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1. Introduction

Heun’s differential equation (c.f. Ronveaux [22]) is

d2y

dz2
+

(

γ

z
+

δ

z − 1
+

ǫ

z − a

)

dy

dz
+

ηz − q

z(z − 1)(z − a)
y = 0, (1.1)

where γ, δ, ǫ, η, q and a 6= 0, 1 are complex parameters. There are four regular sin-
gularities at z = 0, 1, a,∞. Heun’s equation has four confluent forms, the confluent,
doubly-confluent, biconfluent and triconfluent Heun equations. In recent years the
Heun equation and its confluent forms have found many applications in natural sci-
ences. In the theory of black holes, the perturbation equations of massless fields for
the Kerr-de Sitter geometry can be written in the form of separable equations. The
equations have five definite singularities so that the analysis has been expected to be
difficult. Suzuki et al. [23] showed that these equations can be transformed to Heun’s
equations thus the known technique could be used for the analysis of the solutions.
As Schrödinger equation for harmonium and related models may be transformed to
the biconfluent Heun equation, Karwowski and Witek [16] discussed the solubility of
this equation and its applications in quantum chemistry. Chugunova and Volkmer
[5] also investigated that the set of eigenvalues of a non-self-adjoint differential op-
erator arising in fluid dynamics were related to the eigenvalues of Heun’s differential
equation.

In this paper we present applications of the doubly-confluent Heun equation in
stochastic analysis. The doubly confluent Heun equation can be obtained from (1.1)
as follows. First, by substitution x = hz, we move the singularity z = 1 to x = h.
The equation becomes

x(x− h)(x− A)
d2y

dx2
+ (cx(x− A) + d(x− A)− νAx(x− h))

dy

dx
+ A(τx+ b)y = 0,

(1.2)
where

A = ah, c = γ + δ, d = −γh, ǫ = −νA, η = τA, hq = −bA.

Dividing (1.2) by −A and letting h → 0, A → ∞ (double confluence), we obtain

x2 d
2y

dx2
+
(

νx2 + cx+ d
) dy

dx
− (τx+ b)y = 0. (1.3)

A study of equation (1.3) can be found in Ronveaux [22, Part C]. In this paper, we
consider this equation for the special case where ν = 0,

x2 d
2y

dx2
+ (cx+ d)

dy

dx
− (τx+ b)y = 0. (1.4)
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It should be pointed out that, while this equation appeared in the literature as a
special case, its solutions were not studied in previous literature.

In this paper, we explore the close relationship between the doubly-confluent Heun
equation (1.4) and the geometric Brownian motion with affine drift. We mainly focus
on this process whose infinitesimal generator is given by

(Gf)(x) = 2x2f ′′(x) + [2(ν + 1)x+ 1]f ′(x),

where ν ∈ R. This process has many natural applications in finance and insurance.
For example, it can be used to model the price dynamics of dividend-paying stocks
with constant dividend rate, see Lewis [17] for more details. While it is not an absolute
representation of reality, the model can be used to approximate the dynamics of actual
stocks with dividends paid at discrete points, as an improvement to the classical
Black-Scholes-Merton model.

In the classical Black-Scholes model for option pricing, stock prices are modeled
by geometric Brownian motions. Among the best studied exotic options is the Asian
option, whose payoff depends on the average of stock prices. In a continuous-time
model, the average price is modeled by the integral of geometric Brownian motion
over the life of the option divided by the length of that period. Motivated by such
a pricing problem, Yor [24] developed a series of papers on exponential functionals
of Brownian motion Bt. At the center of focus for financial application is the joint
distribution of (exp{B(ν)

t }, A(ν)
t ) where

B
(ν)
t := νt +Bt, A

(ν)
t :=

∫ t

0

exp{2B(ν)
s } ds. (1.5)

The derivation of the joint distribution was based on a combination of time change,
change of measures and their connections to Bessel processes. However, in more
sophisticated diffusion models, such as the geometric Brownian motion with affine
drift, a generalization of such techniques seems to be less fruitful. Hence, in this
paper, we use the connection between the joint distribution of time-homogeneous
diffusion and its time-integral and differential equations to develop computational
methods. Linetsky [18] also used the connection between the time integral of stock
prices and the geometric Brownian motion with affine drift for pricing Asian options.
The process is also used in the risk management of an insurer’s net liability in variable
annuity guaranteed benefits in Feng and Volkmer [7, 8, 9] and Feng and Jing [6].

The rest of the paper is organized as follows. In Section 2, we introduce particular
solutions to the Heun equation (1.4) that are required for applications to stochastic
analysis for various applications in finance. While the Heun equation is already
known in analysis, the particular solutions presented here are not known previously
in the literature. The paper also proposes a method to compute these solutions to
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high accuracy. It is shown in Section 3 that the joint distribution of a solution Xt

to a stochastic differential equation and its integral Yt =
∫ t

0
Xs ds is determined by

appropriate solutions to a linear differential equation of the second order. In Section 4,
the special case of Xt being a geometric Brownian motion with affine drift is discussed
and its connection to the Heun equation (1.4) is revealed. Results from Sections 2
are used to develop a numerical method to compute the joint distribution of Xt and
Yt. Section 5 is dedicated to a new stochastic process Zt resulting from the Lamperti
transformation Xt = ZYt

. The distribution of Zt can again be computed by solving
equation (1.4). An explicit expression for the joint Laplace transform of the geometric
Brownian motion with affine drift and its time integral is provided in Section 6,
which relies on asymptotics of a solution to a boundary value problem involving an
inhomogeneous equation corresponding to (1.4). By using the results, we provide
an application in pricing Asian options on divided-paying stocks. Numerical results
show the accuracy and efficiency of this new method.

2. A doubly confluent Heun equation

Let us consider differential equation (1.4) (with τ replaced by a)

x2y′′(x) + (cx+ d)y′(x)− (ax+ b)y(x) = 0, 0 < x < ∞, (2.1)

containing four real parameters a, b, c, d. The equation has two singularities: x = 0
and x = ∞. If d 6= 0 then x = 0 is an irregular singularity. If d = 0 then x = 0 is a
regular singularity, and the general solution of (2.1) is

y(x) = x
1
2
(1−c)

{

C1Iλ(2
√
ax) + C2Kλ(2

√
ax)
}

, (2.2)

where Iλ, Kλ denote modified Bessel functions, and

λ =
√

(c− 1)2 + 4b. (2.3)

If a 6= 0 then x = ∞ is an irregular singularity. If a = 0 then x = ∞ is a regular
singularity, and the general solution of (2.1) is

y(x) = x−µ
{

C1M
(

µ, 1 + λ, d
x

)

+ C2U
(

µ, 1 + λ, d
x

)}

, (2.4)

where
µ = 1

2
(c− 1 + λ),

and M,U denote Kummer functions (c.f. Olver et al. [20, Chapter 13]).
We now turn to the general case d 6= 0 and a 6= 0. We will apply methods of

Olver [21, Chapter 7] to introduce solutions of (2.1). We are interested in finding a
recessive solution y1(x) at x = 0, and a recessive solution y2(x) at x = ∞, that is,
solutions with the properties that y1(x)/y(x) → 0 as x → 0+ and y2(x)/y(x) → 0 as
x → ∞ for every solution y which is linearly independent of y1, y2, respectively.
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Theorem 2.1. Suppose a > 0. The differential equation (2.1) has a unique solution
y2 on (0,∞) such that, as x → ∞,

y2(x) ∼ x
1
4
− c

2 exp(−2
√
ax)

∞
∑

k=0

Ak x
− k

2 , (2.5)

where A0 = 1 and Ak’s are determined by the following recursion for k = 1, 2, · · · .

