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Numerical preservation of multiple local conservation laws

GianlucaFrasca-Cacciaa,∗, Peter E. Hydona

aSchool of Mathematics, Statistics and Actuarial Science University of Kent, Canterbury, CT2 7FS, UK

Abstract

There are several well-established approaches to constructing finite difference schemes that preserve global
invariants of a given partial differential equation. However, few of these methods preserve more than one
conservation law locally. A recently-introduced strategy uses symbolic algebra to construct finite difference
schemes that preserve several local conservation laws of a given scalar PDE in Kovalevskaya form. In this
paper, we adapt the new strategy to PDEs that are not in Kovalevskaya form and to systems of PDEs. The
Benjamin–Bona–Mahony equation and a system equivalent to the nonlinear Schrödinger equation are used
as benchmarks, showing that the strategy yields conservative schemes which are robust and highly accurate
compared to others in the literature.

Keywords: Finite difference methods, discrete conservation laws, BBM equation, nonlinear Schrödinger
equation, energy conservation, momentum conservation.
2000 MSC: 65M06, 37K05, 39A14

1. Introduction

In the numerical treatment of partial differential equations (PDEs), the benefits of preserving global integral
invariants are well-known (see [3, 7, 9, 13–17, 27, 33, 36, 42, 44]). Such invariants are obtained by integrating
(local) conservation laws of the PDE over a spatial domain and applying given boundary conditions. However,
even for PDEs in conservation form, very few invariant-preserving finite difference schemes preserve more
than one conservation law locally. The main exceptions are Hamiltonian PDEs, for which a fully discrete
local conservation law for the Hamiltonian [37] can be obtained by first creating a spatial discretization
that preserves a semidiscrete conservation law for the Hamiltonian, then using a discrete gradient method
[9, 10, 13, 24, 38, 44, 45] on the resulting system of ordinary differential equations.

To preserve local features of any PDE, a scheme must satisfy much stronger constraints than are needed
to preserve the corresponding global properties. Conservation laws hold throughout the domain; they apply
to the set of all solutions, so are independent of initial and boundary conditions. Moreover, conservation laws
correspond to topological properties of the solution manifold: each equivalence class of conservation laws is a
cohomology class of the variational bicomplex restricted to this manifold (see [2, 49]). There is a strong theme
in geometric integration that numerical approximations should respect topological properties of a given PDE
as far as possible, so it is worthwhile trying to develop schemes that preserve discrete analogues of multiple
conservation laws.

A new approach that uses symbolic algebra to develop bespoke finite difference schemes that preserve
multiple local conservation laws of a (not necessarily Hamiltonian) PDE was introduced in [25, 26]. Initially,
the complexity of the symbolic calculations made this approach impractical for all but the simplest PDEs.
However, a strategy introduced recently in [22] has overcome this difficulty, making it possible to create
bespoke schemes for a given PDE within a few minutes. This strategy has been used to create robust, highly
accurate conservative schemes for the KdV and modified KdV equations, and a (non-Hamiltonian) nonlinear
heat equation [21–23]. All of these PDEs are in Kovalevskaya form.

The main aim of this paper is to show that this strategy can also be used for PDEs that are not in
Kovalevskaya form and systems of PDEs. As benchmark examples, we will create conservative schemes for the
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Benjamin–Bona–Mahony (BBM) equation (or Regularized Long Wave equation) and for a system of two real
PDEs that is equivalent to the Nonlinear Schrödinger (NLS) equation. Both equations have been well-studied;
each is Hamiltonian, with a wide range of schemes that preserve some of their geometric properties.

Multisymplectic methods, which preserve a local conservation law for symplecticity [5, 6] were applied to the
BBM equation in [35, 47] and to the NLS equation in [11, 12, 31, 46]. In general, multisymplectic methods do
not preserve further conservation laws or global invariants. The benefits of using (global) invariant-preserving
schemes for the BBM and the NLS equation were studied in [15] and [17], respectively. Several such schemes
for the BBM equation were proposed in [33] and for the NLS equation in [3, 27, 36, 42]. Using the inverse
scattering transform, Ablowitz and Ladik [1] found one of the most important semi-discrete models of the NLS
equation; it is completely integrable. Its symplectic structure is noncanonical, so standardization is needed
before symplectic integrators can be used [43, 48].

This paper is organized as follows: in Section 2 we present the basic strategy, adapted to systems of PDEs
that are not necessarily in Kovalevskaya form. In Section 3 we use this strategy to find finite difference schemes
that preserve two conservation laws of the BBM equation. In Section 4 the strategy is applied to the NLS
equation. Time discretizations of the Ablowitz–Ladik model that preserve two local conservation laws of the
NLS are also derived. A range of numerical tests show the effectiveness of the proposed schemes and compare
them with known geometric integrators. We conclude with some remarks in Section 5.

2. Constructing schemes that preserve conservation laws

A system of PDEs for u = (u1(x, t), . . . , uq(x, t)) may be written in the form

A(x, t, [u]) = 0, (1)

where A(x, t, [u]) is a row vector and [u] denotes u and finitely many of its derivatives. Similarly, square
brackets around any differentiable expression are used to denote the expression and a finite number of its
derivatives. We assume throughout that the system of PDEs is totally nondegenerate, avoiding pathological
exceptions (see [40] for details).

A (local) conservation law of (1) is a total divergence,

DivF ≡ Dx{F (x, t, [u])}+Dt{G(x, t, [u])},

that vanishes on all solutions of (1), so that

DivF = 0 when [A = 0]. (2)

Here

Dx =
∂

∂x
+ uαx

∂

∂uα
+ uαxt

∂

∂uαt
+ uαxx

∂

∂uαx
+ · · · ,

Dt =
∂

∂t
+ uαt

∂

∂uα
+ uαtt

∂

∂uαt
+ uαxt

∂

∂uαx
+ · · ·

are the total derivatives with respect to x and t, respectively, and the functions F and G are the flux and the
density of the conservation law, respectively. A conservation law is in characteristic form if

DivF = AQ, (3)

for some column vector Q, which is called the characteristic. (Every conservation law for a totally nondegen-
erate system is equivalent to one in characteristic form.)

The kernel of the Euler operator E , whose α-th component is

Eα =
∑
i,j

(−Dx)i(−Dt)
j ∂

∂uαxitj
, where uαxitj = Di

xD
j
t (u

α),

is the vector space of total divergences. Consequently, if

E(AQ) = 0,
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there exists F such that AQ = DivF is a conservation law.
For simplicity, we shall discretize the PDE (1) and its conservation laws (2) on a uniform lattice. Relative

to a generic lattice point n = (m,n), the grid points are

xi = x(m+ i) = x(m) + i∆x, tj = t(n+ j) = t(n) + j∆t.

The approximated values of u at these points are ui,j with α-th component

uαi,j ≈ uα(xi, tj), i, j ∈ Z.

The forward shift operators in space and time are defined by

Sm : f(xi, tj) 7→ f(xi+1, tj), Sn : f(xi, tj) 7→ f(xi, tj+1),

for any function f that is defined on the grid. The forward difference operators Dm, Dn and the forward
average operators µm, µn are

Dm = 1
∆x (Sm − I), Dn = 1

∆t (Sn − I), µm = 1
2 (Sm + I), µn = 1

2 (Sn + I),

where I is the identity operator.
Discretizing (1) by a suitable finite difference approximation yields a system of partial difference equations

(P∆Es),
Ã(m,n, [u]) = 0.

Here [u] denotes u0,0 and a finite number of its shifts; more generally, square brackets around a discrete expres-
sion denote the expression and finitely many of its shifts. Here and henceforth tildes represent discretizations
of the corresponding continuous terms. (See [29] for a comprehensive introduction to difference equations and
their conservation laws.)

