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Centro de Investigación y de Estudios Avanzados del IPN

Apartado Postal 14-740, 07000 Mexico City, Mexico

rvillagran@math.cinvestav.mx

Abstract

We compute the sandpile groups of families of planar graphs having

a common weak dual by evaluating the indeterminates of the critical ide-

als of the weak dual at the lengths of the cycles bounding the interior

faces. This method allow us to determine the algebraic structure of the

sandpile groups of outerplanar graphs, and can be used to compute the

sandpile groups of many other planar graph families. Finally, we compute

the identity element for the sandpile groups of the dual graphs of many

outerplane graphs.

Keywords: sandpile group, outerplanar graphs, Gröbner bases, critical ide-
als, spanning tree.

1 Introduction

The dynamics of the Abelian sandpile model, which was firstly studied by Bak,
Tang and Wiesenfeld in [8], is developed on a connected graph G with a special
vertex q, called sink. We denote by N the set of non-negative integers. In the
sandpile model, a configuration on (G, q) is a vector c ∈ NV , in which entry cv is
associated with the number of grains of sand or chips placed on vertex v. Two
configurations c and d are equal if cv = dv for each non-sink vertex. The sink
vertex is used to collect the sand getting out the system. A non-sink vertex v
is called stable if cv is less than its degree dG(v), and unstable, otherwise. Thus,
a configuration is called stable if every non-sink vertex is stable. The toppling
rule in the dynamics of the model consists in selecting an unstable non-sink
vertex u and moving dG(u) grains of sand from u to its neighbors, in which each
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neighbor v receives m(u,v) grains of sand, where m(u,v) denote the number of
edges between u to v. Note toppling vertex vi in configuration c corresponds to
the subtraction the i-th row of the Laplacian matrix to c. Recall the Laplacian
matrix L(G) of a graph G is defined such that the (u, v)-entry of L(G) is defined
as

L(G)u,v =

{

degG(u) if u = v,

−m(u, v) otherwise.

Starting with any unstable configuration and toppling unstable vertices repeat-
edly, we will always obtain [24, Theorem 2.2.2] a stable and unique configuration
after a finite sequence of topplings. The stable configuration obtained from the
configuration c will be denoted by s(c). The sum of two configurations c and
d is performed entry by entry. A configuration c is recurrent if there exists a
non-zero configuration d such that c = s(d+ c). Let c⊕d := s(c+d). Recurrent
configurations play a central role in the dynamics of the Abelian sandpile model
since recurrent configurations together with the ⊕ operation form an Abelian
group known as sandpile group [24, Chapter 4]. In the following K(G) denote
the sandpile group of G. One of the interesting features of the sandpile group
of connected graphs is that the order |K(G)| is equal to the number τ(G) of
spanning trees of the graph G.

The sandpile group has been studied under different names, for example:
chip-firing game [11, 28], critical group [11, 14], group of components [27], Jaco-
bian group [7, 11], Laplacian unimodular equivalence [29], Picard group [7, 11],
or sandpile group [5, 17]. We recommend the reader the book [24] which is
an excellent reference on the theory of chip-firing game and its relations with
other combinatorial objects like rotor-routing, hyperplane arrangements, park-
ing functions and dominoes. In particular, the properties of the sandpile config-
urations are explained in detail there. On the other hand, the Abelian sandpile
model was the first example of a self-organized critical system, which attempts
to explain the occurrence of power laws in many natural phenomena ranging
on different fields like geophysics, optimization, economics and neuroscience. A
nice exposure to self-organized-critically is provided in the book [13].

Two matricesM andN are said to be equivalent if there exist P,Q ∈ GLn(Z)
such that N = PMQ, and denoted by N ∼ M . Given a square integer matrix
M , the Smith normal form (SNF) of M is the unique equivalent diagonal ma-
trix diag(d1, d2, . . . , dn) whose non-zero entries are non-negative and satisfy di
divides di+1. The diagonal elements of the SNF are known as invariant factors.
In [31], Stanley surveys the influence of the SNF in combinatorics. In our con-
text the SNF is relevant since the sandpile group is isomorphic to the torsion
part of the cokernel of the Laplacian matrix of G [24, Chapter 4], and the SNF
of a matrix is a standard technique to determine the structure of cokernel. This
is because if N ∼ M , then coker(M) = Zn/ImM ∼= Zn/ImN = coker(N). In
particular, the fundamental theorem of finitely generated Abelian groups states
coker(M) ∼= Zd1⊕Zd2⊕· · ·⊕Zdr

⊕Zn−r, where r is the rank of M . The minimal
number of generators of the torsion part of the cokernel of M equals the number
of positive invariant factors of SNF(M). Let f1(G) and φ(G) denote the number
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of invariant factors of L(G) equal to 1 and the minimal number of generators of
K(G), respectively. If G is a graph with n vertices and c connected components,
then n− c = f1(G) + φ(G).

It is important to note that the algebraic structure of the sandpile group does
not depend on the sink vertex, meanwhile the combinatorial structure depicted
by the recurrent configurations of G do depends on the sink vertex.

At the beginning, it was found [27, 33] that many graphs have cyclic group
from which was conjectured that almost all graphs have cyclic sandpile group.
However, it was found in [35] that the probability that the sandpile group of a
random graph is cyclic is asymptotically at most 0.7935212. Still, it was proved
[14] that for any given connected simple graph, there is an homeomorphic graph
with cyclic sandpile group. Recall, we say that two graphs G1 and G2 are in
the same homeomorphism class if there exists a graph G that is a subdivision
of both G1 and G2.

The following lemma is convenient in many situations to compute the in-
variant factors of a matrix M .

Lemma 1. For k ∈ [rank(M)], let ∆k(M) be the gcd of the k-minors of matrix
M , and ∆0(M) = 1. Then the k-th invariant factor dk(M) of M equals

∆k(M)

∆k−1(M)
.

This relation inspired H. Corrales and C. Valencia to introduce in [18]
the critical ideals of a graph, which are determinantal ideals generalizing the
sandpile group and their varieties generalize the spectrum of the graph. Let
A(G) be the adjacency matrix of the graph G with n vertices. Let AX(G) =
diag(x1, . . . , xn) − A(G), where the indeterminates of X = (x1, . . . , xn) are as-
sociated with the vertices of G. For k ∈ [n], the k-th critical ideal Ik(G) of G
is the ideal in Z[X ] generated by the k-minors of the matrix AX(G). Note the
evaluation of the k-th critical ideal of G at X = deg(G) will be an ideal in Z

generated by ∆k(L(G)). We will show a new application of the critical ideals
for computing the sandpile group of planar graph.

When the graph is connected, it is convenient to compute the cokernel of
a reduced Laplacian matrix since it is full rank. The reduced Laplacian matrix
Lk(G) for a connected graphG is the (n−1)×(n−1) matrix obtained by deleting
the row and column k from L(G). There are n different reduced Laplacian
matrices and K(G) ∼= coker(Lk(G)) and |K(G)| = det(Lk(G)) = τ(G) for any
k ∈ [n] := {1, . . . , n}, see details in [11].

