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Abstract

The generalized Turán number ex(G,H) is the maximum number of edges in an H-free subgraph
of a graph G. It is an important extension of the classical Turán number ex(n,H), which is the maxi-
mum number of edges in a graph with n vertices that does not contain H as a subgraph. In this paper,
we consider the maximum number of edges in an even-cycle-free subgraph of the doubled Johnson
graphs J(n; k, k + 1), which are bipartite subgraphs of hypercube graphs. We give an upper bound for
ex(J(n; k, k + 1),C2r) with any fixed k ∈ Z+ and any n ∈ Z+ with n ≥ 2k + 1. We also give an upper
bound for ex(J(2k + 1; k, k + 1),C2r) with any k ∈ Z+, where J(2k + 1; k, k + 1) is known as doubled
Odd graph Õk+1. This bound induces that the number of edges in any C2r-free subgraph of Õk+1 is
o(e(Õk+1)) for r ≥ 6, which also implies a Ramsey-type result.

Key words Turán number, even-cycle-free subgraph, doubled Johnson graph, doubled Odd graph,
Ramsey-type problem

MSC2010: 05C35, 05C38, 05D99

1 Introduction

Throughout this paper, all graphs are finite undirected graphs without loops or multiple edges. Let
G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G).We use v(G) and e(G) to denote the
number of vertices and the number of edges in G, respectively. For any two distinct vertices x, y ∈ V(G),
a path of length r from x to y in G is a finite sequence of r + 1 distinct vertices (x = w0,w1, . . . ,wr = y)
such that {wt−1,wt} ∈ E(G) for t = 1, 2, . . . , r. If there is a path between any two vertices of a graph
G, then G is connected. A cycle is a connected graph where any vertex in the graph has exactly two
neighbours. A cycle is called to be an l-cycle or a cycle of length l if the number of edges in the cycle
is l, denoted by Cl. The phrase “a cycle in a graph G” refers to a subgraph of G which is a cycle. Two
graphs G and G′ are isomorphic if there is a bijection σ from V(G) to V(G′) such that {x, y} ∈ E(G) if
and only if {σ(x), σ(y)} ∈ E(G′).

Let G and H be two graphs. We call that G is H-free if there does not exist a subgraph of G which
is isomorphic to H. The generalized Turán number ex(G,H) is the maximum number of edges in a
H-free subgraph of G. When G = Kn is the complete graph of n vertices, ex(G,H) is usually denoted by
ex(n,H), specifying the maximum possible number of edges in an H-free graph on n vertices. There are
a huge amount of literatures investigating this function, starting with the theorems of Mantel [17] and
Turán [19] that determine it for H = Kr. It is showed in [12] that ex(n,H) is related to the chromatic
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number of H. But when H is bipartite one can only deduce that ex(n,H) = o(n2). In general, it is
also a major open problem to determine the generalized Turán number ex(G,H) when H is a bipartite
graph, especially for even cycles. In this aspect, there are two widely studied functions ex(Km,n,Ks,t)
and ex(Qn,C2l), where Km,n is a complete bipartite graph and Qn is a hypercube graph.

The former function ex(Km,n,Ks,t), known as the problem of Zarankiewicz raised in 1951 ([20]), is
the analogue of Turán’s problem in bipartite graphs. We refer the reader to [15] for the details about
this problem. The latter function ex(Qn,C2l), started with a problem raised by Erdős, which is “How
many edges can a subgraph of Qn have that contains no 4-cycles?” In [9], Erdős conjectured that the
upper bound would be ( 1

2 + o(1))e(Qn), and also asked whether o(e(Qn)) edges of Qn would ensure the
existence of a cycle C2l for l ≥ 3. The best upper bound for ex(Qn,C4) is obtained by Balogn et al. ([3]),
which is (0.6068+o(1))e(Qn), slightly improving the upper bounds given by Chung ([6]) and Thomason
Wagner ([18]). The problem of deciding the values of C6 and C10 is still open. In [6], Chung showed
that 1

4 e(Qn) ≤ ex(Qn,C6) ≤ (
√

2 − 1 + o(1))e(Qn), and negatively answered the question of Erdős for
C6. Conder ([7]) found a 3-colouring with the same property. This implies that ex(Qn,C6) ≥ 1

3 e(Qn).
The best upper bound is given by Balogn et al. ([3]). For some progress about ex(Qn,C10), we refer the
reader to [1, 2]. For l ≥ 2, the upper bounds for ex(Qn,C4l) and ex(Qn,C4l+6) were obtained by Chung
([6]) and Füredi and Özkahya ([14]), respectively, which imply that ex(Qn,C2l′ ) = o(e(Qn)) for l′ ≥ 6
or l′ = 4. In [8], Conlon unified these results by showing ex(Qn,H) = o(e(Qn)) for all H that admit a
k-partite representation, which holds for each H = C2l except l ∈ {2, 3, 5}.