We seek schemes having the following discrete analogue of each preserved conservation law:

Div F̃ ≡ Dm{F̃ (m,n, [u])}+Dn{G̃(m,n, [u])}, (4)

such that
Div F̃ = 0 when [Ã = 0].

The functions F̃ and G̃ are called the discrete flux and the discrete density of the conservation law (4),
respectively. A discrete conservation law is said to be in characteristic form if there exists Q̃, called the
characteristic, such that

Dm{F̃ (m,n, [u])}+Dn{G̃(m,n, [u])} = ÃQ̃(m,n, [u]).

Just as for PDEs, every conservation law for a totally nondegenerate system of difference equations is equivalent
to one in characteristic form [29].

The linear and quadratic terms in A and Q are, respectively, approximated by

∂r+s

∂xr∂ts
uα ≈ 1

∆xr
1

∆ts

B∑
i=A

1∑
j=0

αi,ju
α
i,j , (5)

∂p+quα

∂xp∂tq
∂r+suα

∂xr∂ts
≈ 1

∆xp+r∆tq+s

B∑
i=A

 B∑
k=i

1∑
j=0

βi,j,ku
α
i,ju

α
k,j +

B∑
k=A

γi,ku
α
i,0u

α
k,1

 . (6)

Here the coefficients αi,j , βi,j,k and γi,k (which depend on p, q, r, s, α) are chosen to ensure that the Taylor
expansion of each approximated term about the centre of the stencil is accurate to whatever order, ρ, is desired.
Provided that the stencil is sufficiently large, the approximations of A and Q will include some free parameters.
(For a given stencil, the number of free parameters decreases rapidly with the order of the approximation.)
Terms that are differential polynomials of third and higher degree are approximated similarly.

The following result is the key to obtaining conservative schemes (see [34], with generalizations in [30]).
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(x, t−∆t/2)

(x, t)(x−∆x/2, t)

A B
C = 0

D = 1

Figure 1: Example of a rectangular stencil for one-step schemes. PDEs and conservation laws are preserved to
second order at the central point (x, t); densities and fluxes are second-order at (x, t − ∆t/2) and (x − ∆x/2, t),
respectively.

Remark 1. The kernel of the difference Euler operator E, whose α-th component is

Eα =
∑
i,j

S−i
m S−j

n

∂

∂uαij
,

coincides with the space of difference divergences (4).

Given a PDE (1) with a conservation law in characteristic form (3) that one wishes to preserve, the aim is
to seek approximations Q̃ and Ã such that

E(ÃQ̃) = 0.

By Remark 1, there exist a discrete flux F̃ and density G̃ such that ÃQ̃ = DmF̃ + DnG̃ is a difference
conservation law that approximates the corresponding continuous one.

Our strategy for obtaining bespoke conservative finite difference schemes is as follows.

1. Select the desired accuracy, ρ, and the conservation laws to be preserved, labelling their characteristics
Q1,Q2, . . . . We shall require second-order accuracy, to reduce the number of free parameters to a manage-
able level while retaining enough freedom to preserve multiple conservation laws.

2. Choose a rectangular stencil that is large enough to support ρth-order approximations of A and all Q`.
3. Determine the most general ρth-order finite difference approximations to Ã and Q̃1 on the stencil.
4. Reduce the number of free parameters remaining by making some key terms as compact as possible; typically,

these include highest derivatives and highest-order nonlinear terms.
5. Use symbolic algebra to solve for the values of the free parameters that satisfy

E(ÃQ̃1) = 0. (7)

For each solution (which may depend on free parameters), the discrete flux F̃1 and density G̃1 can be
reconstructed from the characteristic (see [26, 28]).

6. Iterate Steps 3 onwards (with Q` replacing Q1, etc.) to preserve further conservation laws. If E(ÃQ̃`) = 0
has no solutions for some `, the corresponding conservation law cannot be preserved on the chosen stencil
without violating an earlier conservation law.

The restriction to second-order approximations and the compactness conditions were introduced in [22] to
obtain solutions of (7) by means of a fast symbolic computation. On the stencils we consider below, this takes
around one minute on a fast laptop. By contrast, if one imposes no constraints other than convergence, the
symbolic computation typically takes several days; this is too long to be practical.

Remark 2. Obtaining second-order accurate approximations of the conservation laws at the centre (x, t) of
the stencil is equivalent to finding second-order accurate approximations of the corresponding densities and
fluxes at the points (x, t−∆t/2) and (x−∆x/2, t) respectively.

In the next two sections, we use our strategy to develop conservative finite difference schemes for the BBM
equation and for the system of two PDEs given by the real formulation of the NLS equation. As these are
evolution equations, we will consider only one-step schemes defined on the stencil in Figure 1, where B −A is
suitably large. However, the strategy applies equally to multistep schemes.
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3. The Benjamin–Bona–Mahony equation

In this section we consider the BBM equation,

A ≡ ut − uux − uxxt = 0, (x, t) ∈ Ω ≡ [a, b]× [0,∞), (8)

which (up to equivalence) has just three independent conservation laws [19, 39]:

Dx(F1) +Dt(G1) = Dx

(
− 1

2u
2 − uxt

)
+Dt(u) = 0, (9)

Dx(F2) +Dt(G2) = Dx

(
− 1

3u
3 − uuxt

)
+Dt

(
1
2u

2 + 1
2u

2
x

)
= 0, (10)

Dx(F3) +Dt(G3) = Dx

(
u2
t − 1

4u
4 − u2uxt − u2

xt

)
+Dt

(
1
3u

3
)

= 0. (11)

These can be written in characteristic form with characteristics

Q1 = 1, Q2 = u, Q3 = u2 + 2uxt,

respectively. When (8) is coupled with suitable (e.g. periodic) boundary conditions, integrating (9)–(11) over
the spatial domain gives the invariants:∫

G1 dx =

∫
udx,

∫
G2 dx =

∫
1
2 (u2 + u2

x) dx,

∫
G3 dx =

∫
1
3u

3 dx, (12)

which are usually referred to as the “mass”, “momentum” and “energy”, respectively [33].
Equation (8) admits the Hamiltonian formulation,

ut =

(
1− ∂2

∂x2

)−1
∂

∂x

(
δ

δu
H
)
,

where δ/δu is the variational derivative and the Hamiltonian functional H is given by

H =

∫
1
6u

3 dx =

∫
1
2G3 dx.

Given suitable boundary conditions, the local conservation law (11) implies the conservation of the Hamiltonian
functional.

3.1. Conservative methods for the BBM equation
This section describes how our strategy produces numerical schemes for the BBM equation that preserve

two local conservation laws. All of these methods are of the form

Ã = DmF̃1 +DnG̃1 = 0, (13)

so the mass conservation law (9) is preserved. Some schemes depend on free parameters, all of which are
O(∆x2,∆t2). As we impose only second-order accuracy, one can find values of the parameters that reduce
the local truncation error. However, no choice of the parameters yields any higher-order scheme; indeed, their
optimal values depend on the particular problem. We use three different stencils but none of the resulting
schemes preserves all three conservation laws of the BBM equation.

6-point schemes
The most compact stencil for the BBM equation has 6 points. We choose A = −1, B = 1 in Figure 1 and

seek second-order approximations of characteristics, densities and fluxes at (0, 1/2), (0, 0) and (−1/2, 1/2),
respectively.

Energy-conserving methods.
The symbolic calculation that finds 6-point energy-conserving schemes is simplified here by specifying the
approximations of the highest derivatives in F1 and Q3 respectively to be

ũx,t = DmDnu−1,0, (14)
ũx,t = DmDnµmu−1,0.