Ak =
4b− (k + 1

2
− c)(k − 3

2
+ c)

4
√
ak

Ak−1 +
d

k
Ak−2, (2.6)

with the understanding that A−1 = 0. The asymptotic formula (2.5) may be differen-
tiated term-by-term. If b ≥ 0 then the solution y2 is positive and decreasing.

Proof. Chapter 7 of Olver [21] considers the differential equation

w′′(z) + f(z)w′(z) + g(z)w(z) = 0,

for which the singularity is located at infinity and

f(z) =

∞
∑

k=0

fk
zk

, g(z) =

∞
∑

k=0

gk
zk

.

The first goal is to construct a formal solution of the form

w(z) = eλzzµ
∞
∑

k=0

Akz
−k. (2.7)

In the case of (2.1), we have

f1 = c, f2 = d, g1 = −a, g2 = −b,

and all other fi’s and gi’s are zero. This falls into the category where f 2
0 = 4g0 and

Fabry’s transformation should be used. Let z = x1/2 and y(x) = w(z). Then (2.1)
becomes

w′′(z) +

(

2c− 1

z
+

2d

z3

)

w′(z)− 4

(

a +
b

z2

)

w(z) = 0. (2.8)

We have
f1 = 2c− 1, f3 = 2d, g0 = −4a, g2 = −4b,

and all other fi’s and gi’s are zero. The roots of λ2 + f0λ + g0 = 0 are λ = ±2a1/2.
Since we assumed that a > 0, these solutions are distinct. We are interested in a
recessive solution of (2.8) at x = ∞, so we pick λ = −2a1/2. We compute µ = 1

2
− c
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from Olver [21, page 230, (1.10)]. Therefore, we have a formal solution of (2.8) of the
form (2.7) which translates to the right-hand side of (2.5). The coefficients Ak are
computed from A0 = 1 and recursively from Olver [21, (1.11)], which can be written
as (2.6). By Olver [21, Theorem 2.1, page 232], the ODE (2.1) has a solution y2(x)
with the asymptotic behavior (2.5). Since it is the recessive solution, y2(x) is uniquely
determined by (2.5).

Actually, (2.5) holds in an open sector of the complex plane containing the positive
real axis. This justifies term-by-term differentiation in (2.5).

We now prove that the solution y2 is positive and decreasing if b ≥ 0. For every
x1 > 0 there is x2 > x1 such that y2(x2) > 0 and y′2(x2) < 0. If y2 is not decreasing
on (0, x2) there would be a point x3 < x2 such that y′(x3) = 0 and y2 is decreasing on
(x3, x2). This is impossible because (2.1) under the assumption a > 0, b ≥ 0 implies
y′′(x3) > 0. As x1 is arbitrary, y2(x) is positive and decreasing for all x ∈ (0,∞). �

Remark 2.1. When d = 0 the recursive formula (2.6) can be simplified to

Ak =
1

2
√
a

ak(λ)

ak−1(λ)
Ak−1, k = 1, 2, · · · ,

where λ is given by (2.3) and

ak(λ) =
(4λ2 − 12)(4λ2 − 32) · · · (4λ2 − (2k − 1)2)

k!8k
.

Hence, we get

Ak =
1

(2
√
a)k

ak(λ).

Substituting the expression for Ak in (2.5) yields, as x → ∞,

y2(x) ∼ x1/4−c/2 exp(−2
√
ax)

∞
∑

k=1

ak(λ)(2
√
ax)−k. (2.9)

Obviously, apart from a constant multiple, y2(x) is equal to x
1
2
(1−c)Kλ(2

√
ax). and

(2.9) agrees with Hankel’s expansion (Olver et al. [20, (10.40.2)]),

Kλ(z) ∼
( π

2z

)− 1
2

e−z

∞
∑

k=1

ak(λ)

zk
.

Theorem 2.2. If d > 0, the differential equation (2.1) has a unique solution ŷ1 on
(0,∞) such that, as x → 0+,

ŷ1(x) ∼
∞
∑

k=0

Ak x
k, (2.10)
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where A0 = 1 and Ak’s are determined by the following recursion for k = 1, 2, · · · .

Ak =
b+ (k + c− 2)(1− k)

kd
Ak−1 +

a

kd
Ak−2, (2.11)

with the understanding that A−1 = 0. If d < 0, the equation (2.1) has a unique
solution y1 on (0,∞) such that, as x → 0+,

y1(x) ∼ exp

(

d

x

)

x2−c

∞
∑

k=0

Ak x
k, (2.12)

where A0 = 1 and As are determined by the following recursion for k = 1, 2, · · · .

Ak =
(k − c+ 1)k − b

kd
Ak−1 −

a

kd
Ak−2, (2.13)

with the understanding that A−1 = 0. The asymptotic formulas (2.10), (2.12) may be
differentiated term-by-term. If a > 0, b ≥ 0 then y1 is positive and increasing.

Proof. We substitute z = 1/x, y(x) = w(z) in (2.1) and obtain

w′′(z) +

(

2− c

z
− d

)

w′(z)−
(

a

z3
+

b

z2

)

w(z) = 0, 0 < z < ∞,

for which the singularity at z = ∞ corresponds to the singularity at x = 0 in (2.1).
We now argue as in the proof of Theorem 2.1. Now we have

f1 = 2− c, f0 = −d, g2 = −b, g3 = −a,

and all other fi’s and gi’s are zero.
If d > 0, we consider a formal solution of the form (2.7) where λ = 0, µ = 0 and

Ak’s satisfy the recursion (2.11). We apply Olver [21, Theorem 2.1, page 232] and
obtain a (recessive) solution ŷ1 satisfying (2.10). It follows that if b > 0, as x → 0+,

ŷ1(x) ∼ 1 +
b

d
x.

Or if b = 0, we have as x → 0+,

ŷ1(x) ∼ 1 +
a

2d
x2.