We will use G∗ to denote the dual of a plane graph G, and the weak dual,
denoted by G∗, is constructed the same way as the dual graph, but without
placing the vertex associated with the outer face. It is known [10, 17, 32] that the
sandpile group of a planar graph is isomorphic to the sandpile group of its dual.
Since the dual of any plane graph is connected [12], then K(G) ∼= coker(Lk(G

∗))
and τ(G) = det(Lk(G

∗)).
In [30], C. Phifer gave a nice interpretation of this relation by introducing

the cycle-intersection matrix of a plane graph as follows. Given a plane graph
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G with s interior faces F1, . . . , Fs, let c(Fi) denote the length of the cycle which
bounds interior face Fi. We define the cycle-intersection matrix, C(G) = (cij) to
be a symmetric matrix of size s× s, where cii = c(Fi), and cij is the negative of
the number of common edges in the cycles bounding the interior faces Fi and Fj ,
for i 6= j. This matrix differs from the fundamental circuits intersection matrix
used in [14]. Note that C(G) is the reduced Laplacian of G∗ where the column
and row associated with the outer face are removed from L(G∗). Therefore we
have the following.

Lemma 2. Let G be a plane graph. Then K(G) ∼= coker(C(G)) and τ(G) =
det(C(G)).

Recently, the structure of the sandpile group of some subfamilies of the out-
erplanar graphs were established, see for example [9, 15, 25]. Also, the Tutte
polynomial and the number of spanning tress of an infinite families of outerpla-
nar, small-world and self-similar graphs were obtained in [16, 26]. Despite this,
the algebraic structure of the sandpile groups of the outerplanar graphs have
been largely unknown.

In Section 2, we explore the relation obtained in Lemma 2 under the lenses
of the critical ideals of graphs. Then, we give a methodology to compute the
algebraic structure of the sandpile groups of the plane graph family F that have
a common weak dual. This method consists in evaluating the indeterminates
of the critical ideals of the weak dual at the lengths of the cycles bounding
the interior faces of the plane graph in F . In Section 3, we use this method
and the property that the weak dual of outerplane graphs are trees, which
was suggested by Chen and Mohar in [15], to compute the sandpile groups of
outerplanar graphs. This result rely on previous results obtained by Corrales
and Valencia in [19]. Finally, in Section 4, we compute the identity configuration
for the sandpile groups of the dual graphs of many outerplane graphs.

2 Sandpile groups of planar graphs

In this section we will introduce a procedure that can be applied to compute
the algebraic structure of the sandpile groups of the family of plane graphs that
have a common weak dual graph in terms of the critical ideals of the common
weak dual graph and the lengths of the cycles bounding the interior faces of a
plane embedding.

The basic properties about critical ideals and determinantal ideals of graphs
can be found in [1, 18], and in [3] can be found other applications of the critical
ideals not considered there. Next we state few properties of the critical ideals.
By convention Ik(G) = 〈1〉 if k < 1, and Ik(G) = 〈0〉 if k > n. An ideal is
called trivial or unit if it is equal to 〈1〉. The algebraic co-rank of G, denoted
by γ(G), is the number of critical ideals of G equal to 〈1〉. It is known that if
i ≤ j, then Ij(G) ⊆ Ii(G). Furthermore, if H is an induced subgraph of G, then
Ii(H) ⊆ Ii(G), from which follows that γ(H) ≤ γ(G).
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The classic relation between critical ideals and the invariant factors of the
sandpile groups of graphs are depicted by the following results. First, we recall
an alternative way to compute the invariant factors of integer matrices derived
from the adjacency matrix.

Lemma 3. [1, Proposition 14] Let G be a graph with n vertices and the in-
determinates of X = (x1, . . . , xn) are associated with the vertices of G. Let
M = aIn −A(G), where a ∈ Zn. Then, the ideal in Z obtained from the evalua-
tion of Ik(G) at X = a is generated by ∆k(M), that is, the gcd of the k-minors
of the matrix M .

This result is convenient since the k-th invariant factor dk(M) of the SNF of

M is equal to ∆k(M)
∆k−1(M) . In particular, we can apply Lemma 3 to the Laplacian

matrix and reduced Laplacian matrix to give a method to compute the sandpile
groups of some families of graphs.

Proposition 4. [18] Let G be a graph with vertex set {v1, . . . , vn}. Then,

1. if deg(G) = (degG(v1), . . . , degG(vn)), then the k-th critical ideal of G
evaluated at X = deg(G) is generated by ∆k(L(G)), and γ(G) ≤ f1(G),

2. let H be the graph constructed from G by adding a new vertex vn+1, and
let m ∈ Nn, where mi is the number of edges between vn+1 and vi, then
the k-th critical ideal of G evaluated at X = deg(G) +m is generated by
∆k(Ln+1(H)), and γ(G) ≤ f1(H).

Proof. It follows from Lemma 3, note that in case (1) the evaluation of AX(G)
at X = deg(G) equals L(G). Moreover, note that ∆j(L(G)) = 1 for all 1 ≤ j ≤
γ(G), therefore the first γ(G) invariant factors are 1. In case (2) the evaluation
of AX(G) at X = deg(G)+m equals Ln+1(H) and similarly to case (1) we have
that f1(H) ≥ γ(G)

The next example will illustrate how the critical ideals can be used to com-
pute the sandpile group of the family of graphs obtained from a graph G by
adding a new vertex v with an arbitrary number of edges between v and the
vertices of G.
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Figure 1: A plane graph H with 4 interior faces and its weak dual G.
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Example 5. Let H be the plane graph shown in Figure 1. Let C8 be the cycle
with 8 vertices obtained from H by removing vertex v9 and the edges incident
to it. The algebraic co-rank of C8 is 6, and for the next critical ideal we will
give their Gröbner bases since we need a simple basis that describe the ideal.
The Gröbner basis of the 7-th critical ideal of C8 is generated by the following
3 polynomials:

p1 = x1 + x3x4x5x6x7 − x3x4x5 − x3x4x7 − x3x6x7 + x3 − x5x6x7 + x5 + x7,

p2 = x2 + x4x5x6x7x8 − x4x5x6 − x4x5x8 − x4x7x8 + x4 − x6x7x8 + x6 + x8,

p3 = x3x4x5x6x7x8 − x3x4x5x6 − x3x4x5x8 − x3x4x7x8 +

x3x4 − x3x6x7x8 + x3x6 + x3x8 − x5x6x7x8 + x5x6 + x5x8 + x7x8.

The 8-th critical ideal of C8 is generated by the determinant of AX(C8):

x1x2x3x4x5x6x7x8 − x1x2x3x4x5x6 − x1x2x3x4x5x8 − x1x2x3x4x7x8

+x1x2x3x4 − x1x2x3x6x7x8 + x1x2x3x6 + x1x2x3x8 − x1x2x5x6x7x8

+x1x2x5x6 + x1x2x5x8 + x1x2x7x8 − x1x2 − x1x4x5x6x7x8 + x1x4x5x6

+x1x4x5x8 + x1x4x7x8 − x1x4 + x1x6x7x8 − x1x6 − x1x8 − x2x3x4x5x6x7

+x2x3x4x5 + x2x3x4x7 + x2x3x6x7 − x2x3 + x2x5x6x7 − x2x5 − x2x7

−x3x4x5x6x7x8 + x3x4x5x6 + x3x4x5x8 + x3x4x7x8 − x3x4 + x3x6x7x8 − x3x6

−x3x8 + x4x5x6x7 − x4x5 − x4x7 + x5x6x7x8 − x5x6 − x5x8 − x6x7 − x7x8.

In particular, by evaluating the polynomials p1, p2, p3 and det(AX(C8)) at X =
deg(C8) + (0, 1, 0, 1, 0, 1, 0, 1), we obtain ∆7(L9(H)) = gcd(32, 48, 72) = 8, and
∆8(L9(H)) = 192. From which follows that the sandpile group K(H) is iso-
morphic to Z8 ⊕ Z24.

