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Error analysis of finite difference/collocation method for the nonlinear

coupled parabolic free boundary problem modeling plaque growth in the

artery

F. Nasresfahani · M. R. Eslahchi

Abstract The main target of this paper is to present a new and efficient method to solve a nonlinear

free boundary mathematical model of atherosclerosis. This model consists of three parabolics, one

elliptic and one ordinary differential equations that are coupled together and describe the growth of a

plaque in the artery. We start our discussion by using the front fixing method to fix the free domain and

simplify the model by changing the mix boundary condition to a Neumann one by applying suitable

changes of variables. Then, after employing a nonclassical finite difference and the collocation method

on this model, we prove the stability and convergence of methods. Finally, some numerical results are

considered to show the efficiency of the method.
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1 Introduction

There are many phenomena that we have questions about and want to describe them or their be-

haviours. To find an answer we collect data and multiple sources of data support a rapid knowledge.
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However, our ability to analyze and interpret this data lags far behind data generation and storage

capacity. The question that arises here is how can mathematics help us to solve this problem? The

answer to this question is that mathematics helps us in this issue by modeling as described in Figure

1 [33]. The first recognizable models were numbers since about 30.000 BC [41]. The development of

mathematical models continued in various fields. By the invention of calculus by Newton and Leibniz in

1671, differential equations came into existence [34], and then, partial differential equations stand out in

1719 by Nicolaus Bernoulli [5]. Early 16th century was the beginning of the modern interaction between

mathematics and biology duo to the work of William Harvey [24]. Thereafter, until the 20th century,

biological modeling continued to advance by the work of Hardy in 1908 in population genetics [23], Yula

in 1925 in birth and death process [48], Luria and Delbruck in 1943 in estimating bacterial mutation

rates [31]. The question that matters here is what biological issues to biological scientists are more

valuable and selected for modeling. In reply to the question, according to the authors’ consideration,

topics of the greatest importance to them are those that affect the human community more, which is the

factor that causes a tendency to model for a more detailed examination of these issues. Due to human

society conditions, studying diseases is the most important area of study. According to the ICD 101 [35],

the most important diseases that cause of death in the world are HIV [10,32], Tumor [9,25,37,40], Can-

cer [2, 11, 17, 45], Cardiovascular diseases (especially Atherosclerosis) [6, 7, 13, 18, 22, 27, 47] and Wound

healing [16,28,38,46] respectively. As described above, the heart attack or stroke that happens because

of atherosclerosis diseases is one of the third leading cause of death in the world [35]. There are two

various perspectives to research in this area, ”modeling” and ”numerical analysis” point of view. In the

case of modeling, the important point to note here is that there are different perspectives in studying

Atherosclerosis [36, 42]. A very important perspective in the area of studying this disease is to study

mathematical modeling in the forms of ordinary differential equation (ODE) and partial differential

equation (PDE), that are distinguished from each other by the various factors such as choosing the

region and the boundary, elements involved in biologically issues, boundary conditions and etc. For

instance, in 2009 a 3-D nonlinear parabolic system of PDEs is considered as a mathematical model

of Atherosclerosis involving the local blood flow dynamics by Calvez [6]. In 2010 Calvez extended his

1 International Classification of Diseases
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previous work [7]. In both articles, Calvez assumed the artery to be an irregular 3-D cylinder. Fried-

man in 2014, 2015 presented mathematical models of plaque growth in the artery, which parabolic

nonlinear 2-D system of PDEs with mixed boundary conditions and free boundary are considered for

modeling [19,22]. It is worth noting that the difference between these models is that in [19] the artery is

assumed to be a very long circular cylinder but in [22] the artery is considered as an irregular cylinder.

In other work, a mathematical model with the approach used in [22] by including the effect of reverse

cholesterol transport of plaque growth which includes the (LDL, HDL) concentrations is developed by

Friedman [18]. There are many other models that are associated with this disease [13, 30, 47]. In the

case of numerical analysis, there are various mathematical methods and different perspectives in con-

vergence and stability analyzing. For instance, in [15] mathematical modeling of a tumor is considered

and numerical results with convergence and stability of numerical methods have been presented. In [14]

mathematical modeling of optimal control of tumor with drug application has been presented and in [15]

it has been numerically solved and analyzed. Additionally, in [49], a two-dimensional multi-term time

fractional diffusion equation is solved numerically using a fully-discrete schem and convergence and

superconvergence of the method is illustrated. For the mathematical analysis point of view, in [39] a

hyperbolic equation with an integral condition is solved using finite difference/spectral method.

In this article, we want to solve a free boundary nonlinear system of coupled PDEs that model

Atherosclerosis and consists of three parabolics, one elliptic and one ordinary differential equation

which is introduced in [19]. For the readers’ convenience, we highlight the main goals of this study as

follows

• We have fixed the domain using the front fixing method and simplified the model by changing the

mix boundary condition to a Neumann one by applying a suitable change of variables to achieve

more comfortable results for numerical analysis.

• Applying the finite difference method, we have constructed a sequence, which converges to the exact

solution of coupled partial differential equations.

• In each time step, using Taylor theorem, the problem has changed to linear one (see (19)-(23)) and

using the collocation method, equations (19)-(23) are solved numerically.
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Fig. 1: Seven steps to show the role of mathematical modeling in Solving the mathematical Problems [33].

• We have proved constructed sequence converges to the exact solution of the problem (see Theorem

5.2) and also the stability of the method is proven (see Theorem 5.3).

• We have simulated the model using finite difference and collocation method for some pair of values

(L0, H0) to show the validity and efficiency of the presented method. It is critical to note that, con-

struction of a new second-order non-classical discretization formula helps us to prove the convergence

and stability Theorem appropriately.

We organize our paper as follows: In Section 2, we introduce the model of Atherosclerosis presented by

Friedman in [19]. We apply some changes to construct a more appropriate model for numerical and proof

purposes in Section 3. In Section 4, we use finite difference and collocation method with convenience

basis for approximating the solution of the problem. We discuss the stability and convergence of the

method used for solving the model in Section 5. Finally, by presenting some numerical results, the

theoretical statements are justified in Section 6.