For any x1 > 0, there must exist x2 < x1 such that ŷ1(x2) > 0 and ŷ′1(x2) > 0. If ŷ1 is
not increasing on (x2,∞), then there would be a point x3 > x2 such that ŷ′1(x3) = 0
and ŷ1 is increasing on (x2, x3). This is impossible because (2.1) under the assumption
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that a, d > 0, b ≥ 0 implies that ŷ′′(x3) > 0. Hence ŷ1(x) is positive and increasing
on (x2,∞) for some x2 < x1, given any x1 > 0. As x1 is arbitrary, ŷ1(x) is increasing
and positive for all x ∈ (0,∞).

If d < 0, we consider the formal solution of the form (2.7) with λ = d and
µ = c − 2. It follows immediately that Ak’s satisfy the recursion (2.13). Using the
same arguments as in the previous case, we can show that y1 determined by (2.12) is
positive and increasing on (0,∞) provided that a > 0, b ≥ 0. �

The formal adjoint of equation (2.1) is given by

(x2w)′′ − ((cx+ d)w)′ − (ax+ b)w = 0. (2.14)

This equation is of the form as (2.1) with a new set of parameter values ã, b̃, c̃, d̃,
where

ã = a, b̃ = b+ c− 2, c̃ = 4− c, d̃ = −d.

Equation (2.14) can be transformed to (2.1) by setting

y(x) = x2−c exp

(

d

x

)

w(x).

In particular, the case d < 0 of Theorem 2.2 can be transformed to the case d > 0.
To our best knowledge, there is no mathematical software package programmed

to evaluate the solutions y1, y2 introduced in Theorems 2.2, 2.1, respectively. We
compute y1 for d > 0 as follows. We choose a positive integer m and, according to
(2.10), approximate

ŷ1(x0) ≈
m−1
∑

k=0

Akx
k.

This approximation will be good only for sufficiently large x0. By differentiating term
by term we also obtain an approximation for y′1(x0). Using these approximations for
ŷ1(x0), ŷ

′
1(x0) we solve the initial value problem for equation (2.1) using a suitable

numerical procedure. If we need ŷ1(x) to high accuracy it is preferable to use a
procedure like gear implemented in Maple.

The computation of y1 for d < 0 and y2 is similar.

3. Joint distributions

Consider the stochastic differential equation (SDE) on an open interval (0,∞)

dXt = β(Xt) dt + γ(Xt) dBt, (3.1)
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with initial condition X0 = x0 > 0 and its pathwise integral process Y = {Yt, t ≥ 0}
where

Yt =

∫ t

0

Xs ds.

Then the pair (X, Y ) satisfies the SDE system

dXt = β(Xt) dt + γ(Xt) dBt, (3.2)

dYt =Xt dt, (3.3)

under the probability measure P
x0 we have P

x0(X0 = x0, Y0 = 0) = 1.
The work of Hörmander [13] provides a condition for the smoothness of fundamen-

tal solutions to hypoelliptic second order differential equations, known as Hörmander’s
“brackets condition” in the literature. Hairer [12] provides an extension to parabolic
equations in the context of transition probabilities for diffusions. Consider a second
order differential operator

P =

r
∑

j=1

X 2
j + X0,

where X0,X1, · · · ,Xr denote first order homogeneous differential operators in an open
set Ω ⊂ R

n with C∞ coefficients and c ∈ C∞(Ω). Define a collection of vector fields
Vk by

V0 = {Xi : i > 0}, Vk+1 = Vk ∪ {[U ,Xj] : U ∈ Vk and j ≥ 0}.

Also define the vector space Vk(x) = span{V (x) : V ∈ Vk}.The parabolic H́’ormander’s
condition holds if ∪k≥1Vk(x) = R for every x ∈ R. The Lie bracket [·, ·] is given by
[Xji,Xjk ] = XjiXjk−XjkXji. The infinitesimal generator satisfies the Hörmander condi-
tion, then the Markov process admits a smooth density with respect to Lebesgue mea-
sure and the corresponding Markov semigroup maps bounded functions into smooth
functions.

Note that the infinitesimal generator of the two-dimensional process (Xt, Yt) in
(3.2) and (3.3) is given by

L = X 2
1 + X0,

where the two differential operators are defined by

X0 = β∗(x)
∂

∂x
+ x

∂

∂y
, β∗(x) = β(x)− 1

2
γ′(x)γ(x)

X1 = γ∗(x)
∂

∂x
, γ∗(x) =

1√
2
γ(x).

9



It is easy to show that

[X0,X1] = W (β∗, γ∗)
∂

∂x
− γ∗(x)

∂

∂y
;

[[X0,X1],X0] = W (W (β∗, γ∗), β∗)
∂

∂x
+ [2β∗(x)γ

′
∗(x)− γ∗(x)β

′
∗(x)]

∂

∂y

where W is the Wronskian. For example, [X0,X1] and [[X0,X1],X0] are linear inde-
pendent at any point, unless there are points at which

[2β∗(x)γ
′
∗(x)− γ∗(x)β

′
∗(x)]W (β∗, γ∗) + γ∗(x)W (W (β∗, γ∗), β∗) = 0. (3.4)

Suppose that (3.4) is not true for any point x > 0. Then Hörmander condi-
tion implies that there exists a smooth joint density function of (Xt, Yt), denoted by
p(t, x, y) = p(t, x, y; x0) , i.e.

P
x0(Xt ∈ dx, Yt ∈ dy) = p(t, x, y) dx dy.

The corresponding Kolmogorov forward PDE for p(t, x, y) is given by

∂p

∂t
= − ∂

∂x
(β(x)p)− ∂

∂y
(xp) +

1

2

∂2

∂x2
(γ(x)2p),

where the assumption P x0(X0 = x0, Y0 = 0) = 1 implies that

p(0, x, y) = δ(x− x0)δ(y),

where δ is the Dirac delta function for which
∫ ∞

0

f(x)δ(x) dx = f(0),

∫ ∞

−∞
δ(x) dx = 1.

We can solve this equation by using the Laplace transform

q(x) := q(s, x, w; x0) =

∫ ∞

0

∫ ∞

0

exp(−st) exp(−wy)p(t, x, y) dt dy. (3.5)

For fixed s, w > 0 we obtain the following ODE for q(x)

−1

2
(γ(x)2q)′′ + (β(x)q)′ + (wx+ s)q = δ(x− x0). (3.6)

This equation is the same as appears in the definition of a Green’s function at x = x0.
We choose a fundamental system q1(x), q2(x) of solutions of (3.6) with right-hand side
0. Then we write the solution q(x) of (3.6) in the form

q(x) =

{

C1q1(x) if 0 < x ≤ x0,

C2q2(x) if x0 < x < ∞.
(3.7)

10



Definition (3.5) shows that q(x) ≥ 0 and
∫∞
0

q(x) dx ≤ 1/s < ∞, so q1(x), q2(x) have
to be integrable on (0, x0) and (x0,∞), respectively. The constants C1 and C2 have
to be chosen such that q(x) is continuous at x = x0, i.e.