The Gröbner basis for the critical ideals of the complete graphs, the cycles
and the paths were computed in [18]. In [19], it was given a description of
the generators of the k-th-critical ideal of any tree in terms of a set of special
2-matchings. The generators of the critical ideals of other graph families have
been computed in [4, 6, 22].

A new relation is explored next based on the cycle-intersection matrix C(H)
of a plane graph H .

Theorem 6. Let G be a graph with vertex set {v1, . . . , vn}. If G is the weak
dual of the plane graph H and c ∈ Nn is such that ci is the length of the cycle
bounding the i-th finite face, then the ideal in Z obtained from the evaluation of
Ik(G) at X = c is generated by ∆k(C(H)). And f1(C(H)) ≥ γ(G).

Proof. We have that G = H∗. Let us assume that vn+1 ∈ H∗ is the vertex that
corresponds to the outer face of H . Then C(H) is the reduced Laplacian matrix
Ln+1(H

∗). Now, set c = deg(G)+m, where mi is the number of edges between
the vertex associated with the i-th interior face and the outer face. Thus the
result follows by applying Proposition 4.2.
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Let G be a plane graph. Therefore by Lemma 2 and Theorem 6, the sandpile
group of any plane graph H having G as weak dual can be obtained from the
critical ideals of G by evaluating the indeterminates X = (x1, . . . , xn) at the
lengths c = (c1, . . . , cn) of the cycles bounding the interior faces of H . Also
det(AX(G))|X=c = τ(H). Let us illustrate this with the following example.

Example 7. Let G be the graph described in the right-hand side in Figure 1.
Then

AY (G) =









y1 −1 0 −1
−1 y2 −1 0
0 −1 y3 −1
−1 0 −1 y4









.

Since there are 2-minors in AY (G) equal to ±1, then γ(G) ≥ 2, the equality
follows since the third critical ideal of G is non-trivial. The Gröbner basis of
I3(G) is

〈y1 + y3, y2 + y4, y3y4〉
Moreover, I4(G) = 〈det(AY (G))〉 = 〈y1y2y3y4 − y1y2 − y1y4 − y2y3 − y3y4〉.
Now, we will use these critical ideals to obtain the sandpile groups of any plane
graph H whose weak dual is isomorphic to G. Thus, we only need to evaluate
the indeterminates at the length of the cycles bounding the interior faces of H .
Note that the length of the interior faces of H is at least 2 and at least one of the
interior faces has length at least 3. One of such cases is when all interior faces
of H have the same length, say t. Hence, for this case, ∆3(C(H)) = gcd(2t, t2)
and ∆4(C(H)) = |t4 − 4t2|. It is not difficult to see that ∆3(C(H)) is equal to
t whenever t is odd and it is equal to 2t whenever t is even. Therefore, if the
interior faces of H have the same length t, the sandpile group K(H) of H is
isomorphic to Zgcd(2t,t2) ⊕ Z |t4−4t2|

gcd(2t,t2)

and τ(H) = |t4 − 4t2|. Since t ≥ 3, then

the sandpile group of H is not cyclic.

3 Sandpile groups of outerplanar graphs

We call a graph outerplanar if it has a planar embedding with the outer face
containing all the vertices. An outerplanar graph equipped with such embedding
is known as outerplane graph.

Lemma 8. [21] A graph G is outerplanar if and only if it has a weak dual G∗

which is a forest.

One advantage of the outerplane graphs is that when the outerplanar has
been embedded in the plane with all all the vertices lying on the outer face,
then the weak dual is the union of the weak duals of the blocks of G.

Next result implies that we should focus in computing sandpile groups of
biconnected outerpanar graphs.

Lemma 9. [34] Let G be a graph with b non-trivial blocks B1, . . . , Bb. Then
K(G) ∼= K(B1)⊕ · · · ⊕K(Bb).
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The following result is an specialization of Lemma 8.

Corollary 10. A graph G is biconnected outerplane if and only if its weak dual
G∗ is a tree.

Now we will give a description of the generators of the critical ideals of any
tree T , which were obtained in [19] in terms of the 2-matchings of the graph T l,
where T l is the graph obtained from T by adding a loop at each vertex of T .

Recall that a 2-matching is a set of edges M ⊆ E(G) such that every vertex
of G is incident to at most two edges in M and note that a loop counts as two
incidences for its respective vertex. The set of 2-matchings of T l with k edges
is denoted by 2M(T l, k). Given a 2-matching M of T l, the loops ℓ(M) of M is
the edge set M∩ {uu : u ∈ V (G)}. A 2-matching M of T l is minimal if there
does not exist a 2-matching M′ of T l such that ℓ(M′) ( ℓ(M) and |M′| = M.
The set of minimal 2-matchings of T l will be denoted by 2M∗

(

T l
)

, and the set

of minimal 2-matchings of T l with k edges will be denoted by 2M∗
k

(

T l
)

. Let
dX(M) denote det(AX(T )[V (ℓ(M))]), that is, the determinant of the submatrix
of AX(T ) formed by selecting the columns and rows associated with the loops
of M.

Lemma 11. [19, Theorem 3.7] Let T be a tree with n vertices. Then

Ik(T ) =
〈{

dX(M) : M ∈ 2M∗
k

(

T l
)}〉

,

for k ∈ [n].

It follows directly from Theorem 6 and Lemma 11 that the sandpile groups of
outerplanar graphs are determined in terms of the length of the cycles bounding
the interior faces of their outerplane embeddings and the 2-matching of the weak
dual with loops.

Theorem 12. Let G be a biconnected outerplane graph whose weak dual is the
tree T with n vertices, and let c = (c1, . . . , cn) be the vector of the lengths of the
cycles bounding the finite faces F1, . . . , Fn. Let

∆k = gcd
({

dX(M)|X=c : M ∈ 2M∗
k

(

T l
)})

,

for k ∈ [n]. Then K(G) ∼= Z∆1 ⊕ Z∆2
∆1

⊕ · · ·Z ∆n
∆n−1

and τ(G) = ∆n.

Let us illustrate the utility of Theorem 12 in the following example.

Example 13. Let G be the outerplane graph in figure 2, then G∗ = T where
the vertex i ∈ V (T ) corresponds to the face Fi of G for each 1 ≤ i ≤ 6. We will
use Theorem 12 to compute the sandpile group of K(G). We need to compute
2M∗

k (T
l) for 1 ≤ k ≤ 6. First, note that if T l has minimal 2-matching of size k

without loops, then Ik(T ) = 〈1〉. It is easy to see that this is the case for k ≤ 4
and then ∆1 = ∆2 = ∆3 = ∆4 = 1. On the other hand, for k = 5,

2M∗
5 (T

l) =







{(11), (22), (33), (45), (46)}, {(13), (23), (44), (55), (66)},
{(11), (55), (23), (34), (46)}, {(11), (66), (23), (34), (45)},
{(22), (55), (13), (34), (46)}, {(22), (66), (13), (34), (45)}







.
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Figure 2: An outerplane graph G with 6 interior faces and its weak dual T .

Therefore, by Lemma 11,

I5(T
l) = 〈x1x2x3 − x1 − x2, x4x5x6 − x5 − x6, x1x5, x1x6, x2x5, x2x6〉.