2 Mathematical model

In this paper, we consider the following parabolic free boundary problem modeling plaque growth

introduced in [19] as follows

∂L̂

∂t
−∆L̂ = −k1

(M0− F̂ )L̂

K1 + L̂
− r1L̂, R(t) < r < 1, t > 0,

∂L̂

∂n
+ α(L̂− L0) = 0, at r = R(t), t > 0,

∂L̂

∂n
= 0, at r = 1, t > 0, L̂(r, 0) = L0, (1)
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∂Ĥ

∂t
−∆Ĥ = −k2

ĤF̂

K2 + F̂
− r2Ĥ, R(t) < r < 1, t > 0,

∂Ĥ

∂n
+ α(Ĥ −H0) = 0, at r = R(t), t > 0,

∂Ĥ

∂n
= 0, at r = 1, t > 0, Ĥ(r, 0) = H0, (2)

∂F̂

∂t
−D∆F̂ + F̂r.v = k1

(M0 − F̂ )L̂

K1 + L̂
− k2

ĤF̂

K2 + F̂
−

λ
F̂ (M0 − F̂ )L̂

M0(δ + Ĥ)
+

µ1

M0
(M0 − F̂ )F̂ − µ2

M0
F̂ (M0 − F̂ ), R(t) < r < 1, t > 0,

∂F̂

∂n
+ βF̂ = 0 , at r = R(t), t > 0,

∂F̂

∂n
= 0 , at r = 1, t > 0, F (r, 0) = 0, (3)

M0.vr = λ
(M0 − F̂ )L̂

δ + Ĥ
− µ1(M0 − F̂ )− µ2F̂ , R(t) < r < 1, t > 0,

v(r, t) = 0, at r = 1, t > 0, (4)

dR(t)

dt
= v(R(t), t), t > 0,

R(0) = ε. (5)

There are several mathematical models that describe the growth of a plaque in the artery. All these

models recognize the critical role of the bad cholesterols and the good cholesterols in determining

whether a plaque, once formed, will grow or shrink.

In mathematical models, choosing the type of geometry of the problem is very important. Since the

plaques grown in the artery are approximately spherically symmetric, in most of the models, it is

assumed that the plaque grows radially-symmetric. In this model, it is assumed that the artery is a

very long circular cylinder and a circular cross-section 0 ≤ r ≤ 1 is considered. The plaque is given by

R(t) < r < 1, where r is measured in unit of cm, and t is measured in unit of days. Also, The variables

L̂, Ĥ and F̂ are taken to be functions of (r, t) only in the region {(r, t);R(t) < r < 1, t > 0}. In this

model, L̂, Ĥ and F̂ are the variables that illustrate the concentration of LDL and HDL and the density

of foam cell in the plaque respectively and v is the radial velocity. k1 is the rate of ox-LDL ingestion

by macrophages. k2 is the rate of reverse cholesterol transport. r1 and r2 represent the degradation of

the LDL and HDL caused by radicals respectively. µ1 and µ2 are the death rate of macrophages and

foam cells respectively. Also, D is the diffusion coefficients of foam cells. Initially, in order to better

understand the model, it is better to know a little how the plaque is calcified in the artery. A plaque

contains low density lipoprotein (LDL) or bad cholesterol, high-density lipoprotein (HDL) or good
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(a) Intravascular contents (b) LDL penetration (c) FR release

(d) Lox formation (e) M secretion (f) M penetration

(g) ingestion of Lox by M (h) F formation (i) Plaque formation

Fig. 2: The process of plaque development [1].

cholesterol, macrophages and foam cells (Figure 2.a). The process of plaque development begins with

a lesion in the endothelial layer, penetration of low density lipoproteins in the intima (Figure 2.b) and

by Free radicals in the initma (Figure 2.c) becoming oxidized LDL (Figure 2.d) and it is presented

in the second term of (1). Notice that in this model L̂ (and Ĥ) and its oxidized form L̂ox (and Ĥox)

are merged. Free radicals are oxidative agents continuously released by biochemical reactions within

the body, including the intima [3, 44]. Endothelial cells, sensing the presence of ox-LDL, are activated

and trigger monocyte chemoattractant protein, which triggers recruitment of monocytes into the intima

(Figure 2.e) [3,21]. After entering the intima, monocytes differentiate into macrophages (M) (Figure 2.f).

The ingestion of large amounts of ox-LDL (Figure 2.g), that shown in the first term of (1), transforms

the fatty macrophages into the foam cells (Figure 2.h) [4]. Newly formed foam cells secrete chemokines

which attract more macrophages, and the plaque is gradually calcified (Figure 2.i). At the same time
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that LDL enters the intima, high-density lipoprotein also enters the intima and becomes oxidized by

free radicals (FR) as presented by the second term of (2). However, oxidized HDL (Hox) is not ingested

by macrophages. HDL helps to prevent Atherosclerosis by removing cholesterol from foam cells, and

by the limiting inflammatory processes that underline Atherosclerosis, as shown in the first term of

(2). Furthermore, HDL takes up free radicals that are otherwise available to LDL [22]. As the plaque

continues to grow (Figure 2.i), the increased shear force may cause rupture of the plaque, possibly

resulting in the formation of a thrombus (blood clot) and heart attack (for more information about the

model see [19]).

For simplicity, we consider the model from cylindrical coordinates (1)-(5) to spherical coordinates as

follows

∂L̂

∂t
− 1

r2
∂

∂r
(r2

∂L̂

∂r
) = −k1

(M0 − F̂ )L̂

K1 + L̂
− r1L̂, R(t) < r < 1, t > 0,

∂L̂

∂r
+ α(L̂− L0) = 0 at r = R(t), t > 0,

∂L̂

∂r
= 0 at r = 1, t > 0, L̂(r, 0) = L0, (6)

∂Ĥ

∂t
− 1

r2
∂

∂r
(r2

∂Ĥ

∂r
) = −k2

ĤF̂

K2 + F̂
− r2Ĥ, R(t) < r < 1, t > 0,

∂Ĥ

∂r
+ α(Ĥ −H0) = 0 at r = R(t), t > 0,

∂Ĥ

∂r
= 0 at r = 1, t > 0, Ĥ(r, 0) = H0, (7)

∂F̂

∂t
− D

r2
∂

∂r
(r2

∂F̂

∂r
) + F̂r.v = k1

(M0 − F̂ )L̂

K1 + L̂
− k2

ĤF̂

K2 + F̂
−

λ
F̂ (M0 − F̂ )L̂

M0(δ + Ĥ)
+

µ1

M0
(M0 − F̂ )F̂ − µ2

M0
F̂ (M0 − F̂ ), R(t) < r < 1, t > 0,

∂F̂

∂r
+ βF̂ = 0 at R(t) < r < 1, t > 0,

∂F̂

∂r
= 0 at r = 1, t > 0, F̂ (r, 0) = 0, (8)

M0.vr = λ
(M0 − F̂ )L̂

δ + Ĥ
− µ1(M0 − F̂ )− µ2F̂ , R(t) < r < 1, t > 0,

v(r, t) = 0 at r = 1, t > 0, (9)

dR(t)

dt
= v(R(t), t), t > 0,

R(0) = ε. (10)

In the next section, we want to present a new reformulation of the model presented in (6)-(10).
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3 A new reformulation of the model

Most of the mathematical models that originate from biological phenomena have some special features.