C1q1(x0) = C2q2(x0), (3.8)

and such that

1

2
γ(x0)

2(C1q
′
1(x0)− C2q

′
2(x0)) = 1. (3.9)

The latter equation follows from (3.6) by integrating both sides x0 − ǫ to x0 + ǫ, then
letting 0 < ǫ → 0 and simplifying with (3.8). Therefore, we obtain

q(x) = C

{

q2(x0)q1(x) if 0 < x ≤ x0,

q1(x0)q2(x) if x0 < x < ∞,
(3.10)

where

C =
2

γ(x0)2
1

q2(x0)q
′
1(x0)− q′2(x0)q1(x0)

. (3.11)

We will consider two examples in this work. In this section we take X to be
geometric Brownian motion and reproduce the density p(t, x, y), which is known from
the work of Yor. In the next section, we take X to be geometric Brownian motion
with affine drift where no previous results on the joint density p(t, x, y) is known in
the current literature.

The solution of the SDE (3.1) with β(x) = (2ν + 2)x, ν ∈ R, γ(x) = 2x, x0 = 1
is the geometric Brownian motion

Xt = exp(2νt+ 2Bt)

with integral Yt =
∫ t

0
Xs ds. Then the homogeneous form of the ODE (3.6) is

−2(x2q)′′ + 2(ν + 1)(xq)′ + (wx+ s)q = 0. (3.12)

This is equation (2.1) with parameter values

a =
w

2
, b =

s

2
+ ν − 1, c = 3− ν, d = 0.

According to (2.2), (3.12) has the fundamental system

q1(x) = xν/2−1Iλ(
√
2wx), q2(x) = xν/2−1Kλ(

√
2wx),

where
λ :=

√
2s+ ν2.

11



Note that, apart from constant multiples, q1(x) and q2(x) are the only solutions of
(3.12) that are integrable on (0, 1) and (1,∞), respectively. Using the Wronskian
Olver et al. [20, 10.28.2], we obtain that

q1(x)q
′
2(x)− q′1(x)q2(x) = −1

2
xν−3.

Setting x = 1, we obtain C = 1 in (3.11). Therefore, (3.10) gives

q(s, x, w) = xν/2−1

{

Kλ(
√
2w)Iλ(

√
2wx) if 0 < x ≤ 1,

Iλ(
√
2w)Kλ(

√
2wx) if 1 < x < ∞.

(3.13)

Essentially we have solved our problem. It remains to invert the Laplace transforms.
We may use the formula Gradshteyn and Ryzhik [11, 6.653]

∫ ∞

0

exp

(

−z

2
− a2 + b2

2z

)

Iλ

(

ab

z

)

dz

z
= 2

{

Iλ(a)Kλ(b) if 0 < a < b

Kλ(a)Iλ(b) if 0 < b < a
(3.14)

which holds for λ > −1. If we set a =
√
2wx, b =

√
2w, z = 2wy we obtain

∫ ∞

0

exp(−st)p(t, x, y) dt =
1

2y
xν/2−1 exp

(

−1 + x

2y

)

Iλ

(√
x

y

)

(3.15)

which is a known result. We can also invert the Laplace transform with respect to t
employing the Hartmann-Watson density. Note that Yor obtained the same result us-
ing much more complex probabilistic arguments based on Lamperti’s transformation
and Girsanov change of measure in Yor [24]. A detailed account of Hartman-Watson
density function can be found in Barrieu, Rounault and Yor [3].

4. Joint distribution of Geometric Brownian motion with affine drift and

its integral

Let ν ∈ R, x0 > 0, β(x) = (2ν + 2)x+ 1, γ(x) = 2x. It is easy to verify that (3.4)
does not hold for x > 0. Then the solution of SDE (3.1) is the geometric Brownian
motion with affine drift

Xt = exp(2νt+ 2Bt)

(

x0 +

∫ t

0

exp(−(2νs + 2Bs)) ds

)

. (4.1)

Its integral is

Yt =

∫ t

0

Xs ds. (4.2)
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Our goal is to determine the joint density function p(t, x, y) of (Xt, Yt) by the
method proposed in Section 3. The corresponding ODE (3.6) is

−2(x2q)′′ + {(2(ν + 1)x+ 1)q}′ + (wx+ s)q = δ(x− x0). (4.3)

If we replace the right-hand side of (4.3) by 0, we obtain the doubly-confluent Heun
equation (2.1) with parameter values

a =
w

2
> 0, b =

s

2
+ ν − 1, c = 3− ν, d = −1

2
< 0.

We choose qj(x) = yj(x), j = 1, 2, with y1, y2 introduced in Theorems 2.2, 2.1.
Note that, apart from constant multiples, q2(x) is the only solution of (4.3) which
is integrable on (x0,∞). The choice of q1(x) can be justified as follows. We have
0 ≤ q(s, x, w) ≤ q(s, x, 0), and q(s, x, 0) is the Laplace transform of the transition
density function of Xt. It is known that q(s, x, 0) → 0 as x → 0+. Therefore,
q(s, x, w) → 0 as x → 0+. Now, apart from constant multiples, q1(x) is the only
solution of (4.3) that tends to 0 as x → 0+.

We can then write q(x) defined by (3.5) in the form (3.10), where

C =
1

2x2
0

1

q2(x0)q
′
1(x0)− q′2(x0)q1(x0)

.

We cannot expect a simple formula for the Wronskian of solutions q1 and q2 but we
can compute C numerically.

We use the following algorithm to determine the joint density p(t, x, y). In the
first step, we use (2.12) to approximate initial values for q1 and (2.5) for q2. In order
to increase the accuracy of the computation, we define

u(x) = exp

(

−d

x

)

xc−2q1(x),

which satisfies the ODE

x2u′′(x) + [(4− c)x− d]u′(x)− (ax+ b+ c− 2)u(x) = 0. (4.4)

Thus the asymptotics of u(x) is determined by the power series in (2.12). We specify
the number m of terms in the partial sum approximation and use an algorithm to
determine the small initial point xℓ > 0 such that the approximation error is less
than 10−k, roughly Amx

m
l < 10−k. Then we use numerical methods to find solutions

to (4.4) with initial conditions at xℓ, which in turn produces the value of q1 in the
interval (xl, x0).
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Similarly, we define

w(z) = zc−1/2 exp(2
√
az)q2(z

2).

Then

w′′(z) +

(

−4
√
a+

2d

z3

)

w′(z) +

(−3
4
− c2 + 2c− 4b

z2
− 4d

√
a

z3
+

d(1− 2c)

z4

)

w(z) = 0.