Moreover, the 6-th critical ideal of T is generated by det(AX(T ));

x1x2x3x4x6x5 − x1x2x3x5 − x1x2x3x6 − x1x2x6x5 − x1x4x6x5

−x2x4x6x5 + x1x5 + x2x5 + x1x6 + x2x6

Now, since c = (3, 3, 4, 5, 3, 3) and by Theorem 12, ∆5 = gcd(30, 39, 9) = 3,
∆6 = 1089 and thus K(G) = Z3 ⊕ Z363. Note that we can easily compute the
sandpile group of any graph with T as its weak dual, using the corresponding
cycle-lengths. For instance, some allowed edge contractions or vertex splittings
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Figure 3: An outerplane graph G with 6 interior faces and its weak dual T .
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of G as in Figure 3. Let c1 = (3, 3, 3, 3, 3, 3) and c2 = (3, 3, 5, 6, 3, 3) be the
vectors of lengths of the cycles bounding the interior faces of G1 and G2 respec-
tively. Then

K(G1) = Zgcd(39,48,9) ⊕ Z 1791
gcd(39,48,9)

= Z3 ⊕ Z597 and

K(G2) = Zgcd(21,9) ⊕ Z 360
gcd(21,9)

= Z3 ⊕ Z120.

Remark 14. Note that if G is a biconnected outerplane graph with weak dual
T . Then any subdivision of the non-chordal edges of G is an outerplane graph
with the same weak dual. Therefore, by Theorem 12, the algebraic structure
of the sandpile groups of any such graph in the homeomorphism class of G is
decoded in the combinatorial structure of T .

Moreover, if G is a biconnected outerplane graph whose weak dual is the
tree T , then f1(C(G)) ≥ γ(T ). Let ν2(G) denote the 2-matching number of G
that is defined as the maximum number of edges of a 2-matching of G. It was
proven in [19] that for any tree T , the equality γ(T ) = ν2(T ) holds. Later, in
[3] it was proven that ν2(T ) = n − δ(T ) for any tree T on n vertices, where
the parameter δ(T ) is defined as the maximum of p − q such that by deleting
q vertices from T the remaining graph becomes p paths. Since it was found a
linear-time algorithm for finding δ(T ) [23], it was concluded in [3] that there is
a polynomial time algorithm to compute the algebraic co-rank for trees. Also,
in [3], it was proved that for any tree T , the algebraic co-rank γ(T ) coincides
with the minimum rank mr(T ) of T and with mz(T ) := |V (T )| − Z(T ), where
Z(T ) denote the zero-forcing number of T .

In the following the sandpile groups of some outerplanar graphs are further
simplified.

3.1 Outerplane graphs whose weak dual is a path

Let us consider the outerplane graphs whose common weak dual is a path. Let
(k1, . . . , kn) be a sequence of integers where each ki ≥ 2. Let PC0 denote the
path with one edge. For each 1 ≤ i ≤ n, take the graph PCi from the graph
PCi−1 by adding a path with ki− 1 edges between any pair of adjacent vertices
of the path added in the construction of PCi−1. Thus, the graph PCn consists
of a stack of n polygons with k1, . . . , kn sides. The graph PCn is known as
polygon chain. Polygon chains are the outerplanar graphs having the path as a
weak dual.

It is not difficult to see that γ(G) = n−1 if G is a path with n vertices. The
opposite is also true, see [19, Corollary 3.9]. From which follows that polygon
chains have cyclic sandpile group. The last critical ideal In(Pn) of the path
Pn with n vertices is generated by the determinant of AX(Pn). Next relations
follows directly from the determinant of AX(Pn). These were already noticed
in [9, 15, 25].

10



Lemma 15. Let Pn be the path with n vertices and let X = {x1, . . . , xn} a set
of indeterminates associated with the vertices of Pn. Then

det(AX(Pn)) = xn det(AX(Pn−1))− det(AX(Pn−2))

and τ(PCn) = knτ(PCn−1)− τ(PCn−2).

In [18], an explicit computation of the determinant of AX(Pn) was obtained
in terms of the matchings.

Lemma 16. [18, Corollary 4.5] Let Pn be the path with n vertices. Then
det(AX(Pn)) =

∑

µ∈M(Pn)(−1)|µ|
∏

v/∈V (µ) xv, where M(Pn) is the set of match-
ings of Pn.

Next result follows directly from previous lemma and Theorem 6.

Theorem 17. Let PCn be a polygon chain whose stack of polygons have k1, . . . , kn
sides. Then the sandpile group K(PCn) of PCn is cyclic of order

τ(PCn) =
∑

µ∈M(Pn)

(−1)|µ|
∏

v/∈V (µ)

kv,

where M(Pn) is the set of matchings of Pn.

Now we proceed to analyze an special family of polygon chains. A polygon
chain is called a polygon ladder if each of its polygons has the same number of
sides.

Example 18. Let PLk
n be the polygon ladder consisting of n k-polygons with

k ≥ 3. By Theorem 17 its sandpile group is cyclic of order

τ(PLk
n) =

∑

µ∈M(Pn)

(−1)|µ|
∏

v/∈V (µ)

k.

Let ν(G) be the matching number of G. It is easy to check that the number of
matchings of Pn of size i is

(

n−i
i

)

for i = 1, . . . , ν(Pn). If n is even, say n = 2m
for some positive integer, then ν(Pn) = m. Similarly, when n is odd. Assume
n = 2m + 1 for some positive integer m, then ν(Pn) = m. In both cases the
matching number of Pn is ⌊n/2⌋. Therefore,

τ(PLk
n) =

⌊n/2⌋
∑

i=0

(−1)i
(

n− i

i

)

kn−2i, for n ≥ 1.

Since 0 < 4
k2 < 1, we have that

τ(PLk
n) = kn 2F1

(

1

2
− n

2
,−n

2
;−n;

4

k2

)

for n ≥ 1,

where 2F1(a, b; c;x) is the Gauss’s hypergeometric function. Next we present
three more specific instances. First, let us address the case of PL4

n = P2�Pn

11



(also known as the ladder graph or the 2× n grid). We have that K(PL4
n) is a

cyclic group of order

τ(PL4
n) =

1

2
√
3

(

(2 +
√
3)n+1 − (2−

√
3)n+1

)

, for n ≥ 1.

On the other hand, consider PL6
n (also called as an hexagonal chain). Hence

K(PL6
n) is a cyclic group of order

τ(PL6
n) =

1

4
√
2

(

(3 + 2
√
2)n+1 − (3− 2

√
2)n+1

)

, for n ≥ 1.

Lastly, consider the polygonal ladder with n octagons PL8
n. In this case we have

that

τ(PL8
n) =

1

2
√
15

(

(4 +
√
15)n+1 − (4−

√
15)n+1

)

, for n ≥ 1.

In Table 1 we list the value of
∣

∣K(PLk
n)
∣

∣ for k = 4, 6, 8 and 1 ≤ n ≤ 11.

n τ(PL4
n) τ(PL6

n) τ(PL8
n)

1 4 6 8
2 15 35 63
3 56 204 496
4 209 1189 3905
5 780 6930 30744
6 2911 40391 242047
7 10864 235416 1905632
8 40545 1372105 15003009
9 151316 7997214 118118440
10 564719 46611179 929944511
11 2107560 271669860 7321437648

Table 1: τ(PL4
n), τ(PL6

n) and τ(PL8
n) for 1 ≤ n ≤ 11

3.2 Outerplane graphs whose weak dual is a starlike tree

We denote by S(n1, . . . , nl) a starlike tree in which removing the central vertex
leaves disjoint paths Pn1 ,. . . ,Pnl

in which exactly one endpoint of each path is
a leaf on S(n1, . . . , nl).