Free or moving boundary condition, mix (robin) boundary condition and many other features of a

mathematical model can cause some difficulties in applying classical numerical methods on them and

researchers overcome these difficulties by applying suitable techniques. Since the model of Atheroscle-

rosis (6)-10) is a free boundary model with mix boundary condition, to solve this model numerically,

we need to remove the mentioned difficulties. To reach this aim, we must consider a new reformulation

of this model for which the free boundary change to a fixe one and the robin (mix) boundary condition

change to a Neumann one.

3.1 Fixing the domain

Due to the fact that the plaque grows radially symmetric with free boundary, using the front fixing

method by the following variable changes

ρ =
r −R(t)

1−R(t)
, L̂(ρ, t) = L̂(r, t), Ĥ(ρ, t) = Ĥ(r, t), F̂ (ρ, t) = F̂ (r, t),

the free boundary problem (6)-(10) is transformed into a problem with a fixed domain

{(ρ, t) | 0 < ρ < 1, t ≥ 0},

and the model becomes as follows

∂L̂

∂t
− 1

(1−R(t))2
∂2L̂

∂ρ2
+

(
−2

ρ(1−R(t))2 +R(t)(1−R(t))
+
v(0, t)(ρ− 1)

(1−R(t))2

)
∂L̂

∂ρ
= f L̂(L̂, F̂ ),

∂L̂

∂ρ
+ α(1−R(t))(L̂− L0) = 0 at ρ = 0, t > 0,

∂L̂

∂ρ
= 0 at ρ = 1, t > 0, L̂(ρ, 0) = L0, (11)

∂Ĥ

∂t
− 1

(1−R(t))2
∂2Ĥ

∂ρ2
+

(
−2

ρ(1−R(t))2 +R(t)(1−R(t))
+
v(0, t)(ρ− 1)

(1−R(t))2

)
∂Ĥ

∂ρ
= f Ĥ(Ĥ, F̂ ),

∂Ĥ

∂ρ
+ α(1−R(t))(Ĥ −H0) = 0 at ρ = 0, t > 0,

∂Ĥ

∂ρ
= 0 at ρ = 1, t > 0, Ĥ(ρ, 0) = H0, (12)

∂F̂

∂t
− D

(1−R(t))2
∂2F̂

∂ρ2
+(

−2D

ρ(1−R(t))2 +R(t)(1−R(t))
+

v

1−R(t)
+
v(0, t)(ρ− 1)

(1−R(t))2

)
∂F̂

∂ρ
= f F̂ (L̂, Ĥ, F̂ ),

∂F̂

∂ρ
+ β(1−R(t))F̂ = 0 at ρ = 0, t > 0,

∂F̂

∂ρ
= 0 at ρ = 1, t > 0, F̂ (ρ, 0) = 0, (13)



Title Suppressed Due to Excessive Length 9

1

1−R(t)

∂v

∂ρ
= fv(L̂, Ĥ, F̂ ),

v(ρ, t) = 0 at ρ = 1, t > 0, (14)

dR

dt
= v(0, t), t > 0,

R(0) = ε. (15)

3.2 changing the boundary condition

To obtain more comfortable results for numerical analysis, without loss of generality, we can change

the mixed boundary condition of the model to a Neumann one by applying suitable variable changes

as follows

L(ρ, t) := exp(−α(1−R(t))
(1− ρ)2

2
)(L̂(ρ, t)− L0), (16)

H(ρ, t) := exp(−α(1−R(t))
(1− ρ)2

2
)(Ĥ(ρ, t)−H0), (17)

F (ρ, t) := exp(−β(1−R(t))
(1− ρ)2

2
)F̂ (ρ, t). (18)

So, from (11)-(15) we have

∂L

∂t
− 1

(1−R(t))2
∂2L

∂ρ2
+(

−2

ρ(1−R(t))2 +R(t)(1−R(t))
+
v(0, t)(ρ− 1)

1−R(t)
+

2(1− ρ)α

1−R(t)

)
∂L

∂ρ
= fL(L,F ),

∂L

∂ρ
= 0 at ρ = 0, t > 0,

∂L

∂ρ
= 0 at ρ = 1, t > 0, L(ρ, 0) = 0, (19)

∂H

∂t
− 1

(1−R(t))2
∂2H

∂ρ2
+(

−2

ρ(1−R(t))2 +R(t)(1−R(t))
+
v(0, t)(ρ− 1)

1−R(t)
+

2(1− ρ)α

1−R(t)

)
∂H

∂ρ
= fH(H,F ),

∂H

∂ρ
= 0 at ρ = 0, t > 0,

∂H

∂ρ
= 0 at ρ = 1, t > 0, H(ρ, 0) = 0, (20)

∂F

∂t
− D

(1−R(t))2
∂2F

∂ρ2
+(

−2D

ρ(1−R(t))2 +R(t)(1−R(t))
+

v

1−R(t)
+
v(0, t)(ρ− 1)

1−R(t)
+

2D(1− ρ)β

1−R(t)

)
∂F

∂ρ
= fF (L,H, F )

∂F

∂ρ
= 0 at ρ = 0, t > 0,

∂F

∂ρ
= 0 at ρ = 1, t > 0, F (ρ, 0) = 0, (21)
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1

1−R(t)

∂v

∂ρ
= fv(L,H, F ),

v(ρ, t) = 0 at ρ = 1, t > 0, (22)

dR

dt
= v(0, t), t > 0,

R(0) = ε. (23)

4 Approximating the solution of the problem

In this section, we approximate the solution of the problem (19)-(23) for 0 < ρ < 1 and 0 < t < T .