The asymptotics of w(z) is given by the power series in (2.7). For each specified
number m of terms in the partial sum approximation, we determine the large ini-
tial point xr such that the approximation error of w(z) is less than 10−k, roughly

Amx
−m/2
r < 10−k. We use numerical methods to solve the initial value problem for

w(z) with initial conditions determined by approximations, thereby leading to solu-
tion q2 in (x0, xr). Combining the computations of q1 and q2, we find the Laplace
transform q using (3.10).

In the second step, we use two-dimensional Laplace inversion routines to find p at
various point of (x, y). Details on various types of two-dimensional Laplace inversion
can be seen in Abate and Whitt [2]. Here we obtain the results using the Talbot-
Gaver-Stehfest algorithm

p(t, x, y) =
2 ln 2

5ty

M−1
∑

k1=0

ℜ
{

γk1

2M
∑

k2=1

ζk2q

(

δk1
t
, x,

k2 ln 2

y

)

}

,

where

δ0 =
2M

5
, δk =

2kπ

5

(

cot

(

kπ

M

)

+ i

)

, 0 < k < M, γ0 =
eδ0

2
,

γk =

[

1 +
ikπ

M

(

1 + cot2
(

kπ

M

))

− i cot

(

kπ

M

)]

eδk , 0 < k < M.

ζk = (−1)M+k
k∧M
∑

j=⌊(k+1)/2⌋

jM+1

M !

(

M

j

)(

2j

j

)(

j

k − j

)

.

To test the accuracy of the results, we also use the Euler-Gaver-Stehfest algorithm

p(t, x, y) =
10M/3 ln 2

5t1t2

2M
∑

k1=0

ηk1

M−1
∑

k2=0

ℜ
{

γk2q

(

βk1

t1
,
δk2
t2

)

+ γk2q

(

βk1

t1
,
δk2
t2

)}

,

where γk is the complex conjugate of γk and

η0 =
1

2
, ηk = (−1)k, 1 ≤ k ≤ M, ηk = (−1)k

M
∑

i=k−M

(

M
i

)

2−M ,M < j ≤ 2M.
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In this numerical example, we choose ν = 1.2,M = 7. According to Abate and
Whitt [2], both algorithms are expected to be accurate up to 0.6M ≈ 4 significant
digits for “good transforms”. We show the values of p(1, 6, 4) rounded up to 7 digits
in Table 1 using the two inversion algorithms with various choices of precision. They
all agree up to four decimal places.

m k Talbot-Gaver-Stehfest Euler-Gaver-Stehfest

30 15 0.0047812 0.0047684
30 18 0.0047812 0.0047684

Table 1: Joint density p(1, 6, 4).

The method can be easily extended to the geometric Brownian motion with affine
drift

Xt = exp(2νt + 2Bt)

(

x0 −
∫ t

0

exp(−(2νs + 2Bs)) ds

)

, Yt =

∫ t

0

Xs ds,

with X0 = x0 > 0 and Y0 = 0, in which case the Laplace transform q(x) satisfies the
ODE

−2(x2q)′′ + {(2(ν + 1)x− 1)q}′ + (wx+ s)q = 0,

which is also a special case of (2.1) with

a =
w

2
> 0, b =

s

2
+ ν − 1, c = 3− ν, d =

1

2
> 0.

We provide the results on p(1, 2, 2) with ν = 1.2 and M = 7 in Table 2.

m k Talbot-Gaver-Stehfest Euler-Gaver-Stehfest

30 15 0.016420 0.016413
30 18 0.016420 0.016413

Table 2: Joint density p(1, 2, 2).

5. A diffusion process from Lamperti’s transformation

We recall from Yor [24] that the geometric Brownian motion and its time-integral
are connected through Lamperti’s transformation, i.e.

exp{B(ν)
t } = ρ

(ν)

A
(ν)
t

, t ≥ 0,

where B
(ν)
t , A

(ν)
t are defined by (1.5), and ρ is a Bessel process with index ν starting

from 1. Using the same idea, we can connect the geometric Brownian motion with
affine drift and its time-integral through another diffusion process.
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Theorem 5.1. Let Xt be the solution of the SDE (3.1) with β(x) = µx+1, γ(x) = σx,
where µ ∈ R, σ > 0 and X0 = x0 > 0. Then

Xt = Z∫ t

0 Xs ds
, t ≥ 0, (5.1)

where Z is a diffusion process determined by the following SDE

dZt =

(

µ+
1

Zt

)

dt + σ
√

Zt dBt. (5.2)

Proof. Let τ(t) = inf{u :
∫ u

0
Xs ds > t}. Note that

∫ t

0
Xs ds is a process with

continuous sample path. Then
∫ τ(t)

0
Xs ds = t. Thus,

Xτ(t) = x0+

∫ τ(t)

0

(µXs+1) ds+σ

∫ τ(t)

0

Xs dBs = x0+µt+

∫ τ(t)

0

ds+σ

∫ τ(t)

0

Xs dBs.

Using the time change formula for Ito integrals (Oksendal [19, Theorem 8.5.7, p156]),
we obtain

∫ τ(t)

0

Xs dBs =

∫ t

0

Xτ(r)

√

τ ′(r) dWr,

where Wt =
∫ τ(t)

0

√
Xs dBs is also a Brownian motion. Note that τ ′(r) = 1/Xτ(r)

using the derivative of inverse function. Thus,

∫ τ(t)

0

Xs dBs =

∫ t

0

√

Xτ(r) dWr.

We also have
∫ τ(t)

0

ds =

∫ t

0

τ ′(r) dr =

∫ t

0

1

Xτ(r)

dr.

Let Zt := Xτ(t) for t ≥ 0. Then,

Zt = Z0 + µt+

∫ t

0

1

Zr
dr + σ

∫ t

0

√

Zr dWr.

Thus the claim follows immediately after reversing the time change. �

To the authors’ best knowledge, this diffusion process {Zt, t ≥ 0} was not previ-
ously studied in the probability literature. When starting from a positive initial value
and µ < 0, this process is always positive and possesses a mean-reverting property,
which is a desirable property for modeling many physical phenomenons. If we remove
the Brownian perturbation by setting σ = 0, then

Zt = −1

µ

(

1 +W (e−Cµ2−µ2t−1)
)

,
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where W is the Lambert W-function.
The results from Section 2 make it possible to compute the transition density

of the diffusion process Zt without having to use the often expensive Monte Carlo
simulations. An account of the theory of time-homogeneous diffusion processes can
be found in Borodin and Salminen [4, Chapter 2]. In this case, it is easier to compute
the transition density function p with respect to speed measure, i.e.

P
z0(Zt ∈ dz) = p(t, z0, z) dz = p(t, z0, z)m(z) dz, (5.3)

where Z0 = z0 > 0. The speed density and scale density of the diffusion process (5.2)
are given by

m(z) =
2

σ2
z

2µ

σ2−1 exp

{

2

σ2

(

1− 1

z

)}

, s(z) = z−
2µ

σ2 exp

{

2

σ2

(

1

y
− 1

)}

.