Let Cl = v1e1v2e2 · · · vlelv1 be a cycle of length l, and PCn1 , . . . , PCnl
be

l polygon chains. A polygon flower F = F (Cl;PCn1 , . . . , PCnl
) is constructed

by identifying, for i ∈ [l], the edges ei ∈ Cl and e′i ∈ PCni
such that e′i is in the

first or the last polygon of PCni
and is not contained in another polygon of this

polygon chain. The weak dual of an outerplane embedding of polygon flowers
are starlike trees. The number of spanning trees of F is closely related to the
number of spanning trees of its polygon chains

12



Theorem 19. [15, Corollary 4.2] Let F = F (Cl;PCn1 , ..., PCnl
) be a polygon

flower. Then

τ(F ) =





l
∏

j=1

τ(PCnj
)





l
∑

i=1

τ(PCni
/ei)

τ(PCni
)

where PCni
/ei denotes the graph obtained from PCni

by contracting the edge
ei.

Moreover, in [15] the sandpile group of the polygon flowers were obtained in
terms of the spanning tree numbers of the polygon chains.

Lemma 20. [15, Theorem 4.3] Let F = F (Cl;PCn1 , . . . , PCnl
) be a polygon

flower. For j ∈ [l− 2], ∆j = gcd(τ(PCni1
) · · · τ(PCnij

) : 1 ≤ i1 < · · · < ij ≤ l).

Then
K(F ) = Z∆1 ⊕ Z∆2

∆1

⊕ · · · ⊕ Z∆t−2
∆t−3

⊕ Z τ(F )
∆t−2

.

By using Lemma 20 and Theorem 17, we can obtain an equivalent result
stated in terms of matchings of the path and the length of the polygons.

Theorem 21. Let F = F (Cl;PCn1 , . . . , PCnl
) be a polygon flower, where

ki1, . . . , k
i
ni

are the sizes of the polygons of PCni
. Let

ω(ni, k
i
1, . . . , k

i
ni
) =

∑

µ∈M(Pni
)

(−1)|µ|
∏

v/∈V (µ)

kiv.

For j ∈ [l − 2], ∆j = gcd(ω(ni1 , k
i1
1 , . . . , ki1ni1

) · · ·ω(nij , k
ij
1 , . . . , k

ij
nij

) : 1 ≤ i1 <

· · · < ij ≤ l). Then

K(F ) = Z∆1 ⊕ Z∆2
∆1

⊕ · · · ⊕ Z∆t−2
∆t−3

⊕ Z τ(F )
∆t−2

.

Finally, we complement Example 18 analyzing a certain polygon flower con-
structed with polygon ladders.

Example 22. Let F = F (C5;PCn1 , PCn2 , PCn3 , PCn4 , PCn5) and set the
polygon chains of F as PCn1 = PL4

5, PCn2 = PL4
8, PCn3 = PL6

2, PCn4 =
PL6

5 and PCn5 = PL8
5. Moreover, if 1 ≤ j ≤ 5 and τ(PCnj

) = τ(PLk
n) with

n ≥ 2 and k ≥ 3, by Lemma 15 we have that

τ(PCnj
/ej) = (k − 1)τ(PLk

n−1)− τ(PLk
n−2) = τ(PLk

n)− τ(PLk
n−1)

Therefore, by Theorem 19 and using Table 1

τ(F ) =





5
∏

j=1

τ(PCnj
)





5
∑

i=1

τ(PCni
/ei)

τ(PCni
)

= (235827017145720000)

(

571

780
+

29681

40545
+

29

35
+

5741

6930
+

26839

30744

)

.

Hence, ∆1 = 1, ∆2 = 15, ∆3 = 9450 and τ(F ) = 941912914331277000.
Thus the sandpile group of F is Z15 ⊕ Z630 ⊕ Z99673324267860.

13



4 Identity element of the sandpile group of out-

erplanar graphs

Throughout this section we will consider outerplane graphs to be biconnected
unless otherwise stated. Determining the combinatorial structure of the re-
current configurations for outerplanar graph seems to be a more challenging
problem since it depends on the sink vertex, and the sandpile groups are not
always cyclic. However, we will consider the dual of an outerplane graph since
the vertex associated with the outer face is a natural sink vertex, the weak dual
is a tree and from a recurrent configuration of this dual graph we can recover
the associated recurrent configurations of the outerplane graph with different
sink vertices.

Among the recurrent configurations, the identity element is one of the most
studied since it shows interesting patterns, see [24, Section 5.7]. In this section,
we focus on the recurrent configurations associated with the identity element of
the sandpile group of the dual graph of an outerplane graph where the vertex
associated with the outer face is taken as sink.

Next result gives a method to compute the identity element.

Proposition 23. [24, Proposition 5.7.1] Let G be a connected graph with sink
vertex q. Let σmax ∈ NV (G) be the configuration in which the entry associated
with vertex v equals degG(v)− 1. The recurrent configuration obtained from the
stabilization

s(2σmax − s(2σmax))

is the identity element.

Given a tree T with n vertices and a vector c ∈ Nn, whose entries are
associated with the vertices of T , and c is such that cv ≥ degT (v) for any non-
leaf vertex v ∈ T and cv ≥ 2 whenever v is a leaf in T . Let GT,c be the planar
graph obtained from T by adding a sink vertex q and adding cv −degT (v) edges
between the vertices v and q, for each v ∈ V (T ). Thus cv = degGT,c

(v) for
v ∈ V (T ). The graphs T and GT,c are the weak dual and dual of a family
F (T, c) of outerplane graphs. Note the graphs in this family have the same
sandpile group.

In figure 4, we give the trees with at most 8 vertices, the indexing on the
vertices will be used to associate the entries of the configurations.

Example 24. Consider graph 62 of Figure 4. The graphG(62, (4, 5, 3, 3, 3, 3)) is
isomorphic to the dual graph of the plane graph G of Figure 2. Also, the graphs
G(62, (3, 3, 3, 3, 3, 3)) andG(62, (6, 5, 3, 3, 3, 3)) are isomorphic to the dual graphs
of the plane graphs G1 and G2 of Figure 3, respectively.

In Tables 2 and 3 is given the identity element of the sandpile group of GT,c

for selected values of d. The entry of the sink has been omitted in the recurrent
configurations. For Table 2, the graph GT,c obtained in the first and second
column can be regarded as if 1 and 2 edges were added between each leaf of T
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Figure 4: Trees with at most 8 vertices. The indexing is used in Tables 2 and 3
to associate vertices with entries of the configurations.

and the sink q, respectively. For Table 3, the graph GT,c obtained in the first
and second column can be regarded as if 1 and 2 edges were added between
each vertex of T and the sink q, respectively.

