial coalescence, with some special choices of initial condi-
tion and shifted coalescence kernel, the system seems to approach some nontrivial
stationary states. Such behavior is highly vulnerable to addition of jumps to the
system that seems to switch its asymptotic state to null density.

(4) For coalescence with preservation of mass the choice of cutted homogeneous initial
condition leads to emergence of persisting irregular pattern. The introduction of
jumps to the system seems to have a smoothing effect on those irregularities that
makes them quickly vanishing in the flow of time.

The introduction of both jumps and coalescence to the system seems to have a regulating
effect on each described phenomenon. One can suspect that the observations apply to
the original microscopic model as well, supposing that the evolution of its states is well
approximated by Poisson measures.
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