Then p satisfies the forward Kolmogorov equation

∂p

∂t
= − ∂

∂z
(β(z)p) +

1

2

∂2

∂z2
(γ(z)2p),

while p solves the backward Kolmogorov equation.

∂p

∂t
= β(z)

∂p

∂z
+

1

2
γ(z)2

∂2p

∂z2
,

where β(z) = µ+ 1/z, γ(z) = σ
√
z. Consider the Laplace transform

q(s, z0, z) =

∫ ∞

0

e−st
p(t, z0, z) dt.

Then q(z) := q(s, z0, z) satisfies the ODE

σ2

2
zq′′(z) +

(

µ+
1

z

)

q
′(z)− sq(z) = 0, z > 0. (5.4)

This ODE is a special case of (2.1) with parameter values

a =
2s

σ2
> 0, b = 0, c =

2µ

σ2
, d =

2

σ2
> 0.

Let q1, q2 be the positive monotone solutions y1, y2 introduced in Theorems 2.2,
2.1, respectively. Then

q(s, z0, z) =
1

w(s, z)

{

q1(z)q2(z0) if 0 < z < z0,

q1(z0)q2(z) if z0 < z,
(5.5)
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where w(z) denotes the Wronskian

w(z) =
1

s(z)
[q′1(z)q2(z)− q1(z)q

′
2(z)].

The following algorithm is used in this numerical example to calculate the transition
density p(t, z0, z).

1. Approximate the values of q1 and q2 at some initial points by the asymptotics
(2.10) and (2.5). Take the approximations as initial conditions and use numer-
ical methods for initial value problems to determine q1 and q2.

2. Substitute the values of q1 and q2 in (5.5) to determine values of the Laplace
transform q. Use numerical methods for inverting the Laplace transform to
evaluate p.

Figure 1: Probability density function p(1, 1, z) of the process Z

In our example, we use the parameters µ = 0.8, σ = 1 and initial position z0 = 1.
In the first step, we find approximation of q1(1/25) and q2(25) using the first 40 terms
in the asymptotics (2.10) and (2.5). Then we use Maple’s numerical method gear to
determine solutions to the initial value problems, which yield solutions of q1 and q2
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in the interval (1/25, 25). To test the accuracy of the results, we use two numerical
methods for inverting Laplace transforms, namely, the Gaver-Stehfest algorithm

p(t, z0, z) ≈
n
∑

k=1

(−1)n−k kn

k!(n− k)!
f̃k(t, z0, z),

where

f̃k(t, z0, z) =
ln 2

t

(2k)!

k!(k − 1)!

k
∑

h=1

(−1)h
(

k
h

)

q

(

(h+ k)
ln 2

t
, z0, z

)

,

and the Euler algorithm (cf. Abate and Whitt [1])

p(t, z0, z) ≈
m
∑

k=0

(

m
k

)

2−msn+k(t),

where

sn(t) =
eA/2

2t
ℜ(q)

(

A

2t
, z0, z

)

+
eA/2

t

n
∑

k=1

(−1)kℜ(q)
(

A + 2kπi

2t
, z0, z

)

.

Because the two algorithms are sufficiently different, we can verify the accuracy of
our numerical method by observing the results on probability density function p from
both algorithms which agree up to at least four decimal places in all calculations.
As recommended by Abate and Whitt [1, page 38], we choose A = 18.4. Figure 1
displays the graph of the probability density function p(1, 1, z) of the diffusion process
Z.

6. Joint Laplace transform of the geometric Brownian motion with affine

drift and its time-integral

An alternative form of the GBM with affine drift to (4.1) is given by

dXt = (rXt − δ) dt+ σXt dBt, X0 = x0 > 0. (6.1)

Since such a model typically arises in the context of option pricing in finance literature,
we use financial interpretation of model parameters. Assume that X represents the
dynamics of stock prices. Dividends are paid out at a constant rate δ > 0 per time
unit and the risk-free continuously compounding interest rate is given by r per time
unit. It should be pointed out that in this model stock prices may hit zero at one
point, which is considered the time of ruin, prior to a fixed option maturity date T . In
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this case, the process is assumed to be absorbed at zero once it hits zero. One can also
find that the SDE (6.1) is a special case of (3.1) with γ(x) = σx and β(x) = rx− δ.

We focus on the joint Laplace transform of the process and its time-integral which
plays an important role in an application to Asian option. The Laplace transform is
defined by

h(x0, T ;w) := Ex0

[

e−w
∫ T

0
Xt dt−λXT

]

, (6.2)

where λ, w > 0. Then it follows immediately from the Feymann-Kac formula that h
satisfies the PDE for 0 < t < T and x > 0

∂h

∂t
+ wxh = (rx− δ)

∂h

∂x
+

σ2

2
x2∂

2h

∂x2
, (6.3)

subject to
{

h(x0, 0) = e−λx0, x0 > 0;

h(0, t) = 1, 0 < t < T.

Consider the Laplace transform h̃(x, s) :=
∫∞
0

e−sth(x, t) dt for some s > 0. Taking
Laplace transforms with respect to t on both sides of (6.3) we obtain the following
ODE of h̃(x) = h̃(x, s) for x > 0

σ2

2
x2h̃′′(x) + (rx− δ)h̃′(x)− (s+ wx)h̃(x) = −e−λx0 , (6.4)

subject to boundary conditions

h̃(0) =
e−λx0

s
, (6.5)

lim
x→∞

h̃(x) = 0, (6.6)

where the second condition comes from the interpretation of probabilistic represen-
tation (6.2) as x0 → ∞.

We first prove the existence of a unique solution to the boundary value problem
and then present the asymptotics of its solution. Let us consider the linear differential
equation

x2y′′ + (cx+ d)y′ − (ax+ b)y = 0, x > 0, (6.7)

where a > 0, b > 0, d < 0 and c ∈ R. Based on the discussion of section 2, we know
that there is a positive number v such that the Wronskian W of y1, y2 is

W (x) = −vx−c exp d
x
< 0. (6.8)
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Then we will further consider the inhomogeneous linear differential equation

x2y′′ + (cx+ d)y′ − (ax+ b)y = f(x), x > 0. (6.9)

We have the following result.

Theorem 6.1. Let f be a bounded real-valued continuous function on (0,∞), and let
θ ∈ R. Then there exists a unique solution y of (6.9) with the properties

lim
x→0+

y(x) = θ, lim
x→∞

y(x) = 0. (6.10)

Proof. We first prove uniqueness. Let y, ỹ be two solutions of (6.9) satisfying (6.10).
Then y − ỹ is a solution of (6.7) with limit 0 as x → 0+ and x → ∞. Therefore,
y − ỹ must be a multiple of y1 and y2. But y1, y2 are linearly independent by (6.8).
Therefore, y = ỹ.