5



Approximations of linear and quadratic terms in F1, G1 and Q3 are of the form (5) and (6), subject to the
requirement of second-order accuracy. Energy conservation is obtained by solving

E(ÃQ̃3) ≡ 0,

which determines all of the remaining coefficients in F̃1, G̃1 and Q̃3, giving scheme EC6 in the form (13), with

F̃1 = − 1
6

(
(µmu−1,1)

2
+ (µmu−1,0)

2
+ (µmu−1,1) (µmu−1,0)

)
−DmDnu−1,0, G̃1 = u0,0.

The scheme EC6 preserves the following discrete version of the conservation law (11):

ÃQ̃3 =DmF̃3 +DnG̃3 = 0,

with

F̃3 =− F̃ 2
1 + (Dnu−1,0)Dnu0,0 − 1

3∆x2(µmµnu−1,0)Θ[u],

G̃3 = 1
3u0,0µm

(
(µmu−1,0)

2
)
, Q̃3 = −2µmF̃1,

and
Θ[u] = 1

2 {(µmµnu−1,0)DmDnu−1,0 − (Dmµnu−1,0)Dnµmu−1,0} . (15)

The last term in F̃3 does not correspond to an expression in the continuous flux; it vanishes as the spatial
stepsize tends to zero.

Momentum-conserving methods.
Momentum-conserving methods are obtained by specifying the approximation of the highest derivative in F1

as in (14) and using the compact approximation

Q̃2 = µnu0,0.

The remaining terms in F1 and G1 are approximated by (5) and (6). Solving

E(ÃQ̃2) ≡ 0

gives an one-parameter family of mass and momentum-conserving methods Ã(λ) with

F̃1 = − 1
6

(
(µnu−1,0)

2
+ (µnu0,0)

2
+ (µnu−1,0) (µnu0,0)

)
+ (λ− 1)DmDnu−1,0, G̃1 = u0,0,

and λ = O(∆x2,∆t2). For any value of λ, these methods preserve the discrete momentum conservation law

ÃQ̃2 = DmF̃2 +DnG̃2 = 0,

with

F̃2 = − 1
3 (µnu−1,0)(µnu0,0)µmµnu−1,0 − (µmµnu−1,0)DmDnu−1,0 + λΘ[u],

G̃2 = 1
2

{
u2

0,0 + µm
(
(Dmu−1,0)2

)
+ λu0,0D

2
mu−1,0

}
,

and Θ[u] as given in (15). In the numerical tests, we use the notation

MC6(α) = Ã(α∆2
max), ∆max = max (∆x,∆t).

8-point schemes
We now develop schemes that preserve two conservation laws of the BBM equation, defined on the 8-

point stencil with A = −2, B = 1 in Figure 1. Approximations of characteristics, densities and fluxes are
second-order accurate at (−1/2, 1/2), (−1/2, 0) and (−1, 1/2), respectively.
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Energy-conserving methods.
Mass and energy-conserving schemes are obtained here by considering the approximation (14) of ux,t in F1

and by considering only compact approximations of the quadratic term in Q3.
All the approximations of the remaining terms in F1, G1 and Q3 are in the form (5) or (6). The condition

E(ÃQ̃3) ≡ 0,

can be solved with a fast symbolic computation, yielding scheme EC8 in the form (13) with flux and density

F̃1 = µmϕ−2,0, G̃1 = µmu−1,0,

and
ϕ−2,0 = − 1

6

(
(µmu−2,1)

2
+ (µmu−2,0)

2
+ (µmu−2,1) (µmu−2,0)

)
−DmDnu−2,0.

The scheme EC8, preserves the following discrete version of the conservation law (11):

ÃQ̃3 =DmF̃3 +DnG̃3 = 0,

with

Q̃3 = −2ϕ−1,0, F̃3 = −ϕ−2,0ϕ−1,0 + (Dnu−1,0)2, G̃3 = 1
3 (µmu−1,0)3.

Note that EC8 amounts to averaging EC6 in space, previously introduced. No other 8-point energy-
preserving schemes can be found by making a different compactness assumption.

Momentum-conserving methods.
In order to reduce the complexity of the symbolic computations yielding momentum-conserving schemes on
the 8-point stencil, we use the approximations in (14) and the most compact approximations of Q̃2,

Q̃2 = µmµnu−1,0,

whereas all the other terms in F1 and G1 are approximated as in (5) and (6). The solution of

E(ÃQ̃2) ≡ 0,

gives two-parameter family of momentum-conserving methods Ã(λ, ν) in the form (13) with

F̃1 = − 1
6 (µnu−1,0)µn(u−2,0 + u−1,0 + u0,0) + (λ− 1)DnDmµmu−2,0

+ ν
{

(Dmµnu−2,0)Dmµnu−1,0 +
(
D2
mµnu−2,0

)
µn(u−2,0 + u0,0)

}
,

G̃1 =µmu−1,0,

where λ = O(∆x2,∆t2) and ν = O(∆x2,∆t2). Each of these schemes preserves

ÃQ̃2 =DmF̃2 +DnG̃2 = 0,

with

F̃2 = − 1
3 (µnu−1,0)(µmµnu−2,0)µmµnu−1,0 −

(
µ2
mµnu−2,0

)
DmDnµmu−2,0

+ λ
{

(µ2
mµnu−2,0)DmDnµmu−2,0 − (Dnµ

2
mu−2,0)Dmµmµnu−2,0

}
− ν(µmµnu−2,0)(µmµnu−1,0)D2

mµnu−2,0,

G̃2 = 1
2 (µmu−1,0)2 + 1

2µm

(
(Dmµmu−2,0)

2
)

+ λ(µmu−1,0)D2
mµmu−2,0.

We denote this two-parameter family of schemes by

MC8(α, β) = Ã(α∆2
max, β∆2

max), ∆max = max (∆x,∆t).
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10-point energy-conserving schemes
We now seek schemes that preserve local mass and energy on the 10-point stencil with A = −2, B = 2

and second-order approximations of characteristics, densities and fluxes at (0, 1/2), (0, 0) and (−1/2, 1/2),
respectively. In order to reduce the complexity of the symbolic calculation that solves

E(ÃQ̃3) = 0,

we use the following compact approximations of G1 and the quadratic term in Q3:

G̃1 = u0,0, ũ2 = ξ(u2
0,0 + u2

0,1) + (1− 2ξ)u0,0u0,1;

approximations of F1 and the linear term in Q3 are of the form (5) and (6). This gives a family of schemes,
Ã(λ), with

F̃1 = µmϕ−1,0, G̃1 = u0,0,

where
ϕ−1,0 = − 1

6

(
u2
−1,0 + u2

−1,1 + u−1,0u−1,1

)
−DmDnµmu−2,0 − λD2

mµnu−2,0

and λ = O(∆x2,∆t2). For any value of λ, the schemes preserve

ÃQ̃3 =DmF̃3 +DnG̃3 = 0,

with

Q̃3 = −2ϕ0,0, F̃3 = −ϕ0,0ϕ−1,0 + (Dnu0,0)Dnu−1,0 − 2λΘ[u], G̃3 = 1
3u

3
0,0 + λu0,0D

2
mu−1,0,

where Θ[u] is given in (15). We use the notation

EC10(α) = Ã(α∆2
max), ∆max = max (∆x,∆t).

The scheme EC10(0) amounts to the scheme derived by Koide and Furihata in [33] using a Discrete Variational
Derivative Method (DVDM).

3.2. Numerical tests
In this section we consider two benchmark problems in order to compare the schemes in Section 3.1 with

two known multisymplectic and mass-conserving schemes. These are the scheme proposed by Li and Sun in
[35],

LS = Dn(µmu−1,0) +Dm

(
− 1

2 (µnu−1,0)2 −DnDmµmu−2,0

)
= 0,

and the multisymplectic Preissman box scheme [5, 6, 35, 41, 46, 47],

PB = Dn

(
µ3
mµnu−2,−1

)
+Dm

(
µmµn

(
− 1

2 (µmµnu−2,−1)2 −DnDmu−2,−1

))
= 0.