Let ti := ih (i = 0, 1, . . . ,M) be mesh points, where h :=
T

M
is the time step and M is a positive

integer. The problem is solved using the finite difference-collocation method. In order to prove the

stability and convergence of the method, we need to construct a non-classical discretization of second-

order to approximate the time derivative. So, let us consider the following discretization formula for

approximating the time derivative for a given function u(ρ, t)

∂u

∂t
(ρ, tn+1) =

un+1 − un +
un−1 − un

3
2h

3

+ Et, (24)

and the following approximation formula for linearizing the equations

u(ρ, tn+1) = 2u(ρ, tn)− u(ρ, tn−1) + Eu, (25)

where

max{‖Et‖∞, ‖Eu‖∞} < Ch2, (26)

and C is a positive constant. In the following, we have assumed that

un(ρ) = u(ρ, tn).

Using finite difference method based on the approximation formula given by (24) and equations (11)-(13)

we get

Ln+1 − Ln +
Ln−1 − Ln

3
− 2h

3(1−Rn+1)2
∂2Ln+1

∂ρ2
+

2h

3

(
−2

ρ(1−Rn+1)2 +Rn+1(1−Rn+1)
+

(2vn(0)− vn−1(0))(ρ− 1)

1−Rn+1
+

2(1− ρ)α

1−Rn+1

)
∂Ln+1

∂ρ
=

2h

3
(2fL(Ln, Fn)− fL(Ln−1, Fn−1))− 2h

3
ELt ,

∂Ln+1

∂ρ
= 0 at ρ = 0, t > 0,

∂Ln+1

∂ρ
= 0 at ρ = 1, t > 0, L0(ρ) = 0,
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Hn+1 −Hn +
Hn−1 −Hn

3
− 2h

3(1−Rn+1)2
∂2Hn+1

∂ρ2
+

2h

3

(
−2

ρ(1−Rn+1)2 +Rn+1(1−Rn+1)
+

(2vn(0)− vn−1(0))(ρ− 1)

1−Rn+1
+

2(1− ρ)α

1−Rn+1

)
∂Hn+1

∂ρ
=

2h

3
(2fH(Hn, Fn)− fH(Hn−1, Fn−1))− 2h

3
EHt ,

∂Hn+1

∂ρ
= 0 at ρ = 0, t > 0,

∂Hn+1

∂ρ
= 0 at ρ = 1, t > 0, H0(ρ) = 0,

Fn+1 − Fn +
Fn−1 − Fn

3
− 2hD

3(1−Rn+1)2
∂2Fn+1

∂ρ2
+

2h

3

(
−2D

ρ(1−Rn+1)2 +Rn+1(1−Rn+1)
+

(2vn − vn−1)

1−Rn+1
+

(2vn(0)− vn−1(0))(ρ− 1)

1−Rn+1
+

2D(1− ρ)β

1−Rn+1

)
∂Fn+1

∂ρ
=

2h

3
(2fF (Ln, Hn, Fn)− fF (Ln−1, Hn−1, Fn−1))− 2h

3
EFt ,

∂Fn+1

∂ρ
= 0 at ρ = 0, t > 0,

∂Fn+1

∂ρ
= 0 at ρ = 1, t > 0, F0(ρ) = 0, (27)

1

1−Rn
∂vn
∂ρ

= fv(Ln, Hn, Fn),

v(ρ, t) = 0 at ρ = 1, t > 0, (28)

where Eut is obtained by merging the errors of Et and Eu. From (26), there exists positive C∗ such that

max{‖ELt ‖∞, ‖EHt ‖∞, ‖EFt ‖∞} < C∗h2, (29)

and using (15) we have

Rn+1 = Rn −
Rn−1 −Rn

h
+ 2hvn(0)− 2h

3
ERt . (30)

Then, we conclude that there exists positive constant C∗∗ such that

max{‖ELt ‖∞, ‖EHt ‖∞, ‖EFt ‖∞, ‖ERt ‖∞} < C∗∗h2. (31)

In the rest of this paper, the solution of the problem (6)-(7) is denoted by (Lapn+1, H
ap
n+1, F

ap
n+1), which

is the approximated solution of the following problem

Ln+1 −
h∗

(1−Rapn+1)2
∂2Ln+1

∂ρ2
+

h∗
(

−2

ρ(1−Rapn+1)2 +Rapn+1(1−Rapn+1)
+

(2vapn (0)− vapn−1(0))(ρ− 1)

1−Rapn+1

+
2(1− ρ)α

1−Rapn+1

)
∂Ln+1

∂ρ
=

h∗(2fL(Lapn , F
ap
n )− fL(Lapn−1, F

ap
n−1)) + Lapn −

Lapn−1 − Lapn
3

,

∂Ln+1

∂ρ
= 0 at ρ = 0, t > 0,

∂Ln+1

∂ρ
= 0 at ρ = 1, t > 0, L0(ρ) = 0, (32)
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Hn+1 −
h∗

(1−Rapn+1)2
∂2Hn+1

∂ρ2
+

h∗
(

−2

ρ(1−Rapn+1)2 +Rapn+1(1−Rapn+1)
+

(2vapn (0)− vapn−1(0))(ρ− 1)

1−Rn+1
+

2(1− ρ)α

1−Rapn+1

)
∂Hn+1

∂ρ
=

h∗(2fH(Hap
n , F apn )− fH(Hap

n−1, F
ap
n−1)) +Hap

n −
Hap
n−1 −Hap

n

3
,

∂Hn+1

∂ρ
= 0 at ρ = 0, t > 0,

∂Hn+1

∂ρ
= 0 at ρ = 1, t > 0, H0(ρ) = 0, (33)

Fn+1 −
h∗D

(1−Rapn+1)2
∂2Fn+1

∂ρ2
+

h∗
(

−2D

ρ(1−Rapn+1)2 +Rapn+1(1−Rapn+1)
+

(2vapn − v
ap
n−1)

1−Rapn+1

+
(2vapn (0)− vapn−1(0))(ρ− 1)

1−Rapn+1

+
2D(1− ρ)β

1−Rapn+1

)
∂Fn+1

∂ρ
=

h∗(2fF (Lapn , H
ap
n , F apn )− fF (Lapn−1, H

ap
n−1, F

ap
n−1)) + F apn −

F apn−1 − F apn
3

,

∂Fn+1

∂ρ
= 0 at ρ = 0, t > 0,

∂Fn+1

∂ρ
= 0 at ρ = 1, t > 0, F0(ρ) = 0, (34)