We now prove existence. It is enough to consider θ = 0 because if y is a solution
of (6.9) satisfying (6.10) with θ = 0 then y(x) + θ y2(x)

y2(0)
is the desired solution of (6.9)

satisfying (6.10). It is claimed that the solution (for θ = 0) is given by

y(x) =

(
∫ ∞

x

y2(t)f(t)

t2W (t)
dt

)

y1(x) +

(
∫ x

0

y1(t)f(t)

t2W (t)
dt

)

y2(x). (6.11)

The first integral in (6.11) exists for x > 0. We use that f is bounded, (2.5) and
(6.8) to estimate

∣

∣

∣

∣

y2(t)f(t)

t2W (t)

∣

∣

∣

∣

≤ Ct−
7
4
+ c

2 exp(−2
√
at), t ≥ t0 > 0. (6.12)

In this proof C denotes a constant which may have different values in different in-
equalities. The second integral in (6.11) exists for x > 0. This follows from

∣

∣

∣

∣

y1(t)f(t)

t2W (t)

∣

∣

∣

∣

≤ C, 0 < t < t0, (6.13)

where we used (2.12) and (6.8). It now follows that y defined by (6.11) is a solution
of (6.9). We show that the first term on the right-hand side of (6.11) converges to 0
as x → ∞. It is easy to find that, for every fixed α ∈ R,

∫ ∞

u

sαe−s ds ≤ Cuαe−u, u ≥ u0 > 0. (6.14)

If we substitute s = 2
√
at we obtain

∫ ∞

x

t
1
2
(α−1) exp(−2

√
at) dt ≤ Cx

α
2 exp(−2

√
ax), x ≥ x0 > 0.
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Therefore, using this inequality with α = −5
2
+ c and combining with (6.12),

∫ ∞

x

∣

∣

∣

∣

y2(t)f(t)

t2W (t)

∣

∣

∣

∣

dt ≤ Cx− 5
4
+ c

2 exp(−2
√
ax), x ≥ x0.

Following similar calculation to that in the proof of Theorem 2.1, we obtain two
independent solutions with known asymptotics near x = ∞, one of which is y2 deter-
mined by the asymptotics in (2.5) and the other, denoted by ŷ2, determined by the
asymptotics

ŷ2(x) ∼ x1/4−c/2e2
√
ax

∞
∑

k=1

Akx
−k/2, as x → ∞, (6.15)

with A0 = 1 and Ak’s determined by the recursive relation

Ak =
(k + 1/2− c)(k − 3/2 + c)− 4b

4
√
ak

Ak−1 +
d

k
Ak−2,

with the understanding that A−1 = 0. It follows from (2.5), (6.15) that

0 < y1(x) ≤ Cx
1
4
− c

2 exp(2
√
ax), x ≥ x0. (6.16)

Therefore,
∫ ∞

x

∣

∣

∣

∣

y2(t)f(t)

t2W (t)

∣

∣

∣

∣

dt y1(x) ≤ Cx−1, x ≥ x0.

We show that the second term in (6.11) converges to 0 as x → ∞. It is easy to
see that, for fixed α ∈ R,

∫ u

1

sαes ds ≤ Cuαeu, u ≥ u0 > 0. (6.17)

If we substitute s = 2
√
at we obtain

∫ x

1

t
1
2
(α−1) exp(2

√
at) dt ≤ Cx

α
2 exp(2

√
ax), x ≥ x0. (6.18)

From (6.8) and (6.16), we have,
∣

∣

∣

∣

y1(t)f(t)

t2W (t)

∣

∣

∣

∣

≤ Ct−
7
4
+ c

2 exp(2
√
at), t ≥ t0.

Therefore, with α = −5
2
+ c in (6.18),

∫ x

0

∣

∣

∣

∣

y1(t)f(t)

t2W (t)

∣

∣

∣

∣

dt ≤ Cx− 5
4
+ c

2 exp(2
√
ax), x ≥ x0.
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Using (2.5),
∫ x

0

∣

∣

∣

∣

y1(t)f(t)

t2W (t)

∣

∣

∣

∣

dt y2(x) ≤ Cx−1, x ≥ x0.

In what follows, we aim to prove that the first term on the right-hand side of
(6.11) converges to 0 as x → 0+. It follows from (2.10), (2.12) that y2(t) is bounded
as t → 0+. Therefore, we have

∣

∣

∣

∣

y2(t)f(t)

t2W (t)

∣

∣

∣

∣

≤ Ctc−2 exp(−d
t
), 0 < t < t0.

When we substitute s = −d
t
, α = −c in (6.17) we obtain

∫ ∞

x

∣

∣

∣

∣

y2(t)f(t)

t2W (t)

∣

∣

∣

∣

dt ≤ Cxc exp(− d
x
), 0 < x < x0.

Therefore, by (2.12),
∫ ∞

x

∣

∣

∣

∣

y2(t)f(t)

t2W (t)

∣

∣

∣

∣

dt y1(x) ≤ Cx2, 0 < x < x0.

Similarly, the second term on the right-hand side of (6.11) converges to 0 as x → 0+.
since from (6.13), we get

∫ x

0

∣

∣

∣

∣

y1(t)f(t)

t2W (t)

∣

∣

∣

∣

dt y2(x) ≤ Cx, 0 < x < x0.

This completes the proof. �

We will shall the following lemma, whose proof is largely based on integration by
parts and hence omitted from the paper.

Lemma 6.1. Let α ∈ R. We have the following asymptotics

∫ ∞

u

sαe−s ds∼ uαe−u
∞
∑

k=0

αku
−k as u → ∞, (6.19)

∫ u

1

sαes ds∼ uαeu
∞
∑

k=0

(−1)kαku
−k as u → ∞, (6.20)

where αp := α(α− 1) . . . (α− p+ 1).

Theorem 6.2. The unique solution y(x) of (6.9), (6.10) with f(x) = −u satisfies

y(x) ∼
∞
∑

k=0

Ckx
k as x → 0+, (6.21)

23



where C0 = θ, dC1 = bθ − u and, for k ≥ 2,

kdCk = (b− c(k − 1)− (k − 1)(k − 2))Ck−1 + aCk−2. (6.22)

Moreover,

y(x) ∼
∞
∑

k=0

Dkx
−k−1 as x → ∞, (6.23)

where D0 = ua−1 and, for k ≥ 1,

aDk = (k(k + 1)− ck − b)Dk−1 + d(k − 1)Dk−2, D−1 := 0. (6.24)

Proof. We consider first the case θ = 0, u = 1. Then the solution y(x) is given by
(6.11) with f(x) = −1.

We show that the first term on the right-hand side of (6.11) with f(x) = −1
admits an asymptotic expansion of the form (6.21). It follows from (2.10), (2.12) that

y2(t) =
K−1
∑

k=0

Ekt
k +O(tK) as t → 0+. (6.25)

Therefore,

y2(t)(−1)

t2W (t)
= v−1tc−2 exp(−d

t
)

(

K−1
∑

k=0

Ekt
k +O(tK)

)

as t → 0+.