The scheme LS is defined on the 8-point stencil, whereas PB is a two-step method defined on a wider stencil
consisting of 12 points.

For each of our numerical experiments, the computational time is similar for all of the schemes, so the
main difference is the error in the solution at the final time t = T , evaluated as

‖u− uexact‖
‖uexact‖

∣∣∣∣
t=T

. (16)

In all the experiments the BBM equation (8) is defined on the domain Ω = [a, b] × [0, T ] equipped with
periodic boundary conditions. Considering a grid withM points in space and N in time, we evaluate the error
in the conservation laws by measuring the error in the discrete global invariants:

Errα = ∆x max
j=1,...,N

∣∣∣∣∣
M∑
i=1

(
G̃α(xi, tj)− G̃α(xi, t1)

)∣∣∣∣∣ , α = 1, 2, 3. (17)
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Each discrete global invariant,
∑M
i=1 G̃α(xi, tj), is obtained by summing the corresponding conservation law

over the spatial grid. The resulting approximation of the integrals in (12) can also be obtained by combining
the composite trapezium quadrature rule and the second-order approximations of Gα obtained in Section 3.

If G̃2 and/or G̃3 are not defined for a scheme, we evaluate the corresponding error as

Err2 = ∆x max
j=1,...,N

∣∣∣∣∣ 12
M∑
i=1

(
v2
i,j + µm

(
(Dmvi−1,j)

2
)
− v2

i,0 − µm
(
(Dmvi−1,0)2

))∣∣∣∣∣ ,
Err3 = ∆x max

j=1,...,N

∣∣∣∣∣ 13
M∑
i=1

(
v3
i,j − v3

i,0

)∣∣∣∣∣ ,
with vi,j = ui,j for schemes defined on the 6-point or 10-point stencil, or vi,j = µmui−1,j otherwise. Subscripts
denote shifts from (x, t) = (a, 0), so ui,j ' u(a + i∆x, j∆t). We first consider (8) on Ω = [−40, 40] × [0, T ],
with the initial condition obtained from the single solitary wave solution over R:

uexact(x, t) = 3c sech2
(

1
2 (x+ ct− d)

)
. (18)

It is useful to start by examining how errors accumulate over a long time, so we first solve the problem
with T = 100, c = 0.5, d = 25, stepsizes ∆x = 0.05 and ∆t = 0.1. The top-left plot in Figure 2 shows that the
solution error (16) of both MC8(0, 0) and EC10(0) grows linearly with time; the solution errors for EC6, EC8

and MC6(0) also grow linearly, each at a similar rate to that of MC8(0, 0). By contrast, the solution error of
a numerical method that does not preserve invariants generally accumulates quadratically (see, e.g., [14, 15]).
Among the five schemes considered, EC10(0) is the one that performs best in long time simulations, as the
error accumulates at the slowest rate. The other plots in Figure 2 show the error in the conserved invariants
at t = 0, 0.1, . . . , 100; this is due only to round-off errors. The error in the invariants conserved by MC8(0, 0)
and EC10(0) does not show any obvious drift due to accumulation of round-off errors; the same is true for
EC8. Linear numerical drift can be seen for EC6, and MC6(0) has a similar drift.

To show that the choice of parameters can affect solution accuracy significantly, the same problem is now
solved with c = 5, T = 5, and ∆x = ∆t = 0.05. The solution errors for MC6(α1), MC8(α2, β2) and EC10(α3)
are minimized by choosing α1 = 8, (α2, β2) = (−4, 3.3) and α3 = −32.

Table 1 compares the schemes MC and EC introduced in Section 3.1, the LS and the PB schemes. All of
the conservative schemes described in Section 3.1 are able to preserve two discrete invariants (up to rounding
errors). The solution error is at least comparable with the one given by the multisymplectic schemes but it is
significantly smaller when choosing the optimal values of the free parameters. In particular, EC10(−32) is the
most accurate scheme.

In Figure 3, the upper plot shows the initial condition (dashed line) and the numerical solution given by
method EC10(−32) at the final time T = 5 (solid line). The lower plot shows the exact solution and the
numerical approximations given by EC10(−32), LS and the Koide & Furihata (EC10(0)) schemes around the
top of the wave. The solution of PB is not shown, as it is very close to the solution of LS. The scheme
EC10(−32) gives the closest approximation to the exact solution.

As a second benchmark problem, we study the interaction between two solitary waves. It is worth men-
tioning that the solitary wave (18) is not a soliton; after interaction with another solitary wave, an oscillatory
tail is generated and the solitary waves are not unscathed (see, e.g., [4, 39]).

We consider equation (8) with Ω = [−100, 100]× [0, 15] and the initial condition

u(x, 0) = 3c1sech2
(

1
2 (x− d1)

)
+ 3c2sech2

(
1
2 (x− d2)

)
,

with
c1 = 6, c2 = 2, d1 = 40, d2 = 15.

The numerical solution of the Koide & Furihata scheme (EC10(0)) with ∆x = 0.05 and ∆t = 0.003 will be
treated as the reference exact solution1; we compare this with the solutions of the various schemes on a much
coarser grid: ∆x = 0.2 and ∆t = 0.015.

1Similar results are obtained by using LS or PB on the same fine grid to compute a reference solution.
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Figure 2: Solution and invariants error of different schemes.

The schemes MC6(α1), MC8(α2, β2) and EC10(α3) each minimize their solution error when α1 = 0.42,
(α2, β2) = (0.3,−0.04) and α3 = −0.4667.

In Table 2 we compare the performance of the EC, MC and multisymplectic schemes, examining the errors
in conservation laws, solution and phase shift of the fastest wave at the final time T = 15, defined as

Errφ = (xmax − x̃max)|t=15 ;

here the locations of the peak of the fastest wave in the reference solution and the numerical solution are
denoted by xmax and x̃max, respectively.

Table 2 shows that each MC and EC scheme preserves the discretization of two invariants in (12) to machine
accuracy. The scheme MC6(0.42) gives the smallest solution error.

The upper part of Figure 4 shows the initial condition (dashed line) and the numerical solution given by
method MC6(0.42) at time T = 15 (solid line). The lower part of Figure 4 and the upper part of Figure 5 show
the reference solution and the numerical solutions given by MC6(0.42), LS, PB and the scheme of Koide &
Furihata (EC10(0)) around the top of the two waves. The zone around the top of the faster wave is where the
most obvious differences between schemes occur. The two waves are approximated best overall by MC6(0.42),
but PB gives a slightly better approximation of the oscillatory tail generated after the interaction of the two
waves (see the lower part of Figure 5).

4. Nonlinear Schrödinger equation

In this section we develop schemes for the nonlinear Schrödinger (NLS) equation with complex variable ψ:

iψt + ψxx + |ψ|2ψ = 0, (x, t) ∈ Ω ≡ [a, b]× [0,∞). (19)

10



−40 −30 −20 −10 0 10 20 30 40
−2

0

2

4

6

8

10

12

14

16

x

u

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
14

14.2

14.4

14.6

14.8

15

x

u

EC10(−32)
LS
EC10(0)
Exact solution

Figure 3: Solitary wave problem for the BBM equation. Top: Initial condition (dashed line) and solution of
EC10(−32) at time T = 5, with ∆x = ∆t = 0.05 (solid line). Bottom: Top of the single wave at time T = 5; exact
profile (solid line) and solutions of EC10(−32) (circles), LS (inverted triangles) and Koide & Furihata scheme,
EC10(0) (crosses). Markers are shown only at every fourth computed point.