1

1−Rapn+1

∂vapn
∂ρ

= fv(Lapn , H
ap
n , F apn ),

v(ρ, t) = 0 at ρ = 1, t > 0, (35)

Rapn+1 = Rapn −
Rapn−1 −Rapn

3
+ h∗vapn (0), (36)

where h∗ =
2h

3
and (Lapn+1, H

ap
n+1, F

ap
n+1) is obtained as an approximation of (Ln+1, Hn+1, Fn+1) by

solving (32)-(36) employing the collocation method. To implement this method, we employ {pi(ρ)}∞i=0

as trial functions as follows

span {p0(ρ), p1(ρ), ..., pk(ρ)} = {u ∈ span{1, ρ, ρ2, ..., ρk+2}; ∂u
∂ρ
|ρ=0 = 0,

∂u

∂ρ
|ρ=1 = 0}. (37)

Then, we approximate Fn+1 by FNn+1 defined as follows

FNn+1(ρ) =

N∑
i=0

an+1
i pi(ρ). (38)

Now, we consider the following equation

Π0,0
N FNn+1 −

h∗D

(1−Rapn+1)2
Π0,0
N

∂2FNn+1

∂ρ2
+ h∗Π0,0

N (G(ρ)
∂FNn+1

∂ρ
) = I0,0N g∗n, (39)

where

g∗n = Π0,0
N

(
F apn −

F apn−1 − F apn
3

)
+ h∗(2fF (Lapn , H

ap
n , F apn )− fF (Lapn−1, H

ap
n−1, F

ap
n−1))︸ ︷︷ ︸

f∗
n

, (40)
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and

G(ρ) =
−2D

ρ(1−Rapn+1)2 +Rapn+1(1−Rapn+1)
+

(2vapn − v
ap
n−1)

1−Rapn+1

+
(2vapn (0)− vapn−1(0))(ρ− 1)

1−Rapn+1

+
2D(1− ρ)β

1−Rapn+1

, (41)

where Π0,0
N and I0,0N are the orthogonal projection and Jacobi-Gauss-Lobatto interpolation operator

with respect to ρ on [0, 1], respectively. The approximation of the solution of (32) and (33) can be

obtained by LNn+1 and HN
n+1 in a similar manner which is used for FNn+1.

5 Convergence and stability

As we are aware, the first and most important step in numerical analysis is to prove the stability and

convergence of the proposed numerical method. To do so, we need to introduce some mathematical

preliminaries.

Definition 5.1 [8] Suppose Ω = (a, b)d, d ∈ N and L2
wα,β (Ω) is the space of square integrable functions

in Ω. Now, we can define the following inner product on L2
wα,β (Ω)

(u, v)wα,β ,Ω =

∫
Ω

wα,β(X)u(X)v(X)dX, ∀u, v ∈ L2
wα,β(Ω),

‖u‖wα,β ,Ω =

(∫
Ω

wα,β(X)(u(X))2dX

) 1
2

, ∀u ∈ L2
wα,β(Ω).

Definition 5.2 [8] Suppose PNd is the space of all d dimensional algebraic polynomials of degree at

most N in each variable. ΠN,wα,β : L2
wα,β (Ω) −→ PdN is an orthogonal projection if and only if for any

u ∈ L2
wα,β(Ω), we have

∫
Ω

(ΠN,wα,βu(X)− u(X))v(X)wα,β(X)dX = 0, ∀v ∈ PdN .

Theorem 5.1 [43] Let α, β > −1. For any u ∈ Bmα,β(I),

‖Πα,α
N u− u‖l,wα,α ≤ N2l−m−1/2‖∂mx u‖α+m,α+m.
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5.1 Convergence

In this section, we want to prove the convergence of the above method under the title of Convergence

Theorem. For this purpose, using the principle of mathematical induction, we need to show that for

k = 0, 1, . . . ,M , (for an arbitrary M) there exist positive constants L∗, H∗, F ∗ and R∗ such that

|Lapk − Lk| < L∗, |Hap
k −Hk| < H∗, |F apk − Fk| < F ∗, |Rapk −Rk| < R∗, (42)

where Lk, Hk, Fk and Rk are the exact solutions of (32)-(36) in t = tk, respectively. First, we assume

that

|Lapk − Lk| < L∗, |Hap
k −Hk| < H∗, |F apk − Fk| < F ∗, |Rapk −Rk| < R∗ 1 ≤ k ≤ n < M. (43)

In the following, to prove the convergence theorem, we need to present the following lemma.

Lemma 5.1 Let F be the exact solution of (21) on [0, 1] × [0, T ], F apn+1 = FNn+1, ∀n ≥ 1 and
∂2F

∂ρ2
be

C1-smooth function. Then, for each 0 < ρ < 1, there exist positive constants c1, c2 and c such that

(
1

2
− c1h∗)‖

∂(FNn+1 − Fn+1)

∂ρ
‖2w0,0 ≤

1

2
‖∂(F apn − Fn)

∂ρ
‖2w0,0+

n∑
i=0

h∗c2
(
‖Li − Lapi ‖

2
w0,0 + ‖Hi −Hap

i ‖
2
w0,0 + ‖Fi − F api ‖

2
w0,0

)
+ ‖E∗F ‖2∞ + h∗K1(N),

where K(N) is the error generated by the spectral method and

‖E∗F ‖∞ ≤ c(h∗)2, lim
N→∞

K1(N) = 0. (44)

Proof For every N ∈ N, there exists a polynomial FN1 such that

I0,0N FN1 = FN1 ,
∂FN1
∂ρ

(0, t) = 0,
∂FN1
∂ρ

(1, t) = 0, FN1 (ρ, 0) = 0, 0 ≤ t ≤ T,

and

lim
N→∞

(
‖∂(FN1 − F )

∂ρ
‖2ω0,0 + ‖FN1 − F‖2ω0,0 + ‖G(ρ)∂(F − FN1 )

∂ρ
‖2ω0,0 + ‖∂

2(F − FN1 )

∂ρ2
‖2ω0,0

)
= 0. (45)

Now, by taking the inner product of both sides of (39), we conclude that

(Π0,0
N LFNn+1 −Π

0,0
N LFNn+1,1,

∂2(FNn+1 − FNn+1,1)