Now we use (6.20) with the substitution s = −d
t
. Then we obtain

∫ ∞

x

y2(t)(−1)

t2W (t)
dt = xc exp(− d

x
)

(

K−1
∑

k=0

Fkx
k +O(xK)

)

as x → 0+.

Multiplying this integral by y1(x) and using (2.12), we obtain the desired asymptotic
expansion.

We show that the second term on the right-hand side of (6.11) with f(x) = −1
admits an asymptotic expansion of the form (6.21). From (2.12) and (6.8) we get

y1(t)(−1)

t2W (t)
= v−1

(

K−1
∑

k=0

Akt
k +O(tK)

)

as t → 0+.

Integrating this equation on both sides from t = 0 to t = x, multiplying by y2(x) and
using (6.25) we arrive at the desired asymptotic expansion.
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By differentiating (6.11), we show that y′(x) and y′′(x) have asymptotic expansions
as x → 0+ which are obtained by differentiating the asymptotic expansion of y(x)
term-by-term. If y(x) is the solution for θ = 0 and u = 1, then the solution ỹ(x) for
real θ, u is

ỹ(x) = uy(x) + θ
y2(x)

y2(0)
. (6.26)

Therefore, ỹ(x) also admits an asymptotic expansions of the form (6.21), and it may be
differentiated. Substituting the expansions for ỹ(x), ỹ′(x), ỹ′′(x) in (6.9) with f(x) =
−u and comparing coefficients, we obtain the stated recursion for the coefficients Ck.

Now we show that the first term g(t) on the right-hand side of (6.11) with f(x) =
−1 admits an asymptotic expansion of the form

g(t) ∼
∞
∑

k=2

Ekx
−k/2 as x → ∞. (6.27)

We know from (2.5) that

y2(t) = t
1
4
− c

2 exp(−2
√
at)

(

K−1
∑

k=0

Akt
−k/2 +O(t−K/2)

)

as t → ∞.

Therefore,

y2(t)(−1)

t2W (t)
= t−

7
4
+ c

2 exp(−2
√
at)

(

K−1
∑

k=0

Fkt
−k/2 +O(t−K/2)

)

as t → ∞.

We now use (6.19) with the substitution s = 2
√
at. Then we obtain

∫ ∞

x

y2(t)(−1)

t2W (t)
dt = x− 5

4
+ c

2 exp(−2
√
ax)

(

K−1
∑

k=0

Gkx
−k/2 +O(x−K/2)

)

as x → ∞.

If we multiply this integral by y1(x) and use (2.5), (6.15), we obtain an asymptotic
expansion of the desired form (6.27).

In a similar way we show that the second term on the right-hand side of (6.11)
with f(x) = −1 admits an asymptotic expansion of the form (6.27). Using (6.26) we
see that ỹ(x) also admits an asymptotic expansion of the form (6.27), and we obtain
asymptotic expansions for ỹ′(x), ỹ′′(x) by differentiating the asymptotic expansion for
ỹ(x) term-by-term. By substituting these expansions in (6.9) with f(x) = −u and
compare the coefficients, we notice that the coefficients of the terms x−k/2 with odd
k must vanish. Thus we obtain the recursion (6.24) and the initial value D0. �
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Assume that the dynamics of stock prices with divided paying are driven by the
geometric Brownian motion with affine drift defined by (6.1) under the risk-neutral
measure. While the pricing of Asian options has been studied extensively, all existing
literature are restricted to the case of options on non-dividend paying stocks. Apply-
ing the analysis of the doubly-confluent Heun equation, we can now take into account
the more general case of options on dividend-paying stocks. We are interested in the
no-arbitrage price of a T -period Asian call option with the strike price of K, i.e.

AC := Ex0

[

e−rT

(

1

T

∫ T

0

Xt dt−K

)

+

]

=
1

T
e−rT

Ex0 [(YT −K∗)+],

where

YT =

∫ T

0

Xt dt, K∗ = KT > 0.

For notational brevity, we assume that the expectation is taken under the risk-neutral
probability measure for which

P[X0 = x0, Y0 = 0] = 1.

We can compute the following Laplace transform w.r.t. K∗. Since the integrands are
nonnegative, we exchange the order of integration and obtain

∫ ∞

0

e−wK∗

Ex0 [(YT −K∗)+] dK
∗ =Ex0

[
∫ YT

0

e−wK∗

(YT −K∗) dK∗
]

=
1

w
Ex0(YT )−

1

w2
+

1

w2
Ex0 [e

−wYT ]. (6.28)

An analytic expression for the first term in (6.28) is already obtained in Feng and
Volkmer [9, Proposition 3.4].1 Therefore, the only unknown quantity to be determined
is the third term in (6.28). Once efficient algorithms for computing both terms are
obtained, we would invert the Laplace transform with respect to K∗ to determine
the price of Asian option. One can easily find that it is a special case of h defined
by (6.2) by taking λ = 0. Since the rest of computation for pricing Asian options is
irrelevant to the discussion of asymptotics of Heun equation, we shall only focus on
the computation of h̃, i.e. the Laplace transform of h, which can be derived by letting
λ = 0 in (6.4).

1In Feng and Volkmer [9], this quantity was represented as the time-integral of the process

Xt up to the earlier of the first time it hits zero and a fixed time T , i.e. E

[

∫

τ∧T

0
Xt dt

]

, where

τ := inf{t : Xt ≤ 0}.
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Returning to the problem on the Laplace transform, we observe that (6.4) is
a special case of the inhomogeneous Heun’s equation (6.7) with f(x) = −u and
boundary conditions (6.10),

a =
2w

σ2
, b =

2s

σ2
, c =

2r

σ2
, d = −2δ

σ2
, u =

2

σ2
, θ =

1

s
.

Although a numerical algorithm can be applied directly to solve the boundary
value problem (6.4) with (6.5) and (6.6), one would have to truncate the domain
(0,∞) to some finite interval for practical reason. Then the asymptotics of the par-
ticular solution in (6.21) and (6.23) become useful to determine values at boundary
points.

Here we provide a numerical example to show the solution to the boundary value
problem using the asymptotics. The following set of parameters are used for compu-
tation.

s = 2, w = 1, σ = 0.3, r = 0.05, δ = 0.02.

To avoid the singularities x = 0 and x = ∞, we consider the left-end-point to be
x0 = 0.01 and the right-end-point to be x1 = 100. We use 30 terms of the asymp-
totic formulas (6.21) and (6.23) to find h̃(x0) = 0.499062426649333 and h̃(x1) =
0.00980754872574340. Finally, we use Maple’s own default BVP solver to determine
the numerical solution, which is shown in Figure 2.

Figure 2: Solution to the boundary value problem (6.4).
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