11



−54 −53.5 −53 −52.5 −52 −51.5 −51 −50.5 −50 −49.5
10

11

12

13

14

15

16

17

18

x

u

Exact solution
MC6(0.42)
LS
PB
EC10(0)

Figure 4: Two-wave problem for the BBM equation. Top: Initial condition (dashed line) and solution of MC6(0.42)
at time T = 15 (solid line). Bottom: Magnification around zone (a); Reference solution (bold line) and solutions of
MC6(0.42) (circles), LS (inverted triangles), PB (triangles) and EC10(0) (crosses); markers at every second point.

12



−13.6 −13.4 −13.2 −13 −12.8 −12.6 −12.4 −12.2 −12 −11.8 −11.6
5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

6.1

x

u

Exact solution
MC6(0.42)
LS
PB
EC10(0)

10 12 14 16 18 20 22 24

−8

−6

−4

−2

0

2

·10−2

x

u

Exact solution
MC6(0.42)
LS
PB
EC10(0)

Figure 5: Two-wave problem for the BBM equation. Reference solution (bold line) and solutions of MC6(0.42)
(circles), LS (inverted triangles), PB (triangles) and EC10(0) (crosses) at time T = 15. Top: magnification of zone
(b) in Figure 4. Bottom: magnification of zone (c) in Figure 4; markers are at every tenth point.

13



Table 1: Solitary wave problem; ∆x = ∆t = 0.05.
Method Err1 Err2 Err3 Error in the solution

EC6 1.49e-13 0.0035 8.64e-12 0.0375
MC6(0) 2.06e-13 1.19e-12 0.0199 0.0445
MC6(8) 2.42e-13 1.02e-12 0.0428 0.0062

EC8 2.27e-13 0.0042 7.73e-12 0.0375
MC8(0, 0) 2.91e-13 1.76e-12 0.0162 0.0443

MC8(−4, 3.3) 2.13e-13 1.65e-12 0.1857 0.0043
Koide & Furihata; EC10(0) 1.71e-13 0.0034 7.28e-12 0.0356

EC10(−32) 2.34e-13 0.0030 6.82e-12 0.0037
LS 1.99e-13 2.63e-04 0.0100 0.0415
PB 1.49e-13 0.1379 1.3841 0.0434

Table 2: Two solitary wave problem for the BBM equation; ∆x = 0.2, ∆t = 0.015.
Method Err1 Err2 Err3 Solution error Errφ

EC6 2.27e-13 0.2270 1.55e-11 0.1251 -0.3
MC6(0) 2.70e-13 2.96e-12 7.8731 0.1112 -0.3

MC6(0.42) 2.56e-13 1.82e-12 7.7930 0.0038 0.1
EC8 3.41e-13 0.6306 1.91e-11 0.1251 -0.3

MC8(0, 0) 2.56e-13 2.16e-12 4.1856 0.1081 -0.3
MC8(0.3,−0.04) 3.55e-13 3.52e-12 7.5081 0.0097 0.1

Koide & Furihata; EC10(0) 2.70e-13 0.2467 1.55e-11 0.0256 -0.1
EC10(−0.4667) 2.98e-13 0.2463 2.00e-11 0.0125 0.1

LS 2.98e-13 0.5514 9.8587 0.0398 0.1
PB 1.28e-13 0.0983 0.6815 0.0630 -0.1

Setting ψ = u+ iv, with u, v ∈ R, (19) reduces to the following system of equations:

A = (A[u, v], A[−v, u]) = 0, A[a, b] ≡ at + bxx + (a2 + b2)b, (x, t) ∈ Ω. (20)

The NLS equation has infinitely many independent conservation laws [20]. The first three are:

AQ1 = Dx(F1) +Dt(G1) = Dx (2uvx − 2uxv) +Dt(u
2 + v2) = 0, (21)

AQ2 = Dx(F2)+Dt(G2) = Dx

(
u2
x + v2

x + utv − uvt + 1
2 (u2 + v2)2

)
+Dt(uvx−uxv) = 0, (22)

AQ3 = Dx(F3) +Dt(G3) = Dx (−2uxut − 2vtvx) +Dt

(
u2
x + v2

x − 1
2 (u2 + v2)2

)
= 0; (23)

their characteristics are, respectively,

Q1 = (2u,−2v)T , Q2 = (2vx, 2ux)T , Q3 = (−2vt,−2ut)
T .

Integrating these conservation laws in space, subject to conditions that give no boundary contributions, one
obtains the global invariants∫ (

u2 + v2
)

dx,

∫
(uvx − uxv) dx,

∫ (
u2
x + v2

x − 1
2 (u2 + v2)2

)
dx,

which represent charge, momentum and energy, respectively [20]. The NLS system (20) can be written in
Hamiltonian form, (

du/dt
dv/dt

)
=

(
0 1
−1 0

)(
δH/δu
δH/δv

)
,

with the Hamiltonian functional
H = 1

2

∫
G3 dx. (24)
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4.1. Compact conservative methods for the NLS equation
In this section we develop compact methods that preserve multiple local conservation laws of the NLS

equation. We choose A = −1, B = 1 in Figure 1 and seek second-order approximations of characteristics,
densities and fluxes at (0, 1/2), (0, 0) and (−1/2, 1/2), respectively.

The schemes obtained using the strategy described in Section 2 depend on some free parameters that are
O(∆x2,∆t2). The free parameters can be chosen to minimize the solution error for a given problem, but no
choice gives a higher-order scheme.

3-parameter family of local energy-conserving methods
Charge- and energy-conserving schemes are found by specifying the approximations of the higher-order

derivatives and using compact discretizations of the characteristics and the linear factors of the nonlinear
terms in (20). Hence, we consider discretizations of the form

Ã = (Ã1[u, v], Ã2[u, v]) = 0,

where

Ã1[u, v] = ũt +D2
mµnv−1,0 + (ũ2 + ṽ2)µnv0,0, Ã2[u, v] = −ṽt +D2

mµnu−1,0 + (û2 + v̂2)µnu0,0,

ũt and ṽt are of the form (5) and ũ2, ṽ2, û2 and v̂2 are of the form (6). The discrete characteristics are

Q̃1 = (2µnu0,0,−2µnv0,0)T , Q̃3 = (−2Dnv0,0,−2Dnu0,0)T .

Solving the conditions
E(ÃQ̃1) = 0, E(ÃQ̃3) = 0

yields a 3-parameter family of methods, defined by

Ã(λ, η, ν) = (Ã[u, v], Ã[−v, u])T ,

where

Ã[a, b] =Dn(a0,0 + λD2
ma−1,0) +D2

mµnb−1,0

+
[
µn(a2

0,0 + b20,0) + ηD2
mµn(a2

−1,0 + b2−1,0) + νDmDnµm(a2
−1,0 + b2−1,0)

]
µnb0,0,

and λ, η and ν are O(∆x2,∆t2). The scheme Ã(λ, η, ν) has the following discrete local conservation laws for
charge and energy:

ÃQ̃1 = DmF̃1 +DnG̃1 = 0, ÃQ̃3 = DmF̃3 +DnG̃3 = 0,

where

F̃1 = 2(µmµnu−1,0)(Dmµnv−1,0)− 2(Dmµnu−1,0)(µmµnv−1,0) + λ(Θ[u, u] + Θ[v, v]),

G̃1 =u2
0,0 + v2

0,0 + λ(u0,0D
2
mu−1,0 + v0,0D

2
mv−1,0), (25)

F̃3 = − 2(Dmµnu−1,0)(Dnµmu−1,0)− 2(Dmµnv−1,0)(Dnµmv−1,0)

+ η {(Ψ[u, u]−Ψ[v, v])(Θ[u, u]−Θ[v, v]) + (Ψ[u, v]−Ψ[v, u])(Θ[u, v] + Θ[v, u])}
− 2ν(µnu0,0Dnu0,0 + µnv0,0Dnv0,0)(µnu−1,0Dnu−1,0 + µnv−1,0Dnv−1,0),

G̃3 =µm
(
(Dmu−1,0)2 + (Dmv−1,0)2

)
− 1

2 (u2
0,0 + v2

0,0)
{
u2

0,0 + v2
0,0 + ηD2

m(u2
−1,0 + v2

−1,0)
}
,

and

Θ[a, b] = 1
2 {(µmµna−1,0)DmDnb−1,0 − (Dmµna−1,0)Dnµmb−1,0} , (26)

Ψ[a, b] = 2µm(a−1,0b−1,1)−∆x2(Dma−1,0)Dmb−1,1.