Now we consider another noteworthy family of bipartite graphs, which are called doubled Johnson
graphs. Let n and k be two positive integers with n ≥ k+1. Let [n] = {1, 2, . . . , n} and

(
[n]
k

)
be the set of all

k-subsets of [n]. The doubled Johnson graph J(n; k, k +1) is a bipartite graph with vertex set
(

[n]
k

)
∪

(
[n]
k+1

)
,

where two distinct vertices u and v are adjacent if and only if u ⊂ v or v ⊂ u. Recall that doubled Johnson
graphs with n = 2k+1 are usually called doubled Odd graphs, which are distance-transitive graphs ([5]).
We usually use Õk+1 to denote the doubled Odd graph J(2k + 1; k, k + 1). Notice that J(n; k, k + 1) is a
subgraph of the hypercube Qn, and the halved graphs of J(n; k, k + 1) are the Johnson graphs J(n, k) and
J(n, k + 1). By the definition, in the graph J(n; k, k + 1), the degree of each vertex in

(
[n]
k

)
is n − k and

the degree of each vertex in
(

[n]
k+1

)
is k + 1. Therefore, e(J(n; k, k + 1)) = (n − k)

(
n
k

)
= (k + 1)

(
n

k+1

)
. Since

the graphs J(n; k, k + 1) and J(n; n − k − 1, n − k) are isomorphic, in the following, we only consider the
case when n ≥ 2k + 1.

In this paper, we study the generalized Turán number ex(J(n; k, k + 1),C2l). For each vertex x2 in(
[n]
k+1

)
, choose an edge which is incident with x2. Let E be the set of those edges and K be the graph with

vertex set
(

[n]
k

)
∪

(
[n]
k+1

)
and edge set E. Notice that the degree of each vertex from

(
[n]
k+1

)
in K is 1, which

implies that K is cycle-free. Hence we have ex(J(n; k, k + 1),C2l) ≥
(

n
k+1

)
= 1

k+1 e(J(n; k, k + 1)). In the
following, we consider the upper bound of ex(J(n; k, k + 1),C2l) and obtain the following theorems.

Theorem 1.1 Let k and l be any fixed positive integers. For any n ∈ Z+ with n ≥ 2k + 1, the following
hold.

(i) For l ≥ 2, there exists constant cl such that

ex(J(n; k, k + 1),C4l) ≤
(
cl(n − k)−

1
2 + 1

2l +
1

√
k + 1

)
e(J(n; k, k + 1)).

(ii) For l ≥ 1, we have

ex(J(n; k, k + 1),C4l+2) ≤
 1

2(k + 1)
+

√
2

2
+ o(1)

 e(J(n; k, k + 1)),
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where o(1) is a function fk(n) of the variable n such that lim
n→+∞

fk(n) = 0.

Theorem 1.2 Let l be a any fixed positive integer. For any k ∈ Z+, the following hold.

(i) For l ≥ 3, we have ex(Õk+1,C4l) = O(k−
1
2 + 1

l )e(Õk+1).

(ii) For l ≥ 3, we have

ex(Õk+1,C4l+2) =

 O(k−
1

2l+1 )e(Õk+1), if l = 3, 5, 7, 9,
O(k−

1
16 + 1

8(l−1) )e(Õk+1), otherwise.

(iii) ex(Õk+1,C6) ≤ 5
6 e(Õk+1); ex(Õk+1,C8) ≤ ( 2

3 + o(1))e(Õk+1); ex(Õk+1,C10) ≤ ( 2
3 + o(1))e(Õk+1).

From Theorem 1.2, we have ex(Õk+1,C2l) = o(e(Õk+1)) for l ≥ 6, which leads to the following
Ramsey-type result:

Theorem 1.3 Let t and l be positive integers with l ≥ 6. If Õk+1 is edge-partitioned into t subgraphs,
then one of the subgraphs must contain the even cycle C2l, provided that k is sufficiently large (depending
only on t and l).

This paper is organized as follows. In Section 2, we introduce some properties of the doubled
Johnson graphs. In Section 3, we give an upper bound for ex(Õk+1,C2l) with l = 3, 4, 5. In Section 4,
we give an upper bound for the number of edges in C4l-free subgraphs of J(n; k, k + 1) with l ≥ 2. In
Section 5, we give an upper bound for the number of edges in C4l+2-free subgraphs of J(n; k, k + 1) with
l ≥ 1.

2 Preliminary

In this section, we will give some important properties of the doubled Johnson graphs. It is obvious that
each cycle in J(n; k, k + 1) has even length since it is a bipartite graph.

Suppose Γ is a graph. For any x ∈ V(Γ), let NΓ(x) and dΓ(x) denote the set of neighbours of x and the
degree of x in Γ, respectively. For any two vertices x, y ∈ V(Γ), let ∂Γ(x, y) denote the distance between
x and y in Γ. Given a doubled Johnson graph J(n; k, k + 1), in the following, we usually use V1 and V2 to
denote the set

(
[n]
k

)
and

(
[n]
k+1

)
, respectively, which are two parts of this bipartite graph. Set v1 := |V1| and

v2 := |V2|. Observe that v1 =
(

n
k

)
and v2 =

(
n

k+1

)
, and v1 = v2 =

(
2k+1

k

)
if n = 2k + 1. For any two vertices

x and y in J(n; k, k + 1), from [16], we have ∂Γ(x, y) = |x| + |y| − 2|x ∩ y|.