∂ρ2
)w0,0 =

(I0,0N (g∗n − LFNn+1,1)︸ ︷︷ ︸
g1n

,
∂2(FNn+1 − FNn+1,1)

∂ρ2
)w0,0 ,
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where FNn+1,1(ρ) := FN1 (ρ, tn+1) and for each u ∈ C2[0, 1], L is defined as follows

Lu = u− h∗D

(1−Rn+1)

∂2u

∂ρ2
+ h∗G(ρ)

∂u

∂ρ
, (46)

where G(ρ) is defined in (41) and is a bounded continuous function. Therefore we have

(
FNn+1 − FNn+1,1,

∂2(FNn+1 − FNn+1,1)

∂ρ2

)
w0,0

−

(
h∗D

(1−Rapn+1)2
∂2
(
FNn+1 − FNn+1,1

)
∂ρ2

,
∂2(FNn+1 − FNn+1,1)

∂ρ2

)
w0,0

+

(
h∗G(ρ)

∂(FNn+1 − FNn+1,1)

∂ρ
,
∂2(FNn+1 − FNn+1,1)

∂ρ2

)
w0,0

= (I0,0N g1n,
∂2(FNn+1 − FNn+1,1)

∂ρ2
)w0,0 . (47)

Then, by using Cauchy-Schwarz inequality there exists a constant c5 such that

‖
∂(FNn+1 − FNn+1,1)

∂ρ
‖2w0,0 +

Dh∗

(1−Rn+1)2
‖
∂2(FNn+1 − FNn+1,1)

∂ρ2
‖2w0,0 ≤

c5h
∗‖
∂(FNn+1 − FNn+1,1)

∂ρ
‖2w0,0 + |(I0,0N g1n,

∂2(FNn+1 − FNn+1,1)

∂ρ2
)w0,0 |. (48)

By combining (40) with (48) we obtain that

∣∣∣(I0,0N g1n,
∂(FNn+1 − FNn+1,1)

∂ρ
)w0,0

∣∣∣ ≤ ∣∣∣(I0,0N (g∗n − LFNn+1,1),
∂(FNn+1 − FNn+1,1)

∂ρ
)w0,0

∣∣∣ ≤∣∣∣(F apn − FNn,1 − F apn−1 − FNn−1,1 − F apn + FNn,1
3

,
∂2(FNn+1 − FNn+1,1)

∂ρ2
)w0,0

∣∣∣+∣∣∣(I0,0N (LFNn+1,1 − FNn,1 +
FNn−1,1 − FNn,1

3
)− I0,0N f∗n︸ ︷︷ ︸

g2n

,
∂2(FNn+1 − FNn+1,1)

∂ρ2
)w0,0

∣∣∣. (49)

Therefore, from (48) and (49) and using Cauchy-Schwarz inequality and Young inequality, we get that

‖
∂(FNn+1 − FNn+1,1)

∂ρ
‖2w0,0 +

Dh∗

(1−Rn+1)2
‖
∂2(FNn+1 − FNn+1,1)

∂ρ2
‖2w0,0 ≤

(g2n,
∂2(FNn+1 − FNn+1,1)

∂ρ2
)w0,0 + c5h

∗‖
∂(FNn+1 − FNn+1,1)

∂ρ
‖2w0,0 +

1

2
‖
∂(F apn − FNn,1)

∂ρ
‖2w0,0+

1

2
‖
∂(FNn+1 − FNn+1,1)

∂ρ
‖2w0,0 +

1

3

∣∣∣(∂(F apn−1 − FNn−1,1 − F apn + FNn,1)

∂ρ
,
∂(FNn+1 − FNn+1,1)

∂ρ
)w0,0

∣∣∣.
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So there exists a positive constant c4 such that

1

2
‖
∂(FNn+1 − FNn+1,1)

∂ρ
‖2w0,0 +

Dh∗

2(1−Rn+1)2
‖
∂2(FNn+1 − FNn+1,1)

∂ρ2
‖2w0,0 ≤

+h∗c4‖2fFn − fFn−1 + EF − 2fF,apn + fF,apn−1 ‖2w0,0 + |(LnFNn,1 − LnF,
∂2(FNn+1 − FNn+1,1)

∂ρ2
)w0,0 |+

c5h
∗‖
∂(FNn+1 − FNn+1,1)

∂ρ
‖2w0,0 +

1

2
‖
∂(F apn − FNn,1)

∂ρ
‖2w0,0+

1

3

∣∣∣(∂(F apn−1 − FNn−1,1 − F apn + FNn,1)

∂ρ
,
∂(FNn+1 − FNn+1,1)

∂ρ
)w0,0

∣∣∣, (50)

where

Lnu = Lun+1 − un +
un−1 − un

3
, (51)

and L is defined in (46). On the other hand, from (39) we have

∣∣∣(∂(F apn − FNn,1 − F
ap
n+1 + FNn+1,1 )

∂ρ
,
∂(FNn+1 − FNn+1,1)

∂ρ
)w0,0

∣∣∣+
h∗D

2(1−Rn+1)2
‖
∂2(FNn+1 − FNn+1,1)

∂ρ2
‖2w0,0 ≤

h∗c4‖
∂(FNn+1 − FNn+1,1)

∂ρ
‖2w0,0 + h∗MF

4 ‖2fFn − fFn−1 + EF − 2fF,apn + fF,apn−1 ‖2w0,0+

1

3

∣∣∣(∂(F apn − FNn,1 − F
ap
n+1 + FNn+1,1)

∂ρ
,
∂(FNn+1 − FNn+1,1)

∂ρ
)w0,0

∣∣∣+
|(LnFNn,1 − LnF,

∂2(FNn+1 − FNn+1,1)

∂ρ2
)w0,0 |, (52)

where

f j,api = f j(Lapi , H
ap
i , F api ), f ji = f j(Li, Hi, Fi), j ∈ {L,H, F}.

Then, by applying the recurrence relation (52) repeatedly in (50) we can conclude that

(
1

2
− c1h∗)‖

∂(FNn+1 − FNn+1,1)

∂ρ
‖2w0,0 ≤

1

2
‖
∂(F apn − FNn,1)

∂ρ
‖2w0,0+

∑n
i=0

1

3i
h∗c2

(
‖LNi,1 − L

ap
i ‖2w0,0 + ‖HN

i,1 −H
ap
i ‖2w0,0 + ‖FNi,1 − F

ap
i ‖2w0,0

)
+

h∗‖E∗F ‖2∞ + h∗K1(N). (53)

where ‖E∗F ‖∞ and K1(N) are as in (44).