None of these schemes preserves the conservation law for momentum.
In the numerical tests section, for simplicity, we restrict attention to the schemes with η = ν = 0, as these

have the most compact approximation of the nonlinear term. This gives a one-parameter family

EC6(α) = Ã(α∆2
max, 0, 0), ∆max = max (∆x,∆t).

The scheme EC6(0) was introduced by Delfour et al. in [18] by applying a Crank–Nicolson type method to
a simple space discretization. In [36], the same scheme is obtained by using a complex discrete variational
derivative method.
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1-parameter family of local momentum-conserving methods
We now derive schemes that preserve the local conservation laws for charge (21) and momentum (22). To

further simplify the symbolic solution of

E(ÃQ̃1) = 0, E(ÃQ̃2) = 0,

we discretize the characteristics as follows:

Q̃1 = (2µnu0,0,−2µnv0,0)T , Q̃2 = (2Dmµmµnv0,0, 2Dmµmµnu0,0)T .

This yields a one-parameter family of methods,

Ã(λ) = (Ã[u, v], Ã[−v, u])T ,

where

Ã[a, b] =Dn(a0,0 + λD2
ma−1,0) +D2

mµnb−1,0

+
[
µna0,0

(
µna0,0 + 1

2∆x2D2
mµna−1,0

)
+ µnb0,0

(
µnb0,0 + 1

2∆x2D2
mµnb−1,0

)]
µnb0,0,

and λ = O(∆x2,∆t2). The discretized conservation laws are

ÃQ̃1 = DmF̃1 +DnG̃1 = 0, ÃQ̃2 = DmF̃2 +DnG̃2 = 0, (27)

with F̃1 and G̃1 as defined in (25) and

F̃2 = (Dmµnu−1,0)2 + (Dmµnv−1,0)2 + (µmµnv−1,0)Dnµmu−1,0 − (µmµnu−1,0)Dnµmv−1,0

+ 1
2{(µnu0,0)µnu−1,0 + (µnv0,0)µnv−1,0}2

+
(
λ− 1

4∆x2
)
{(DmDnu−1,0)Dmµnv−1,0 − (DmDnv−1,0)Dmµnu−1,0} ,

G̃2 =u0,0(Dmµmv−1,0)−v0,0(Dmµmu−1,0)+λ
{
(D2

mu−1,0)Dmµmv−1,0−(D2
mv−1,0)Dmµmu−1,0

}
.

We denote these schemes by

MC6(β) = Ã(β∆2
max), ∆max = max (∆x,∆t).

Conservative discretizations of the Ablowitz–Ladik equation
One can find other compact schemes that preserve two conservation laws of the NLS equation by discretizing

the well-known Ablowitz–Ladik model,

(AL[U, V ], AL[−V,U ])T = 0, AL[a, b] = da0/dt+D2
mb−1 + (a2

0 + b20)(b1 + b−1)/2,

where Ui(t) ≈ u(xi, t) and Vi(t) ≈ v(xi, t). Therefore, we examine discretizations of the form

Ã = (Ã[u, v], Ã[−v, u]),

where, for second-order accuracy,

Ã[a, b] =Dna0,0 +D2
mµnb−1,0 +

{
λ(a2

0,0 + a2
0,1)+(1−2λ)a0,0a0,1+θ(b20,0 + b20,1)+(1−2θ)b0,0b0,1

}
× {φ(b1,1 + b−1,0) + (1/2− φ)(b−1,1 + b1,0)}.

We consider the most general approximations of the characteristics, whose components are of the form (5).
By solving

E(ÃQ̃1) = 0, E(ÃQ̃2) = 0, (28)

we find three different schemes. The first is

MC-AL = Ã = (Ã[u, v], Ã[−v, u])T = 0
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with

Ã[a, b] =Dna0,0 +D2
mµnb−1,0 + 1

2

{
(µna0,0)2 + (µnb0,0)2

}
µn(b−1,0 + b1,0).

The local conservation laws of this scheme are of the form (27) with

Q̃1 = (µn(u−1,0 + u1,0), µn(v−1,0 + v1,0))
T
,

F̃1 = 2(µmµnu−1,0)Dmµnv−1,0 − 2(µmµnv−1,0)Dmµnu−1,0 −∆x2(Θ[u, u] + Θ[v, v]),

G̃1 = 1
2 {u0,0(u−1,0 + u1,0) + v0,0(v−1,0 + v1,0)} ,

Q̃2 = (2Dmµmµnu−1,0, 2Dmµmµnv−1,0)
T
,

F̃2 = (Dnµmu−1,0)µnµmv−1,0 − (Dnµmv−1,0)µmµnu−1,0 + (Dmµnu−1,0)2 + (Dmµnv−1,0)2

+ 1
2{(µnu−1,0)2 + (µnv−1,0)2}{(µnu0,0)2 + (µnv0,0)2}

+ 1
4∆x2 {(Dmµnu−1,0)DmDnv−1,0 − (Dmµnv−1,0)DmDnu−1,0} ,

G̃2 =u0,0Dmµmv−1,0 − v0,0Dmµmu−1,0,

where Θ[a, b] is defined in (26). This scheme does not preserve the energy conservation law.
The other two schemes that satisfy (28) are

M/EC-AL(s) ≡ Ã(s) = (Ã[u, v], Ã[−v, u]) = 0, s ∈ {0, 1},

with

Ã[a, b] = Dna0,0 +D2
mµnb−1,0 + 1

2µn(a2
0,0 + b20,0)(b−2s+1,1 + b2s−1,0).

For each of these schemes, there is a Q̃3 that satisfies

E(Ã(s)Q̃3) = 0.

Therefore they have three discrete conservation laws, as follows:

Q̃1 = (u−2s+1,1 + u2s−1,0, v−2s+1,1 + v2s−1,0)
T
,

F̃1 = (u−s,1 + us−1,0)Dmµnv−1,0 − (v−s,1 + vs−1,0)Dmµnu−1,0

−∆x2(Θ[u, u] + Θ[v, v]) +
(−1)s

2
∆x∆t {(Dnu−1,0)Dnu0,0 + (Dnv−1,0)Dnv0,0} ,

G̃1 = 1
2 {u0,0(u1,0 + u−1,0) + v0,0(v1,0 + v−1,0)}

+
(−1)s

2
∆x∆t

{
(Dmµmu−1,0)D2

mv−1,0 − (Dmµmv−1,0)D2
mu−1,0

}
,

Q̃2 =

(
1

∆x
(u1,1−s − u−1,s),

1

∆x
(v1,1−s − v−1,s)

)T
,

F̃2 = 1
2 {(v−s,1 + vs−1,0)Dnµmu−1,0 − (u−s,1 + us−1,0)Dnµmv−1,0}
+ (Dmµnu−1,0)2 + (Dmµnv−1,0)2 + 1