Proposition 2.1 Let U = (u0, u1, . . . , ui) be any path in J(n; k, k + 1). The following hold.

(i) If i = 3, there exists a unique cycle of length 6 containing U in J(n; k, k + 1).

(ii) If i = 2 and u2 ∈ V1, there exist n − k − 1 cycles of length 6 containing U in J(n; k, k + 1).

(iii) If i = 2 and u2 ∈ V2, there exist k cycles of length 6 containing U in J(n; k, k + 1).

(iv) If i = 1, there exist k(n − k − 1) cycles of length 6 containing U in J(n; k, k + 1).

Proof. (i) If i = 3, then u0 ∈ V1 or u3 ∈ V1. Without loss of generality, suppose u0 ∈ V1, u0 ∩ u2 = F,
u0 = F ∪ {x} and u2 = F ∪ {y}. Then u1 = F ∪ {x, y}. Assume that u3 = F ∪ {y, z}, where z < u1. Let

3



w = (u0, u1, u2, u3,w4,w5) be any cycle of length 6. Since u0 ⊆ w5 , u1 and |w5 ∩ u3| = k, we have
w5 = F ∪ {x, y} and w4 = u3 ∩ w5. Hence, w is unique and (i) holds.

(ii) and (iii) By (i), it suffices to count the number of the paths (u0, u1, u2,w3). If u2 ∈ V1, then
u2 ⊆ w3 , u1 and there are n−k−1 choices for w3. If u2 ∈ V2, then u1 , w3 ⊆ u2 and there are k choices
for w3. Hence (ii) and (iii) hold.

(iv) Without loss of generality, suppose u1 ∈ V1. There exist n−k−1 vertices w2 such that u0, u1,w2
is a path. By (ii), the desired result follows. 2

Corollary 2.2 The following hold.

(i) The length of the shortest cycle in J(n; k, k + 1) is 6.

(ii) The number of 6-cycles in J(n; k, k + 1) is n(C6) = 1
6 k(n− k− 1)e(J(n; k, k + 1)) = 1

6

(
n
k

)
(n− k)k(n−

k − 1).

Proof. (i) It suffices to prove that there does not exist a 4-cycle in J(n; k, k + 1). Suppose (v1, v2, v3, v4)
is a 4-cycle in J(n; k, k + 1) such that v1, v3 ∈ V1 and v2, v4 ∈ V2. Then v2 = v1 ∪ v3 = v4, a contradiction.

(ii) Since e(J(n; k, k + 1)) =
(

n
k

)
(n − k) and every edge is contained in k(n − k − 1) cycles of length 6

by Proposition 2.1, we have n(C6) = 1
6

(
n
k

)
(n − k)k(n − k − 1). 2

In the following, we consider the number of 2-paths in a spanning subgraph G of J(n; k, k + 1). For
any 2-path (x,w, y) in G, note that x, y ∈ NG(w). Hence, the number of 2-paths in G whose middle vertex
is in Vi is ∑

w∈Vi

(
dG(w)

2

)
=

1
2

∑
w∈Vi

dG(w)2 −
1
2

e(G) (1)

for i = 1, 2. Observe that the total number of 2-paths in J(n; k, k + 1) is n−1
2 · e(J(n; k, k + 1)).

By Cauchy-Schwarz inequality, for i ∈ {1, 2}, we have

∑
w∈Vi

dG(w)2 ≥

∑
w∈Vi

dG(w)

2

/vi = e(G)2/vi, (2)

which implies that ∑
w∈Vi

(
dG(w)

2

)
≥

1
2vi

e(G)2 −
1
2

e(G).

3 Upper bounds for ex(Õk+1,C2l) with l = 3, 4, 5

Let C6 be the set of all 6-cycles in Õk+1 and G be any spanning subgraph of Õk+1. For any subgraphs
H and L of Õk+1, let G ∩ H be the graph with vertex set V(G) ∩ V(H) and edge set E(G) ∩ E(H), and
H \E(L) be the graph with vertex set V(H) and edge set E(G)\E(L). Notice that for any 6-cycle H ∈ C6,
G∩H is isomorphic to one of the graphs in Figure 1. Let χ0, χ1, χ

1
2, χ

2
2, χ

1
3, χ

2
3, χ

3
3, χ

1
4, χ

2
4, χ

3
4, χ5, χ6

denote the ratio of the number of 6-cycles H satisfying that G∩H is isomorphic to the graphs (1)− (12)
in Figure 1 to the total number of 6-cycles in Õk+1, respectively.

Then we have

χ0 + χ1 + χ1
2 + χ2

2 + χ1
3 + χ2

3 + χ3
3 + χ1

4 + χ2
4 + χ3

4 + χ5 + χ6 = 1. (3)
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Figure 1: Subgraphs of C6

For any two distinct H1,H2 ∈ C6, since the least length of a cycle in Õk+1 is 6, we have V(H1) ,
V(H2), which implies that G∩H1 , G∩H2. For any e ∈ E(Õk+1), let (C6)e denote the set of all 6-cycles
in C6 which contain e. By computing the size of the set {(e,G ∩ H) | H ∈ C6, e ∈ E(G ∩ H)} in two
ways, we obtain ∑

H∈C6

e(G ∩ H) =
∑

e∈E(G)

|(C6)e|.