There are many patterns in the identity element, for example, in Table 2,
we see that the identity element of GT,c when T is a star with at least 3 leaves
and the leaves of T are the only vertices connected with the sink, then the
configuration 1 if the vertex is a leave and 0 otherwise is the identity element.
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T c identity c identity

20 [2, 2] [1, 1] [3, 3] [2, 2]
30 [2, 2, 2] [0, 1, 1] [2, 3, 3] [0, 2, 2]
40 [2, 2, 2, 2] [1, 1, 1, 1] [2, 2, 3, 3] [1, 1, 1, 1]
41 [3, 2, 2, 2] [0, 1, 1, 1] [3, 3, 3, 3] [0, 2, 2, 2]
50 [2, 2, 2, 2, 2] [0, 1, 1, 1, 1] [2, 2, 3, 2, 3] [0, 1, 1, 1, 1]
51 [3, 2, 2, 2, 2] [2, 1, 1, 1, 1] [3, 2, 3, 3, 3] [2, 1, 1, 1, 1]
52 [4, 2, 2, 2, 2] [0, 1, 1, 1, 1] [4, 3, 3, 3, 3] [0, 2, 2, 2, 2]
60 [2, 2, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1] [2, 2, 2, 3, 2, 3] [1, 1, 1, 2, 1, 2]
61 [2, 3, 2, 2, 2, 2] [0, 2, 1, 1, 1, 1] [2, 3, 3, 3, 2, 3] [0, 2, 1, 1, 1, 1]
62 [3, 3, 2, 2, 2, 2] [2, 2, 1, 1, 1, 1] [3, 3, 3, 3, 3, 3] [2, 2, 1, 1, 1, 1]
63 [3, 2, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1] [3, 2, 3, 2, 3, 3] [1, 1, 1, 1, 1, 1]
64 [4, 2, 2, 2, 2, 2] [3, 1, 1, 1, 1, 1] [4, 2, 3, 3, 3, 3] [3, 1, 1, 1, 1, 1]
65 [5, 2, 2, 2, 2, 2] [0, 1, 1, 1, 1, 1] [5, 3, 3, 3, 3, 3] [0, 2, 2, 2, 2, 2]
70 [2, 2, 2, 2, 2, 2, 2] [0, 1, 1, 1, 1, 1, 1] [2, 2, 2, 3, 2, 2, 3] [0, 1, 1, 2, 1, 1, 2]
71 [2, 2, 2, 2, 3, 2, 2] [1, 1, 0, 1, 1, 1, 1] [2, 2, 2, 3, 3, 3, 3] [1, 1, 0, 1, 1, 1, 1]
72 [3, 2, 2, 2, 2, 2, 2] [1, 0, 1, 1, 1, 1, 1] [3, 2, 2, 3, 2, 3, 3] [1, 0, 1, 1, 1, 1, 1]
73 [2, 4, 2, 2, 2, 2, 2] [0, 3, 1, 1, 1, 1, 1] [2, 4, 3, 3, 3, 2, 3] [0, 3, 1, 1, 1, 1, 1]
74 [2, 3, 2, 2, 3, 2, 2] [0, 2, 1, 1, 2, 1, 1] [2, 3, 3, 3, 3, 3, 3] [0, 2, 1, 1, 2, 1, 1]
75 [3, 3, 2, 2, 2, 2, 2] [1, 2, 1, 1, 1, 1, 1] [3, 3, 3, 3, 2, 3, 3] [1, 2, 1, 1, 1, 1, 1]
76 [4, 3, 2, 2, 2, 2, 2] [3, 2, 1, 1, 1, 1, 1] [4, 3, 3, 3, 3, 3, 3] [3, 2, 1, 1, 1, 1, 1]
77 [3, 2, 2, 2, 2, 2, 2] [0, 1, 1, 1, 1, 1, 1] [3, 2, 3, 2, 3, 2, 3] [0, 1, 1, 1, 1, 1, 1]
78 [4, 2, 2, 2, 2, 2, 2] [2, 1, 1, 1, 1, 1, 1] [4, 2, 3, 2, 3, 3, 3] [2, 1, 1, 1, 1, 1, 1]
79 [5, 2, 2, 2, 2, 2, 2] [4, 1, 1, 1, 1, 1, 1] [5, 2, 3, 3, 3, 3, 3] [4, 1, 1, 1, 1, 1, 1]
710 [6, 2, 2, 2, 2, 2, 2] [0, 1, 1, 1, 1, 1, 1] [6, 3, 3, 3, 3, 3, 3] [0, 2, 2, 2, 2, 2, 2]
80 [2, 2, 2, 2, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [2, 2, 2, 2, 3, 2, 2, 3] [1, 1, 1, 1, 1, 1, 1, 1]
81 [2, 2, 3, 2, 2, 2, 2, 2] [1, 1, 0, 1, 1, 1, 1, 1] [2, 2, 3, 3, 3, 2, 2, 3] [1, 1, 0, 1, 1, 1, 1, 2]
82 [2, 2, 3, 2, 2, 3, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [2, 2, 3, 3, 3, 3, 3, 3] [1, 1, 1, 1, 1, 1, 1, 1]
83 [2, 3, 2, 2, 2, 2, 2, 2] [1, 2, 1, 0, 1, 1, 1, 1] [2, 3, 2, 3, 3, 2, 2, 3] [1, 2, 1, 0, 2, 1, 1, 2]
84 [2, 3, 2, 2, 2, 3, 2, 2] [0, 1, 1, 1, 1, 2, 1, 1] [2, 3, 2, 3, 3, 3, 3, 3] [0, 1, 1, 1, 1, 2, 1, 1]
85 [3, 3, 2, 2, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [3, 3, 2, 3, 3, 2, 3, 3] [1, 1, 1, 1, 1, 1, 1, 1]
86 [3, 2, 2, 2, 2, 2, 2, 2] [2, 1, 1, 0, 1, 1, 0, 1] [3, 2, 2, 3, 2, 2, 3, 3] [2, 1, 1, 0, 1, 1, 0, 2]
87 [2, 2, 2, 2, 4, 2, 2, 2] [1, 1, 0, 1, 2, 1, 1, 1] [2, 2, 2, 3, 4, 3, 3, 3] [1, 1, 0, 1, 2, 1, 1, 1]
88 [3, 2, 2, 2, 3, 2, 2, 2] [1, 0, 1, 1, 2, 1, 1, 1] [3, 2, 2, 3, 3, 3, 3, 3] [1, 0, 1, 1, 2, 1, 1, 1]
89 [3, 2, 2, 2, 2, 2, 2, 2] [2, 1, 1, 1, 1, 1, 1, 1] [3, 2, 2, 3, 2, 3, 2, 3] [2, 1, 1, 2, 1, 2, 1, 2]
810 [4, 2, 2, 2, 2, 2, 2, 2] [2, 0, 1, 1, 1, 1, 1, 1] [4, 2, 2, 3, 2, 3, 3, 3] [2, 0, 1, 1, 1, 1, 1, 1]
811 [2, 5, 2, 2, 2, 2, 2, 2] [0, 4, 1, 1, 1, 1, 1, 1] [2, 5, 3, 3, 3, 3, 2, 3] [0, 4, 1, 1, 1, 1, 1, 1]
812 [2, 4, 2, 2, 2, 3, 2, 2] [0, 3, 1, 1, 1, 2, 1, 1] [2, 4, 3, 3, 3, 3, 3, 3] [0, 3, 1, 1, 1, 2, 1, 1]
813 [3, 4, 2, 2, 2, 2, 2, 2] [1, 3, 1, 1, 1, 1, 1, 1] [3, 4, 3, 3, 3, 2, 3, 3] [1, 3, 1, 1, 1, 1, 1, 1]
814 [4, 4, 2, 2, 2, 2, 2, 2] [3, 3, 1, 1, 1, 1, 1, 1] [4, 4, 3, 3, 3, 3, 3, 3] [3, 3, 1, 1, 1, 1, 1, 1]
815 [3, 3, 2, 2, 3, 2, 2, 2] [1, 2, 1, 1, 2, 1, 1, 1] [3, 3, 3, 3, 3, 3, 3, 3] [1, 2, 1, 1, 2, 1, 1, 1]
816 [3, 3, 2, 2, 2, 2, 2, 2] [0, 2, 1, 1, 1, 1, 1, 1] [3, 3, 3, 3, 2, 3, 2, 3] [0, 2, 1, 1, 1, 1, 1, 1]
817 [4, 3, 2, 2, 2, 2, 2, 2] [2, 2, 1, 1, 1, 1, 1, 1] [4, 3, 3, 3, 2, 3, 3, 3] [2, 2, 1, 1, 1, 1, 1, 1]
818 [5, 3, 2, 2, 2, 2, 2, 2] [4, 2, 1, 1, 1, 1, 1, 1] [5, 3, 3, 3, 3, 3, 3, 3] [4, 2, 1, 1, 1, 1, 1, 1]
819 [4, 2, 2, 2, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [4, 2, 3, 2, 3, 2, 3, 3] [1, 1, 1, 1, 1, 1, 1, 1]
820 [5, 2, 2, 2, 2, 2, 2, 2] [3, 1, 1, 1, 1, 1, 1, 1] [5, 2, 3, 2, 3, 3, 3, 3] [3, 1, 1, 1, 1, 1, 1, 1]
821 [6, 2, 2, 2, 2, 2, 2, 2] [5, 1, 1, 1, 1, 1, 1, 1] [6, 2, 3, 3, 3, 3, 3, 3] [5, 1, 1, 1, 1, 1, 1, 1]
822 [7, 2, 2, 2, 2, 2, 2, 2] [0, 1, 1, 1, 1, 1, 1, 1] [7, 3, 3, 3, 3, 3, 3, 3] [0, 2, 2, 2, 2, 2, 2, 2]