2{(µnu−1,0)2 + (µnv−1,0)2}{(µnu0,0)2 + (µnv0,0)2}

+Ωs[u, v]−Ωs[v, u]+Λs[u, u]+Λs[u, v]+Λs[v, u]+Λs[v, v]− ∆t

∆x
(−1)s(Θ[u, u]−Θ[v, v]) ,

G̃2 =u0,0Dmµmv−1,0 − v0,0Dmµmu−1,0 +
∆t

8∆x
(−1)s

{
(u2

0,0 + v2
0,0)(u2

−1,0 + u2
1,0 + v2

−1,0 + v2
1,0)

+2(u−1,0 + u1,0)D2
mu−1,0 + 2(v−1,0 + v1,0)D2

mv−1,0

}
,

Q̃3 =

(
− 2

∆t
(v−2s+1,1 − v2s−1,0),− 2

∆t
(u−2s+1,1 − u2s−1,0)

)T
,

F̃3 = − 2

∆t
{(u−s,1 − us−1,0)Dmµnu−1,0 + (v−s,1 − vs−1,0)Dmµnv−1,0} − Φs[u, v] + Φs[v, u]

− ∆x

2∆t
(−1)s

{
(u2
s−1,0 + v2

s−1,0)µn(u2
−s,0 + v2

−s,0) + (u2
−s,1 + v2

−s,1)µn(u2
s−1,0 + v2

s−1,0)
}
,
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G̃3 = − 1
4 (u2

0,0 + v2
0,0)(u2

−1,0 + u2
1,0 + v2

−1,0 + v2
1,0) + (Dmu−1,0)Dmu0,0 + (Dmv−1,0)Dmv0,0

+
2∆x

∆t
(−1)s {v0,0Dmµmu−1,0 − u0,0Dmµmv−1,0} ,

where Θ[a, b] is defined in (26) and

Ωs[a, b] = 1
4 (−1)s∆x∆t

{
(Dnµma−1,0)DmDnb−1,0 + 1

4∆x2(Dmµna−1,0)DmDnb−1,0

}
,

Λs[a, b] = 1
8 (−1)s∆x∆t

{
µmµn(a2

−1,0)DmDn(b2−1,0)−Dnµm(a2
−1,0)Dmµn(b2−1,0)

}
+ 1

8∆t2
{
µn(a2

−1,0)(Dnb0,0)2 + µn(b20,0)(Dna−1,0)2
}
,

Φs[a, b] =
∆x

∆t
(−1)s {bs−1,0Dna−s,0 − a−s,1Dnbs−1,0} .

Although these schemes are second-order accurate and preserve a second-order approximation of the local
charge conservation law, the local truncation error in Q̃2, F̃2 and G̃2 has terms that are O (∆t/∆x). On the
other hand, terms that are O (∆x/∆t) appear in the local truncation error of Q̃3, F̃3 and G̃3. So although
these schemes have three discrete conservation laws, at most one of the conservation laws of momentum and
energy converges to the continuous analogue, due to the incompatibility of the requirements ∆x � ∆t and
∆t� ∆x, respectively. The M/EC-AL schemes with ∆t� ∆x are the only local mass and energy conserving
schemes that can be obtained as a one-step time discretization of the Ablowitz–Ladik system.

4.2. Numerical Tests
We now consider two different benchmark problems for (20) subject to periodic boundary conditions, to

compare the schemes developed in the previous section with other schemes from the literature. The multisym-
plectic scheme introduced in [12], which is equivalent to the Preissman box scheme, amounts to

MS = (MS[u, v],MS[−v, u]) = 0,

with
MS[a, b] = Dnµ

2
ma−1,0 +D2

mµnb−1,0 + µm
{[

(µmµna−1,0)2 + (µmµnb−1,0)2
]
µmµnb−1,0

}
.

A backward error analysis of this method can be found in [32].
In [12], the authors use a method of lines (MoL) approach to derive symplectic integrators of the NLS

equation. One of these is based on the following semi-discretization of the Hamiltonian functional (24)

H(t) = 1
2∆x

∑
i

{
UiD

2
mUi−1 + ViD

2
mVi−1 − 1

2 (U2
i + V 2

i )2
}
, (29)

where Ui ≈ u(xi, t) and Vi ≈ v(xi, t), yielding the system of ODEs(
dUi/dt
dVi/dt

)
=

(
0 1
−1 0

)(
dH/dUi
dH/dVi

)
. (30)

The second-order symplectic integrator proposed in [12] is then obtained by applying the implicit midpoint
rule to the semidiscretization (30). This scheme, which we call MoL-M, is equivalent to one introduced earlier
by Sanz-Serna and Verwer in [42]; it conserves all quadratic invariants of (30), including the global charge,
∆x
∑
i(U

2
i + V 2

i ). Finally, we apply a Hamiltonian Boundary Value Method with 2 stages and degree 1,
denoted HBVM(2, 1), to (30). More generally, for any k ≥ s, HBVM(k, s) is a Runge-Kutta method of order
2s that exactly preserves polynomial Hamiltonians of degree at most 2k/s; see [3, 8] for details on this class
of methods and their application to the NLS equation. We denote the resulting scheme by MoL-HBVM(2,1);
it preserves the Hamiltonian (29) and the global energy G̃3 = 2H.

For each benchmark problem, the computational cost is roughly the same for all of the schemes, so the
comparisons are based mainly on the solution error at the final time t = T , evaluated as√

‖u− uexact‖2 + ‖v − vexact‖2
‖uexact‖2 + ‖vexact‖2

∣∣∣∣∣
t=T

. (31)
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For a grid with M nodes in space and N nodes in time, the error in the conservation laws is

Errα = ∆x max
j=1,...,N

∣∣∣∣∣
M∑
i=1

(
G̃α(xi, tj)− G̃α(xi, t1)

)∣∣∣∣∣ , α = 1, 2, 3.

Whenever any of the discrete densities G̃1, G̃2 and G̃3 are undefined by a scheme, we evaluate the corresponding
error as

Err1 = ∆x max
j=1,...,N

∣∣∣∣∣
M∑
i=1

{
(u2
i,j + v2

i,j)− (u2
i,0 + v2

i,0)
}∣∣∣∣∣ ,

Err2 = ∆x max
j=1,...,N

∣∣∣∣∣
M∑
i=1

{ui,jDmµmvi−1,j−vi,jDmµmui−1,j−ui,0Dmµmvi−1,0+vi,0Dmµmui−1,0}

∣∣∣∣∣ ,
Err3 = ∆x max

j=1,...,N

∣∣∣∣∣
M∑
i=1

{
µm
(
(Dmui−1,j)

2 + (Dmvi−1,j)
2
)
− 1

2 (u2
i,j + v2

i,j)
2

−µm
(
(Dmui−1,0)2 + (Dmvi−1,0)2

)
+ 1

2 (u2
i,0 + v2

i,0)2
} ∣∣∣∣∣,

with ui,j ' u(a+ i∆x, j∆t).
The first benchmark problem is defined on Ω = [−20, 20]× [0, T ] with the initial condition

ψ(x, 0) =
√

2 sech(x− d) exp{ic(x− d)}.