By Proposition 2.1 and Corollary 2.2, we get

e(G)

e(Õk+1)
=

1
6n(C6)

∑
H∈C6

e(G ∩ H)

=
1
6

(
χ1 + 2(χ1

2 + χ2
2) + 3(χ1

3 + χ2
3 + χ3

3) + 4(χ1
4 + χ2

4 + χ3
4) + 5χ5 + 6χ6

)
. (4)

Proof of Theorem 1.2 (iii). (a) Suppose G is C6-free. Then χ6 = 0, which implies that ex(Õk+1,C6) ≤
5
6 e(Õk+1) by (3) and (4).

(b) Suppose G is C8-free. For any 2-path L in Õk+1, we claim that there is at most one H in C6 such
that (G∩H)\E(L) is isomorphic to the graph (8) in Figure 1. Assume that L = (u1, u2, u3) is a 2-path, and
H1 = (u1, u2, u3, u4, u5, u6) and H2 = (u1, u2, u3,w4,w5,w6) are two cycles in C6 such that (G∩Hi)\E(L)
is isomorphic to the graph (8) in Figure 1 for i ∈ {1, 2}. Since G is C8-free, {u4, u5, u6}∩{w4,w5,w6} , ∅.
If u4 = w4 or u6 = w6, then H1 and H2 contain a same 3-path, which is impossible by Proposition 2.1.
If u4 , w4 and u6 , w6, then one can construct a cycle with length less than 6 from H1 and H2. That
is impossible because the least length of cycles in Õk+1 is 6. Hence, the claim holds. It is easy to see
that if there is an H in C6 such that (G ∩ H) \ E(L) is isomorphic to the graph (8) in Figure 1, G ∩ H
must be isomorphic to one of the graphs (8), (11) and (12) in Figure 1. Conversely, for any H ∈ C6, if
G ∩H is isomorphic to the graph (8), (11) or (12) in Figure 1, the number of 2-paths L in Õk+1 such that
(G ∩ H) \ E(L) is isomorphic to the graph (8) in Figure 1 is 1, 2 or 6, respectively.

By counting in two ways the pairs (L,H) where L is a 2-path in Õk+1, H ∈ C6 such that (G∩H)\E(L)
is isomorphic to the graph (8) in Figure 1, we have

k · e(Õk+1) ≥ (6χ6 + 2χ5 + χ1
4)n(C6),

which implies that χ1
4 ≤

6
k = o(1), χ5 ≤

3
k = o(1) and χ6 ≤

1
k = o(1). By (3) and (4), we have

e(G)

e(Õk+1)
≤

1
6

(4 + o(1)),

5



and hence ex(Õk+1,C8) ≤ ( 2
3 + o(1))e(Õk+1).

(c) Suppose G is C10-free. For any e ∈ E(Õk+1), we claim that there are at most 2k − 1 cycles H
in C6 such that (G ∩ H) \ {e} is isomorphic to the graph (11) in Figure 1. Assume that e = (u1, u2) is
an edge, and H1 = (u1, u2, u3, u4, u5, u6) is a cycle in C6 such that (G ∩ H1) \ {e} is isomorphic to the
graph (11) in Figure 1. Let H2 = (u1, u2,w3,w4,w5,w6) be any other cycle in C6 such that (G∩H2) \ {e}
is isomorphic to the graph (11). since G is C10-free, {u3, u4, u5, u6} ∩ {w3,w4,w5,w6} , ∅. If u3 , w3
and u6 , w6, then one can construct a cycle with length less than 6 from H1 and H2. That is impossible
because the least length of cycles in Õk+1 is 6. Then we have u4 = w4 or u6 = w6. By Proposition 2.1,
note that there are at most 2k−1 cycles in C6 containing the 2-path (u1, u2, u3) or (u6, u1, u2). Hence, the
claim holds. It is easy to see that if there is an H in C6 such that (G ∩H) \ {e} is isomorphic to the graph
(11) in Figure 1, G ∩ H must be isomorphic to one of the graphs (11) and (12) in Figure 1. Conversely,
for any H ∈ C6, if G ∩ H is isomorphic to the graph (11) or (12) in Figure 1, the number of e in Õk+1
such that (G ∩ H) \ {e} is isomorphic to the graph (11) in Figure 1 is 1 or 6, respectively.

By counting in two ways the pairs (e,H) where e ∈ E(Õk+1), H ∈ C6 such that (G ∩ H) \ {e} is
isomorphic to the graph (11) in Figure 1, we have

(2k − 1) · e(Õk+1) ≥ (6χ6 + χ5)n(C6),

which implies that χ5 ≤
6(2k−1)

k2 = o(1) and χ6 ≤
2k−1

k2 = o(1). By (3) and (4), we have

e(G)

e(Õk+1)
≤

1
6

(4 + o(1)),

and hence ex(Õk+1,C10) ≤ ( 2
3 + o(1))e(Õk+1). 2

4 C4l-free subgraphs of J(n; k, k + 1) with l ≥ 2

Let l be an integer with l ≥ 2. Suppose G is a maximal spanning C4l-free subgraph of J := J(n; k, k + 1).
Notice that V(G) = V(J) and dG(x) ≥ 1 for any x ∈ V(G).