Table 2: The identity element of the sandpile group of GT,c.

It is also interesting to see in Table 3 that when the outerplane graph satisfy
that exactly one edge of each inner face is adjacent with the outer face, then
the identity element of the sandpile group of the dual with the outer face vertex
as sink is the 1 configuration. An analogous result is observed when 2 faces are
shared. From which is conjectured that GT,c with c = deg(T ) + k, then the
recurrent configuration is k1.

It is known that if G is a planar graph and G∗ is a dual graph of G, then
K(G) ∼= K(G∗). And, there is an isomorphism between the recurrent configura-
tions of K(G) and the recurrent configurations of K(G∗). In [20, Section 13.2],
a method was given to recover the recurrent configuration of a dual graph from
a recurrent configuration of plane graph. This method can be used to obtain
the identity element of the sandpile group of the outerplane graphs whose dual
is GT,c. In the following the method is described.

Let H be a plane graph and H∗ be the dual graph. Consider a planar
drawing of H and H∗ where each edge in E(H) is crossed once by an edge
in E(H∗). This associate bijectively the edges of H with the edges of H∗. An
orientation of a graph is a choice of direction of each edge of the graph, and thus
one end of the edge is the head and the other end is the tail. Given an orientation
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T c identity c identity

20 [2, 2] [1, 1] [3, 3] [2, 2]
30 [3, 2, 2] [1, 1, 1] [4, 3, 3] [2, 2, 2]
40 [3, 3, 2, 2] [1, 1, 1, 1] [4, 4, 3, 3] [2, 2, 2, 2]
41 [4, 2, 2, 2] [1, 1, 1, 1] [5, 3, 3, 3] [2, 2, 2, 2]
50 [3, 3, 2, 3, 2] [1, 1, 1, 1, 1] [4, 4, 3, 4, 3] [2, 2, 2, 2, 2]
51 [4, 3, 2, 2, 2] [1, 1, 1, 1, 1] [5, 4, 3, 3, 3] [2, 2, 2, 2, 2]
52 [5, 2, 2, 2, 2] [1, 1, 1, 1, 1] [6, 3, 3, 3, 3] [2, 2, 2, 2, 2]
60 [3, 3, 3, 2, 3, 2] [1, 1, 1, 1, 1, 1] [4, 4, 4, 3, 4, 3] [2, 2, 2, 2, 2, 2]
61 [3, 4, 2, 2, 3, 2] [1, 1, 1, 1, 1, 1] [4, 5, 3, 3, 4, 3] [2, 2, 2, 2, 2, 2]
62 [4, 4, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1] [5, 5, 3, 3, 3, 3] [2, 2, 2, 2, 2, 2]
63 [4, 3, 2, 3, 2, 2] [1, 1, 1, 1, 1, 1] [5, 4, 3, 4, 3, 3] [2, 2, 2, 2, 2, 2]
64 [5, 3, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1] [6, 4, 3, 3, 3, 3] [2, 2, 2, 2, 2, 2]
65 [6, 2, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1] [7, 3, 3, 3, 3, 3] [2, 2, 2, 2, 2, 2]
70 [3, 3, 3, 2, 3, 3, 2] [1, 1, 1, 1, 1, 1, 1] [4, 4, 4, 3, 4, 4, 3] [2, 2, 2, 2, 2, 2, 2]
71 [3, 3, 3, 2, 4, 2, 2] [1, 1, 1, 1, 1, 1, 1] [4, 4, 4, 3, 5, 3, 3] [2, 2, 2, 2, 2, 2, 2]
72 [4, 3, 3, 2, 3, 2, 2] [1, 1, 1, 1, 1, 1, 1] [5, 4, 4, 3, 4, 3, 3] [2, 2, 2, 2, 2, 2, 2]
73 [3, 5, 2, 2, 2, 3, 2] [1, 1, 1, 1, 1, 1, 1] [4, 6, 3, 3, 3, 4, 3] [2, 2, 2, 2, 2, 2, 2]
74 [3, 4, 2, 2, 4, 2, 2] [1, 1, 1, 1, 1, 1, 1] [4, 5, 3, 3, 5, 3, 3] [2, 2, 2, 2, 2, 2, 2]
75 [4, 4, 2, 2, 3, 2, 2] [1, 1, 1, 1, 1, 1, 1] [5, 5, 3, 3, 4, 3, 3] [2, 2, 2, 2, 2, 2, 2]
76 [5, 4, 2, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1] [6, 5, 3, 3, 3, 3, 3] [2, 2, 2, 2, 2, 2, 2]
77 [4, 3, 2, 3, 2, 3, 2] [1, 1, 1, 1, 1, 1, 1] [5, 4, 3, 4, 3, 4, 3] [2, 2, 2, 2, 2, 2, 2]
78 [5, 3, 2, 3, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1] [6, 4, 3, 4, 3, 3, 3] [2, 2, 2, 2, 2, 2, 2]
79 [6, 3, 2, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1] [7, 4, 3, 3, 3, 3, 3] [2, 2, 2, 2, 2, 2, 2]
710 [7, 2, 2, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1] [8, 3, 3, 3, 3, 3, 3] [2, 2, 2, 2, 2, 2, 2]
80 [3, 3, 3, 3, 2, 3, 3, 2] [1, 1, 1, 1, 1, 1, 1, 1] [4, 4, 4, 4, 3, 4, 4, 3] [2, 2, 2, 2, 2, 2, 2, 2]
81 [3, 3, 4, 2, 2, 3, 3, 2] [1, 1, 1, 1, 1, 1, 1, 1] [4, 4, 5, 3, 3, 4, 4, 3] [2, 2, 2, 2, 2, 2, 2, 2]
82 [3, 3, 4, 2, 2, 4, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [4, 4, 5, 3, 3, 5, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
83 [3, 4, 3, 2, 2, 3, 3, 2] [1, 1, 1, 1, 1, 1, 1, 1] [4, 5, 4, 3, 3, 4, 4, 3] [2, 2, 2, 2, 2, 2, 2, 2]
84 [3, 4, 3, 2, 2, 4, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [4, 5, 4, 3, 3, 5, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
85 [4, 4, 3, 2, 2, 3, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [5, 5, 4, 3, 3, 4, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
86 [4, 3, 3, 2, 3, 3, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [5, 4, 4, 3, 4, 4, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
87 [3, 3, 3, 2, 5, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [4, 4, 4, 3, 6, 3, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
88 [4, 3, 3, 2, 4, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [5, 4, 4, 3, 5, 3, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
89 [4, 3, 3, 2, 3, 2, 3, 2] [1, 1, 1, 1, 1, 1, 1, 1] [5, 4, 4, 3, 4, 3, 4, 3] [2, 2, 2, 2, 2, 2, 2, 2]
810 [5, 3, 3, 2, 3, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [6, 4, 4, 3, 4, 3, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
811 [3, 6, 2, 2, 2, 2, 3, 2] [1, 1, 1, 1, 1, 1, 1, 1] [4, 7, 3, 3, 3, 3, 4, 3] [2, 2, 2, 2, 2, 2, 2, 2]
812 [3, 5, 2, 2, 2, 4, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [4, 6, 3, 3, 3, 5, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
813 [4, 5, 2, 2, 2, 3, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [5, 6, 3, 3, 3, 4, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
814 [5, 5, 2, 2, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [6, 6, 3, 3, 3, 3, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
815 [4, 4, 2, 2, 4, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [5, 5, 3, 3, 5, 3, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
816 [4, 4, 2, 2, 3, 2, 3, 2] [1, 1, 1, 1, 1, 1, 1, 1] [5, 5, 3, 3, 4, 3, 4, 3] [2, 2, 2, 2, 2, 2, 2, 2]
817 [5, 4, 2, 2, 3, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [6, 5, 3, 3, 4, 3, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
818 [6, 4, 2, 2, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [7, 5, 3, 3, 3, 3, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
819 [5, 3, 2, 3, 2, 3, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [6, 4, 3, 4, 3, 4, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
820 [6, 3, 2, 3, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [7, 4, 3, 4, 3, 3, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
821 [7, 3, 2, 2, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [8, 4, 3, 3, 3, 3, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]
822 [8, 2, 2, 2, 2, 2, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1] [9, 3, 3, 3, 3, 3, 3, 3] [2, 2, 2, 2, 2, 2, 2, 2]