�

Lemma 5.2 Let F apn+1 = FNn+1, ∀n ≥ 1 and
∂2F

∂ρ2
be C1-smooth function. Then, for each 0 < ρ < 1,

there exist positive constants M∗ and C∗ such that the following inequality holds

(FNn+1 − FNn+1,1)2
∣∣∣
ρ=1
≤ F ∗+ (54)

4(
1

3
)n−1

(
h∗D

2(1−Rn+1)2
+

C∗√
N

)
(L∗2 +H∗2 + F ∗2 + h∗‖E∗F ‖2∞ + h∗K1(N)) ≤M∗.
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where L∗, H∗ and F ∗ are obtained from (42) and ‖E∗F ‖∞ and K1(N) are as in (44).

Proof By taking the inner product of both sides of (39), we can deduce that

(Π0,0
N LFNn+1 −Π

0,0
N LFNn+1,1, ρ

∂

∂ρ
(ρ
∂(FNn+1 − FNn+1,1)

∂ρ
)) =

(I0,0N (g∗n − LFNn+1,1), ρ
∂

∂ρ
(ρ
∂(FNn+1 − FNn+1,1)

∂ρ
)).

Using (53), (42), Theorem 5.1, Definition 5.2, Cauchy-Schwarz inequality and Young inequality, we have

(FNn+1 − FNn+1,1)2
∣∣∣
ρ=1
≤ F ∗+

4(
1

3
)n−1

(
h∗D

2(1−Rn+1)2
+

max{1, c5}√
N

)
(L∗2 +H∗2 + F ∗2 + h∗‖E∗F ‖2∞ + h∗K1(N)) ≤M∗, (55)

where c5 is obtained from (48). �

Finally, using Lemmas 5.1 and 5.2 we have

(
1

2
− c1h∗)‖

∂(FNn+1 − FNn+1,1)

∂ρ
‖2w0,0 ≤

1

2
‖
∂(F apn − FNn,1)

∂ρ
‖2w0,0+

∑n
i=0

1

3i
h∗c2

(
‖
∂(LNi,1 − L

ap
i )

∂ρ
‖2w0,0 + ‖

∂(HN
i,1 −H

ap
i )

∂ρ
‖2w0,0 + ‖

∂(FNi,1 − F
ap
i )

∂ρ
‖2w0,0

)
+

h∗‖E∗F ‖2∞ + h∗K1(N), (56)

where ‖E∗F ‖∞ and K1(N) are as in (44).

Similar to the proof of lemma 5.1, we can show that there exist positive constants c6, c7, c8, c9 such

that for 0 ≤ t ≤ T,

(
1

2
− c6h∗)‖

∂(LNn+1 − LNn+1,1)

∂ρ
‖2w0,0 ≤

1

2
‖
∂(Lapn − LNn,1)

∂ρ
‖2w0,0+

∑n
i=0

1

3i
h∗c7

(
‖
∂(LNi,1 − L

ap
i )

∂ρ
‖2w0,0 + ‖

∂(FNi,1 − F
ap
i )

∂ρ
‖2w0,0

)
+ h∗‖E∗L‖2∞ + h∗K2(N), (57)

(
1

2
− c8h∗)‖

∂(HN
n+1 −HN

n+1,1)

∂ρ
‖2w0,0 ≤

1

2
‖
∂(Hap

n −HN
n,1)

∂ρ
‖2w0,0+

∑n
i=0

1

3i
h∗c9

(
‖
∂(HN

i,1 −H
ap
i )

∂ρ
‖2w0,0 + ‖

∂(FNi,1 − F
ap
i )

∂ρ
‖2w0,0

)
+ h∗‖E∗H‖2∞ + h∗K3(N), (58)

where

lim
N→∞

K2(N) = 0, lim
N→∞

K3(N) = 0 and max{‖E∗L‖∞, ‖E∗H‖∞} < c(h∗)2,

and c is a positive constant.

In the following theorem, the convergence of the proposed method is proved.
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Theorem 5.2 (Convergence Theorem) Let Lapn+1 = LNn+1, Hap
n+1 = HN

n+1 and F apn+1 = FNn+1. Under the

assumption of Lemma 5.1 there exist positive constants M1,M2 such that

max
k=0,...,n+1

{ξk} ≤M1(eM2T )(h∗2 + (K(N))
1
2 ),

where

ξk = ‖
∂(Lapk − Lk)

∂ρ
‖w0,0 + ‖

∂(Hap
k −Hk)

∂ρ
‖w0,0 + ‖

∂(F apk − Fk)

∂ρ
‖w0,0 + |Rapk −Rk|,

lim
N→∞

K(N) = 0.

Proof From (56), (57) and (58) we can conclude that there exists a constant M4, such that

max
k=0,...,n+1

{φk} ≤ (1 +M4h
∗)φn + (1 +M4h

∗)2 max {φk}k=0,1,...n + (1 +M4h
∗)(h∗‖E∗F ‖2∞ + h∗K(N)),

where

φk = ‖
∂(Lapk − Lk)

∂ρ
‖2w0,0 + ‖

∂(Hap
k −Hk)

∂ρ
‖2w0,0 + ‖

∂(F apk − Fk)

∂ρ
‖2w0,0 + |Rapk −Rk|

2,

lim
N→∞

K(N) = 0.

and ‖E∗F ‖ is as in (44). Therefore, there exists a constant M3 that

max
k=0,...,n+1

{φk} ≤ (1 +M3h
∗) max {φk}k=0,1,...n + (1 +M3h

∗)(h∗‖E∗F ‖2∞ + h∗K(N)).

Then, by applying the above recurrence relation we have

max
k=0,...,n+1

{φk} ≤ (1 +M3h
∗)n+1φ0 + | (1 +M3h

∗)n+1 − 1

M3h∗
|(h∗‖E∗F ‖2∞ + h∗K(N)).