Firstly, we define an auxiliary graph Hx := Hx(G) for each vertex x ∈ V(J). We note that the Hx in
this form is similar to but different from the auxiliary graph which was used by Chung [6] and Füredi et
al. [14]. The vertex set of Hx consists of the vertices which have distance 2 from x in J. In Hx, for any
two distinct vertices y and z, they are adjacent if and only if there exists a vertex w < NJ(x) such that
(y,w, z) is a 2-path in G. Notice that |V(Hx)| = k(n − k) if x ∈ V1, and |V(Hx)| = (k + 1)(n − k − 1) if
x ∈ V2.

If {y, z} ∈ E(Hx), then ∂G(y, z) = 2. Hence, there exits a unique 6-cycle containing x, y and z in J,
and there exists a unique vertex w such that (y,w, z) is a 2-path in G. Conversely, for any two distinct
vertices y, z ∈ V(J) such that ∂G(y, z) = 2, by Proposition 2.1 (ii) and (iii), there are n − k − 1 (resp. k)
vertices x in V(J) such {y, z} ∈ E(Hx) if y, z ∈ V1 (resp. y, z ∈ V2). Let

Fi = {(x, {y, z}) | x ∈ Vi, {y, z} ∈ E(Hx)}

for i = {1, 2}. By counting in two ways the elements in Fi, from (1), observe that∑
x∈V1

e(Hx) = (n − k − 1)
∑
w∈V2

(
dG(w)

2

)
=

1
2

(n − k − 1)
∑
w∈V2

dG(w)2 −
1
2

(n − k − 1)e(G), (5)

∑
x∈V2

e(Hx) = k
∑
w∈V1

(
dG(w)

2

)
=

k
2

∑
w∈V1

dG(w)2 −
k
2

e(G). (6)
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Since G is C4l-free, we have Hx is C2l-free. If not, suppose (y0, y1, . . . , y2l−1) is a cycle in Hx. By the
definition of Hx, assume that w0,w1, . . . ,w2l−1 < NJ(x) are the vertices such that (yi,wi, yi+1) is a 2-path
in G for any i ∈ {0, 1, . . . , 2l − 1}, where y2l = y0. We claim that w0,w1, . . . ,w2l−1 are pair-wise distinct.
Suppose wi = w j with i , j. Then (x, ui, yi,wi), (x, ui+1, yi+1,wi), (x, u j, y j,w j) are three 3-paths in J,
That is impossible since the least length of a cycle in J is 6 and there exists a unique cycle of length 6
containing (x, ui, yi,wi) in J. Hence (y0,w0, y1,w1, . . . , y2l−2,w2l−2, y2l−1,w2l−1) is a cycle with length 4l
in G, which is a contradiction. Thus, by the consequence of Bondy and Simonovits [4], Hx can have at
most c′l(v(Hx))1+1/l edges, where c′l is a constant. Therefore, we have∑

x∈V1

e(Hx) ≤ vlc′1(k(n − k))1+1/l. (7)

Proof of Theorem 1.1 (i). Firstly, we give a lower bound of
∑

x∈V1
e(Hx). Since dG(w) ≤ n − k for any

w ∈ V1, we get ∑
w∈V1

dG(w)2 ≤ (n − k)
∑
w∈V1

dG(w) = (n − k)e(G),

which implies that ∑
x∈V2

e(Hx) ≤
k
2

(n − k − 1)e(G) (8)

from (6). Since dG(w)2 − 2dG(w) ≥ −1 for any w ∈ V2, by (5) and (8), we have∑
x∈V1

e(Hx) −
1
k

∑
x∈V2

e(Hx) ≥
1
2

(n − k − 1)
∑
x∈V2

dG(w)2 − (n − k − 1)e(G)

=
1
2

(n − k − 1)

∑
x∈V2

dG(w)2 − 2
∑
x∈V2

dG(w)


≥ −

1
2

(n − k − 1)v2. (9)

Therefore, by (2), (6) and (9), we have

∑
x∈V1

e(Hx) =

∑
x∈V1

e(Hx) −
1
k

∑
x∈V2

e(Hx)

 +
1
k

∑
x∈V2

e(Hx)

≥ −
1
2

(n − k − 1)v2 +
1
2

∑
w∈V1

dG(w)2 −
1
2

e(G)

≥ −
1
2

(n − k − 1)v2 +
1
2

e(G)2

v1
−

1
2

e(G)

= −
1
2

nv2 +
1
2

e(G)2

v1
. (10)

By (7) and (10), we get
e(G)2 ≤ 2v2

1c′l(k(n − k))1+1/l + nv1v2,

which implies that

e(G)2

e(J)2 ≤ 2c′lk
1+1/l(n − k)−1+1/l + n(n − k)−1(k + 1)−1

= (2c′lk
1+1/l + k(k + 1)−1(n − k)−1/l)(n − k)−1+1/l + (k + 1)−1
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from e(J) = v1(n − k) = v2(k + 1). Since lim
n→+∞

(n − k)−1/l = 0, there exists constant cl such that

e(G) ≤ (cl(n − k)−
1
2 + 1

2l + (k + 1)−
1
2 )e(J).