The exact solution is

ψ(x, t) =
√

2 sech(x− d− 2ct) exp{ic(x− d)− i(c2 − 1)t)},

and |ψ(x, t)| is a single soliton. We set d = −5 and use step lengths ∆x = 0.1 and ∆t = 0.02.
To see how the accuracy varies over a long time, we choose c = 0.05 and T = 100 and evaluate the solution

error at t = 5, 10, . . . , 100. The plot on the top-left of Figure 6 shows that for EC6(0) and MC6(0), this error
accumulates linearly with respect to t, as it is to be expected when the numerical method preserves invariants
[14, 17]. The error given by each of M/EC-AL(0), M/EC-AL(1) and MC-AL also grows linearly, at a similar
rate to that of MC6(0). By contrast, the error of the energy conserving method EC6(0) accumulates far more
slowly. The remaining plots in Figure 6 show the error in the invariants of EC6(0), MC6(0), and M/EC-AL(1)
at t = 0, 0.1, . . . , 100. Among the five schemes considered, only EC6(0) and MC-AL do not show a visible drift
in the error of any of the conserved invariants.

To illustrate the parameter dependence, we now set c = 2.5 and T = 2; the optimal values of the free
parameters for EC6(α) and MC6(β) are α = 0.132 and β = 0.043, respectively.

Table 3 shows that all the schemes introduced in the previous section preserve two conservation laws. The
M/EC-AL schemes preserve three invariants, but as ∆x > ∆t, we do not expect the discrete energy to be a
good approximation of the continuous one.

All of the new schemes compare well with existing methods; some do much better, the most accurate being
EC6(0.132). The upper part of Figure 7 shows the modulus of the initial condition and the numerical solution
given by EC6(0.132) at time T = 2. The lower plot shows the exact solution and the numerical solutions
given by EC6(0.132), MoL-M and MS, close to the top of the soliton. We do not show the solutions from
MoL-HBVM(2,1) and EC6(0), as they almost overlap the one given by MoL-M. The solution of EC6(0.132) is
by far the closest to the exact solution and matches both the amplitude and phase of the soliton well.

The second benchmark problem is a breather solution on (x, t) ∈ [−5, 5]× [0, 60], with initial condition [31]

ψ(x, 0) =
1√
2

{
1 + 0.1 cos

(
x√
2

)}
. (32)

The reference solution is obtained by applying the sixth-order energy-conserving method HBVM(6,3), with
∆t = 0.05, to the system of ODEs (30) resulting from a spatial discretization with step ∆x = 0.0125. The
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Figure 6: Solution error and invariants error of different schemes.

modulus of the solution obtained is shown in Figure 8 and exhibits the expected quasi-periodic (in time)
breather motion (see [31]). We compare this with the various second-order schemes defined on the much
coarser grid with ∆x = 0.05 and ∆t = 0.2. On this grid, the values α = 0.052 and β = 0.371 minimize the
solution error of EC6(α) and MC6(β).

Table 4 shows that every scheme preserves the momentum to machine accuracy. This is a consequence of
the spatial symmetry of the schemes and the solution. Again, M/EC-AL schemes preserve all three discrete
invariants (up to rounding errors), but as ∆t > ∆x, we cannot expect the discrete momentum to approximate
the continuous momentum accurately.

The accuracy of all the schemes discussed in the previous section and listed in Table 4 is at least comparable
to existing methods. The local energy-conserving schemes are particularly accurate, the best being EC6(0.052).

Figure 9 shows the modulus (top) and phase, θ = arctan (v/u), (bottom) of the reference solution and the
numerical solutions given by EC6(0.052), MoL-M and MoL-HBVM(2,1). The solution of MS is not shown, as
it almost overlaps the solution of MoL-M. The new scheme reproduces both the oscillations of the breather
motion and the phase of the complex-valued solution particularly well.

The upper plot in Figure 10 compares the modulus of the exact solution and the numerical solutions given
by EC6(0.052) and by the Delfour et al. method (EC6(0)) around the maximum, where the difference between
the two solutions is largest. Note that EC6(0) reproduces the modulus of the solution for x ∈ [−0.6, 0.6] (the
error is ≈ 0.0041) better than EC6(0.052) does (error ≈ 0.0221). Nevertheless, for x ∈ [−0.6, 0.6], the phase
error of EC6(0) (≈ 0.0818) is much larger than that of EC6(0.052) (≈ 0.0025). This can be seen in the lower
plot in Figure 10. Consequently, in accordance with the results in Table 4, EC6(0.052) approximates the real
and imaginary parts of the solution best, as shown in Figure 11.
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Figure 7: Single soliton problem for the NLS equation. Top: Modulus of the initial condition (dashed line) and of
the solution of EC6(0.132) with ∆x = 0.1 and ∆t = 0.02 over [−20, 20] at time T = 2 (solid line). Bottom: Top of
the soliton at time T = 2. Modulus of the reference solution (bold line) and the solutions of EC6(0.132) (circles),
MoL-M (squares), and MS (diamonds). Markers are at every second point.
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Table 3: Single soliton problem for the NLS equation; ∆x = 0.1 and ∆t = 0.02.
Method Err1 Err2 Err3 Error in the solution

Delfour et al.; EC6(0) 1.11e-14 0.0032 7.11e-14 0.1887
EC6(0.132) 1.07e-14 1.86e-04 7.46e-14 0.0083

MC6(0) 9.33e-15 1.42e-14 0.0016 0.0952
MC6(0.043) 8.88e-15 2.31e-14 4.62e-04 0.0741
M/EC-AL(1) 8.44e-15 2.13e-14 2.13e-13 0.0729
M/EC-AL(0) 9.77e-15 1.42e-14 1.42e-13 0.1267

MC-AL 1.07e-14 2.13e-14 8.92e-05 0.0765
MS 6.63e-04 0.0016 0.0077 0.3023

MoL - M 1.11e-14 0.0025 0.0023 0.1785
MoL - HBVM(2,1) 9.93e-05 0.0032 7.11e-14 0.1817

Figure 8: NLS with initial condition (32): modulus of the reference solution.

5. Conclusions

The strategy introduced in [22] for efficiently deriving bespoke finite difference methods that preserve
conservation laws has been applied, for the first time, to a PDE not in Kovalevskaya form (the BBM equation)
and to a system of PDEs (the NLS equation in real form). New parametrized families of conservative numerical
schemes have been found for each of these equations. For the NLS equation, we have also derived new time
integrators of the Ablowitz–Ladik model that preserve multiple conservation laws.

For various benchmark problems, we have found members in each new family of schemes that give very
accurate solutions compared to other schemes from the literature. More generally, free parameters in families of
bespoke schemes can be chosen to reduce the error in other geometric features, including further conservation
laws (see [22, 23]).

There are several ways to extend the approach described in this paper. One is to discretize in space
only (reducing compactness restrictions) and combine this with known conservative time integrators. We
are currently working to develop high-order schemes this way. We are also investigating generalizations to
conservation laws of non-polynomial PDEs.
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Figure 9: NLS solution with initial condition (32) at time T = 60, with ∆x = 0.05 and ∆t = 0.2. Modulus (top)
and phase (bottom) of reference solution (bold line) and solutions of EC6(0.052) (circles), MoL-M (squares), and
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Table 4: NLS equation with initial condition (32); ∆x = 0.05 and ∆t = 0.2.
Method Err1 Err2 Err3 Error in the solution

Delfour et al.; EC6(0) 8.88e-15 3.43e-15 1.33e-14 0.0765
EC6(0.052) 1.15e-14 4.83e-15 1.29e-14 0.0231

MC6(0) 1.07e-14 9.90e-15 0.0471 0.6121
MC6(0.371) 7.99e-15 7.04e-15 0.0515 0.0966
M/EC-AL(1) 1.24e-14 1.42e-14 1.18e-14 0.1062
M/EC-AL(0) 7.99e-15 2.13e-14 1.11e-14 0.1062

MC-AL 8.88e-15 1.01e-14 0.0523 0.5902
MS 0.0023 2.77e-15 0.0498 0.5924

MoL - M 8.88e-15 9.71e-15 0.0424 0.5806
MoL - HBVM(2,1) 0.0259 1.65e-14 6.84e-14 0.5123
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