Table 3: The identity element of the sandpile group of GT,c.

of the edges of H , the right-left rule to orient the edges of H∗ consists in, for
each edge e ∈ E(H), following the direction of e, the direction of the associated
edge e∗ ∈ E(H∗) goes from the right face to the left face separated by e. Now,
given a recurrent configuration d of the sandpile group K(H) with sink q, take
dq = −∑

v∈V (H)\q dv. Consider an orientation of H , and orient the edges of H∗

following the right-left rule. Find an f ∈ ZE(H) such that ∂(H)f = d, where
∂(H) is the oriented incidence matrix. Take f ′ ∈ ZE(H∗) such that f ′

e∗ = fe.
The configuration d′ = ∂(H∗)f ′ is in the equivalence class of the recurrent
configuration in K(H∗) we are looking for. To find the recurrent configuration
in the class of d′, we suggest to use the following result.

Proposition 25. [2, Theorem 2.36] Let G be a graph with sink vertex q, and
c ∈ ZV (G)\q. If x∗ is an optimal solution of the integer linear program

maximize 1 · x
subject to 0 ≤ c+ xLq(G) ≤ σmax,

x ∈ ZV (G)\q,

then x∗ is unique and c + x∗Lq(G) is a recurrent configuration in SP (G, q) in
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the equivalence class of c.
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Figure 5: Computation of a configuration in H∗ associated with the recurrent
configuration in H . In (a) a drawing of a plane graph H (black) and its dual H∗

(blue) is shown together with the indexing of the non-sink vertices. The vertices
q and p are the sink vertices in H and H∗, respectively. In (b) an element f in
ZE(H) is shown colored in red such that ∂(H)f = (2, 2, 1, 1, 1, 1,−8) ∈ K(H).
In (c) f ′ is used to find a configuration in K(H∗).

Let us see an example of the procedure to obtain a recurrent configuration
in K(H∗) given a configuration in K(H).

Example 26. Let H and H∗ be the black and blue plane graphs shown in
Figure 5.a, where the sink vertices have index q and p, respectively. Note H is
isomorphic to the graph GT,c where T is the tree 62 in Figure 4 and c satisfy
that the sink is adjacent only with the leaves by exactly 2 edges. Following the
indices described in Figure 5.a, the configuration d = (2, 2, 1, 1, 1, 1,−8) is the
identity element of K(H) up to the value of the sink q. Given the orientation
of H described in Figure 5.b, the oriented incidence matrix ∂(H) of H is the
following:

04 10 21 31 4q 50 5q q2 q2’ q3 q3’ q4 q5

0

1

2

3

4

5

q



















−1 1 0 0 0 1 0 0 0 0 0 0 0

0 −1 1 1 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 1 1 0 0 0 0

0 0 0 −1 0 0 0 0 0 1 1 0 0

1 0 0 0 −1 0 0 0 0 0 0 1 0

0 0 0 0 0 −1 −1 0 0 0 0 0 1

0 0 0 0 1 0 1 −1 −1 −1 −1 −1 −1



















.

Let f = (−1, 0, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 1). It can be seen that f satisfy that
∂(H)f = d. By using the right-left rule, we obtain the orientation of H∗ shown
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in Figure 5.c. Thus, the oriented incidence matrix ∂(H∗) is

0p 10 12 20 23 24 26 34 45 46 56 60 6p

0

1

2

3

4

5

p























−1 1 0 1 0 0 0 0 0 0 0 1 0

0 −1 −1 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 −1 −1 −1 0 0 0 0 0 0

0 0 0 0 1 0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 1 −1 −1 0 0 0

0 0 0 0 0 0 0 0 1 0 −1 0 0

0 0 0 0 0 0 1 0 0 1 1 −1 −1

1 0 0 0 0 0 0 0 0 0 0 0 1























.

Dualizing f , we get f ′ = (−1,−1, 1,−1, 1, 1, 0, 1, 1, 1, 1, 1, 1). From which we get
the configuration ∂(H∗)f ′ = (0, 0, 0, 0, 0, 0, 0, 0). Now, applying Proposition 25,
we get the following linear integer model:

maximize
6

∑

i=0

xi

subject to 0 ≤ 4x0 − x1 − x2 − x6 ≤ 3

0 ≤ −x0 + 2x1 − x2 ≤ 1

0 ≤ −x0 − x1 + 5x2 − x3 − x4 − x6 ≤ 4

0 ≤ −x2 + 2x3 − x4 ≤ 1

0 ≤ −x2 − x3 + 4x4 − x5 − x6 ≤ 3

0 ≤ −x4 + 2x5 − x6 ≤ 1

0 ≤ −x0 − x2 − x4 − x5 + 5x6 ≤ 4

xi ∈ Z for each i ∈ {0, . . . , 6},

whose optimal solution is x∗ = (5, 6, 7, 7, 7, 7, 6) and the recurrent configuration
is (1, 0, 4, 0, 1, 1, 4, p), which in fact is the identity element of the sandpile group
of the outerplane graph H∗.
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