Therefore, Theorem 1.1 (i) holds. 2

Proof of Theorem 1.2 (i). By (2), (5) and (7), we have

v1c′l(k(k + 1))1+1/l ≥
ke(G)2

2v2
−

ke(G)
2

,

which implies that
e(G)2 ≤ 2v1v2c′lk

1/l(k + 1)1+1/l + v2e(G).

Since e(Õk+1) = v1(k + 1) = v2(k + 1), observe that

e(G)2

e(Õk+1)2
≤ 2c′lk

1/l(k + 1)−1+1/l + e(G)(k + 1)−1e(Õk+1)−1

≤ (2c′l + e(G)e(Õk+1)−1(k + 1)−2/l)(k + 1)−1+2/l.

Thus, there exists a constant cl such that

e(G) ≤ cl(k + 1)−
1
2 + 1

l e(Õk+1),

and Theorem 1.2 (i) holds. 2

5 C4l+2-free subgraphs of J(n; k, k + 1) with l ≥ 1

We update the auxiliary graph used in Section 4. Let G be a spanning subgraph of J(n; k, k + 1) and
Ω =

(
[n]
k−1

)
. For any γ ∈ Ω, we define a new auxiliary graph Hγ = Hγ(G) as follows. The vertex set of Hγ

consists of all the k-subsets of [n] which contain γ. For any two vertices x and y in V(Hγ), x and y are
adjacent if and only if there exists a 2-path between x and y in G.

Note that |V(Hγ)| = n − k + 1 for any γ ∈ Ω. For any two distinct elements x and y in V1, if there
exists a 2-path between x and y in G, then the 2-path is unique in G, and there exists a unique γ ∈ Ω

such that {x, y} ∈ E(Hγ). Therefore, the number of edges in ∪γ∈ΩE(Hγ) equals the number of 2-paths in
G whose endpoints are in V1, that is∑

γ∈Ω

e(Hγ) =
∑
w∈V2

(
dG(w)

2

)
=

1
2

∑
w∈V2

dG(w)2 −
1
2

e(G). (11)

Proposition 5.1 If there exists an m-cycle in Hγ for some γ ∈ Ω, then there exists a 2m-cycle in G.

Proof. Suppose (y0, y1, . . . , ym) is a cycle in Hγ. By the definition of Hγ, assume that w0,w1, . . . ,wm

are the vertices such that (yi,wi, yi+1) is a 2-path in G for any i ∈ {0, 1, . . . ,m}, where ym+1 = y0. We
claim that w0,w1, . . . ,wm are pair-wise distinct. Suppose wi = w j with i , j. Then yi ∪ yi+1 = y j ∪ y j+1,
which is impossible since yi, yi+1, y j and y j+1 are four distinct k-subsets of [n] which contain γ. Hence
(y0,w0, y1,w1, . . . , ym−2,wm−2, ym−1,wm−1) is a cycle of length 2m in G. 2

8



5.1 Upper bound for ex(J(n; k, k + 1),C4l+2) with l ≥ 1

Proof of Theorem 1.1 (ii). To get an upper bound for ex(J(n; k, k + 1),C4l+2), we will apply the Erdős-
Stone-Simonovits Theorem [11, 13], that if F is a graph with χ(F) = t and χ(F \ {e}) < t for some edge
e of F, then

ex(m, F) =

(
1 −

1
t − 1

+ o(1)
) (

m
2

)
,

where χ(F) is the chromatic number of the graph F.

Suppose G is C4l+2-free. By Proposition 5.1, we have Hγ is C2l+1-free. Therefore, for l ≥ 1,
according to the Erdős-Stone-Simonovits Theorem, Hγ has at most ( 1

2 + o(1))
(

n−k+1
2

)
edges. By (2) and

(11), we have (
n

k − 1

) (
1
2

+ o(1)
) (

n − k + 1
2

)
≥

e(G)2

2v2
−

e(G)
2

,

which implies that

e(G)2 ≤ v2v1k(n − k)
(

1
2

+ o(1)
)

+ v2e(G).

Since e(J) = v1(n − k) = v2(k + 1), we obtain

e(G)2

e(J)2 ≤
k

k + 1

(
1
2

+ o(1)
)

+
1

k + 1
e(G)
e(J)

,

which implies that

e(G)
e(J)

≤
1
2

 1
k + 1

+

√
1

(k + 1)2 +
4k

k + 1

(
1
2

+ o(1)
)

≤
1

2(k + 1)
+

√
1 + 2k(k + 1)

2(k + 1)
+ o(1)

≤
1

2(k + 1)
+

√
2

2
+ o(1).

Therefore, Theorem 1.1 (ii) holds. 2

5.2 C4l+2-free subgraphs of Õk+1 with l ≥ 3

In this subsection, let G be a C4l+2-free spanning subgraph of Õk+1 with l ≥ 3. Let a and b be two
integers such that 4a + 4b = 4l + 4 and a, b ≥ 2. Notice that a cycle of length 4a can not intersect a
cycle of length 4b at a single edge, otherwise their union contains a cycle of length 4l + 2. For any graph
H, define N(G,H) to be the number of subgraphs of G that are isomorphic to H. Firstly, we provide an
upper bound on N(G,C4a). Secondly, a lower bound on N(G,C4a) is obtained via a lower bound on the
number of C2a’s in the auxiliary graphs constructed from G. Last of all, we obtain an upper bound of
ex(Õk+1,C4l+2) and slightly improve our bound in a specific situation.

5.2.1 An upper bound on N(G,C4a)

Definition 5.2 The direction of an edge {u, v} in E(J), denote by d(uv), to be the single number in u∆v,
where ∆ is symmetric difference.
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Let D(F) := {d(e) | e ∈ E(F)}, where F is any subgraph of Õk+1. Notice that for any path P =

(u1, u2, . . . , us), we have u1∆us ⊆ D(P).

Lemma 5.3 For any cycle C of length 2r in Õk+1, we have |D(C)| ≤ r.

Proof. It suffices to prove that for any x ∈ D(C) there exist at least two edges in C whose direction
is x. Assume that there exists x′ ∈ D(C) such that the number of edges in C with direction x′ is 1.
Without loss of generality, suppose that C = (u1, u2, . . . , u2r), d(u2ru1) = x′ and x′ ∈ u2r. Since x′ < u1
and x′ < ui∆ui+1 for i ∈ {1, 2, . . . , 2r − 1}, we have x′ < u2r, a contradiction. Hence, the desired result
follows. 2

Lemma 5.4 Let C and C′ be cycles of length 4a and 4b of G, respectively. If E(C) ∩ E(C′) , ∅, then
|D(C) ∩ D(C′)| ≥ 2.

Proof. Suppose {u1, u2} ∈ E(C) ∩ E(C′). Since G has no cycles of length 4a + 4b − 2, there exists
u3 < {u1, u2} such that u3 ∈ V(C) ∩ V(C′). Since |u1∆u2| = 1 and u3 , u2, we have u1∆u2 , u1∆u3.
Notice that (u1∆u2) ∪ (u1∆u3) ⊆ D(C) ∩ D(C′), which implies that |D(C) ∩ D(C′)| ≥ 2. 2

Lemma 5.5 We have
N(G,C4a) = O(k2a−2)e(G) + O(v1k2a− 1

2 + 1
b ).

Moreover, if a = b, then N(G,C4a) = O(k2a−2)e(G).

Proof. Let C denote the set of cycles of length 4a in G and Ce denote the set of cycles in C which
contain the edge e. Note that |C | = N(G,C4a). Let E = ∪C∈C E(C) and E := E1 ∪ E2, where E1 is the
collection of edges that are contained in a cycle of length 4b in G, and E2 := E \ E1. By counting the
size of {(H, e) | H ∈ C , e ∈ E and e ∈ E(H)} in two ways, we have

4aN(G,C4a) =
∑

e1∈E1

|Ce1 | +
∑

e2∈E2

|Ce2 |. (12)

Since every 4a-cycle containing a fixed edge e is determined by a sequence of directions, for each
B ∈ {D(C∗) | C∗ ∈ Ce}, there are at most |B|4a−1 4a-cycles C′4a such that D(C′4a) = B and e ∈ E(C′4a).

For each e1 ∈ E1 (if E1 , ∅), let C′ be a fixed 4b-cycle with e1 ∈ E(C′). For any 4a-cycle C∗ ∈ Ce1 ,
we have d(e) ∈ D(C∗) and |D(C∗) ∩ D(C′)| ≥ 2 from Lemma 5.4. Hence, by Lemma 5.3, we have

|{D(C∗) | C∗ ∈ Ce1 }| ≤

2a−1∑
i=1

(
|D(C′)| − 1

i

) 2a−1−i∑
j=0

(
2k + 1 − |D(C′)|

j

)
,

which implies that

|Ce1 | ≤

2a−1∑
i=1

(
D(C′) − 1

i

) 2a−1−i∑
j=0

(
2k + 1 − |D(C′)|

j

)
(i + 1 + j)4a−1 = O(k2a−2). (13)

For each e2 ∈ E2 (if E2 , ∅), by Lemma 5.3 again, we have

|{D(C∗) | C∗ ∈ Ce2 }| ≤

2a−1∑
i=0

(
2k
i

)
,
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which implies that

|Ce2 | ≤

2a−1∑
i=0

(
2k
i

)
(i + 1)4a−1 = O(k2a−1). (14)

Notice that |E1| ≤ e(G) and |E2| ≤ ex(Õk+1,C4b) because the subgraph induced by E2 is C4b-free. By
(12), (13), (14) and Theorem 1.2 (i), we obtain

N(G,C4a) =
1

4a

∑
e∈E1

O(k2a−2) +
∑
e∈E2

O(k2a−1)

 ≤ O(k2a−2)e(G) + O(v1k2a− 1
2 + 1

b ).

In particular, if a = b, then |E2| = 0. Hence,

N(G,C4a) =
1
4a

∑
e∈E1

O(k2a−2) ≤ O(k2a−2)e(G).

We complete the proof of this lemma and obtain an upper bound of N(G,C4a). 2

5.2.2 A lower bound on N(G,C4a)

In this part, we use the auxiliary graphs defined in the beginning of this section to get a lower bound of
N(G,C4a) via a lower bound on the number of 2a-cycles in these auxiliary graphs.

By the definition of the auxiliary graph and the proof of Proposition 5.1, we get

N(G,C4a) ≥
∑
γ∈Ω

N(Hγ,C2a). (15)

Lemma 5.6 (Erdős, Simonovits [12]) Let L be a bipartite graph, where there exist vertices x and y
such that L \ {x, y} is a tree. Then for a graph H with n vertices and e edges, there exist constants
c1, c2 > 0 such that if H contains more than c1n

3
2 edges, then

N(H, L) ≥ c2
en(L)

n2e(L)−n(L) ,

where n(L) and e(L) are the number of vertices and edges in L, respectively. 2

Lemma 5.7 We have N(G,C4a) ≥ cv1
d̄4a

k2a − O(v1ka), where d̄ = e(G)/v1 = e(G)/v2.

Proof. We use Lemma 5.6 with L = C2a in the following form so that the condition on the minimum
number of edges is incorporated. Since n(L) = e(L) = 2a, we have

N(Hγ,C2a) ≥ c2

(
e(Hγ)2a

v(Hγ)2a −
(c1v(Hγ)3/2)2a

v(Hγ)2a

)
,

which implies that

N(G,C4a) ≥
∑
γ∈Ω

c2

(
e(Hγ)2a

v(Hγ)2a −
(c1v(Hγ)3/2)2a

v(Hγ)2a

)
(16)
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by (15). By Hölder inequality, (2) and (11), we have

∑
γ∈Ω

e(Hγ)2a ≥

∑
γ∈Ω

e(Hγ)

2a

· |Ω|−2a+1 =

∑
w∈V2

(
dG(w)

2

)2a

· |Ω|−2a+1

=

(
v2

(
d̄
2

))2a

· |Ω|−2a+1 =

(
k + 2

k

(
d̄
2

))2a

·
kv1

k + 2
.

Since
(

d̄
2

)
/d̄2 ≤ 1

2 , by (16), we get

N(G,C4a) ≥ c2v1
k

k + 2

(
d̄
2

)2a

k2a − O
(

k
k + 2

v1(k + 2)a
)
≥ cv1

d̄4a

k2a − O(v1ka).

Therefore, the desired result follows. 2

5.2.3 Proof of Theorem 1.2 (ii)

Since e(G)/v1 ≤ k + 1, by Lemmas 5.5 and 5.7, we have

d̄4a ≤ O(k3a) + d̄O(k4a−2) + O(k4a− 1
2 + 1

b ).

Hence,

d̄4a = max
{
d̄O(k4a−2), O(k4a− 1

2 + 1
b )
}
,

which implies that d̄ = max
{
O(k1− 1

4a−1 ), O(k1− 1
4a ( 1

2−
1
b ))

}
.

This bound is minimized when a = 2 and b = l− 1 and we get d̄ = O(k1− 1
16 + 1

8(l−1) ), which implies that

e(G) = O(k1− 1
16 + 1

8(l−1) )v1 = O(k−
1

16 + 1
8(l−1) )e(Õk+1), (17)

where e(Õk+1) = (k + 1)v1.

Finally, we consider the case a = b = (l + 1)/2 when l is odd. By Lemmas 5.5 and 5.7, we have

d̄4a ≤ O(k3a) + d̄O(k4a−2),

which implies that d̄ = O(n1− 1
4a−1 ). Since a = b = (l + 1)/2, we immediately get d̄ = O(k1− 1

2l+1 ), which
implies that

e(G) = O(k1− 1
2l+1 )v1 = O(k−

1
2l+1 )e(Õk+1). (18)

By comparing (17) and (18) when l is odd, observe that k−
1

2l+1 ≤ k−
1
16 + 1

8(l−1) if and only if 0 < l < 9.8.
Since l ≥ 3, (18) improves (17) for l = 3, 5, 7, 9. We compete the proof of Theorem 1.2 (ii). 2

Remark 5.8 Our proof also implies that ex(Õk+1,Θ4a−1,1,4b−1) is o(e(Õk+1)) for a, b ≥ 2 and k ≥ 1,
where Θu,v,w is a theta-graph consisting of three paths of lengths u, v and w having the same endpoints
and distinct inner vertices. Our result also naturally implies that C2l is Ramsey for l ≥ 6, i.e., there is a
monochromatic copy of C2l in any t-edge-coloring of Õk+1 when k > k(t, l) (Theorem 1.3).
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