Finally, it may be concluded that there exist constants M1 and M2 such that

max
k=0,...,n+1

{ξk} ≤M1(eM2T )(h∗2 + (K(N))
1
2 ). (59)

�

Employing the General Sobolev inequalities, there exists a positive constant M5 such that for 0 ≤ t ≤ T ,

|F apn+1 − Fn+1| ≤M5‖F apn+1 − Fn+1‖w0,0 . (60)



Title Suppressed Due to Excessive Length 19

Using (60) and (56), we can choose proper N and h such that

|F apn+1 − Fn+1| ≤ F ∗. (61)

Similar to the proof of the Theorem 5.2 and (61), we can show that

|Lapn+1 − Ln+1| ≤ L∗, (62)

and

|Hap
n+1 −Hn+1| ≤ H∗. (63)

Thus, using (61), (62), (63) and Theorem 5.2, we can deduce that the sequence {Ln, Hn, Fn, Rn}∞n=0

converges to the exact solution of the problem (6)-(10) on [0, 1] × [0, T ]. Now, using the principle of

mathematical induction, Theorem (5.2), (42), (43), (61), (62) and (63), we have

|Lapk − Lk| < L∗, |Hap
k −Hk| < H∗, |F apk − Fk| < F ∗, |Rapk −Rk| < R∗, 0 ≤ k ≤M. (64)

5.2 Stability

In this section, we want to prove the stability of the presented method. For this purpose, first, we

consider the perturbed problem as follows

∂L

∂t
− 1

(1−R(t))2
∂2L

∂ρ2
+(

−2

ρ(1−R(t))2 +R(t)(1−R(t))
+
v(0, t)(ρ− 1)

1−R(t)
+

2(1− ρ)α

1−R(t)

)
∂L

∂ρ
= fL(L,F ) + p1(ρ, t),

∂L

∂ρ
= 0 at ρ = 0, t > 0,

∂L

∂ρ
= 0 at ρ = 1, t > 0, L(ρ, 0) = 0, (65)

∂H

∂t
− 1

(1−R(t))2
∂2H

∂ρ2
+(

−2

ρ(1−R(t))2 +R(t)(1−R(t))
+
v(0, t)(ρ− 1)

1−R(t)
+

2(1− ρ)α

1−R(t)

)
∂H

∂ρ
= fH(H,F ) + p2(ρ, t),

∂H

∂ρ
= 0 at ρ = 0, t > 0,

∂H

∂ρ
= 0 at ρ = 1, t > 0, H(ρ, 0) = 0, (66)

∂F

∂t
− D

(1−R(t))2
∂2F

∂ρ2
+(

−2D

ρ(1−R(t))2 +R(t)(1−R(t))
+

v

1−R(t)
+
v(0, t)(ρ− 1)

1−R(t)
+

2D(1− ρ)β

1−R(t)

)
∂F

∂ρ

= fF (L,H, F ) + p3(ρ, t), (67)

∂F

∂ρ
= 0 at ρ = 0, t > 0,

∂F

∂ρ
= 0 at ρ = 1, t > 0, F (ρ, 0) = 0, (68)
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1

1−R(t)

∂v

∂ρ
= fv(L,H, F ) + p4(ρ, t),

v(ρ, t) = 0 at ρ = 1, t > 0, (69)

dR

dt
= v(0, t), t > 0,

R(0) = ε. (70)

In the following theorem, the stability of the proposed method is proved.

Theorem 5.3 Let ε1 be a positive constant and |pi| < ε1 (i = 1, . . . , 4). Then, under the assumptions

of Lemma 5.1, there exist positive constants M∗1 , M
∗
2 such that

max
k=0,...,n+1

{ξk} ≤M∗1 (eM
∗
2 T − 1)(h∗2 + ε1 + (K(N))

1
2 ),

where

ξk = ‖
∂(Lapk − Lk)

∂ρ
‖w0,0 + ‖

∂(Hap
k −Hk)

∂ρ
‖w0,0 + ‖

∂(F apk − Fk)

∂ρ
‖w0,0 + |Rapk −Rk|.

Proof If we solve the perturbed problem (65)-(70) using the presented method, one can conclude that

there exist a positive constant M∗4 such that

max
k=0,...,n+1

{φk} ≤ (1+M∗4h
∗)φn+(1+M∗4h

∗)2 max {φk}k=0,1,...n+(1+M∗4h
∗)(h∗‖E‖2∞+h∗K(N)+h∗ε1),

where ‖E‖∞ ≤M∗h∗2 and M∗ is a positive constant and also,

φk = ‖
∂(Lapk − Lk)

∂ρ
‖2w0,0 + ‖

∂(Hap
k −Hk)

∂ρ
‖2w0,0 + ‖

∂(F apk − Fk)

∂ρ
‖2w0,0 + |Rapk −Rk|

2,

lim
N→∞

K(N) = 0.

So we get

max
k=0,...,n+1

{φk} ≤ (1 +M∗3h
∗) max {φk}k=0,1,...n + (1 +M∗3h

∗)(h∗‖E‖2∞ + h∗K(N) + h∗ε1),

then, by applying the above recurrence relation we have

max
k=0,...,n+1

{φk} ≤ (1 +M∗3h
∗)n+1φ0 + | (1 +M∗3h

∗)n+1 − 1

M∗3h
∗ |(h∗‖E‖2∞ + h∗K(N) + h∗ε1).

Therefore, there exist costats M∗1 and M∗2 such that we have

max
k=0,...,n+1

{ξk} ≤M∗1 (eM
∗
2 T )(h∗2 + ε1 + (K(N))

1
2 ).

�
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6 Numerical experiments

The main target of this section is to investigate the numerical solution of the model of Atherosclerosis

from two perspectives: 1-numerical solution point of view 2-biological simulation point of view. We

first examine the numerical results from the first perspective. We solve the model of Atherosclerosis

by applying the finite difference/collocation method. The most important question to ask is how to

construct trial functions which satisfy the boundary condition to establish the collocation method. The

first and simple way that comes to mind is to use a linear combination of monomial polynomials. So,

we approximate the functions L(ρ, t), H(ρ, t), F (ρ, t) in the form of (37) as follows

LNn+1(ρ) =

N∑
i=0

ln+1
i pi(ρ), HN

n+1(ρ) =

N∑
i=0

hn+1
i pi(ρ), FNn+1(ρ) =

N∑
i=0

fn+1
i pi(ρ),

where

pi(ρ) =
ρi+2

i+ 2
− ρi+1

i+ 1
, i = 1, 2, . . . , N,

which will denote by ”TFBM” (Trial Functions Based on Monomials). Also, the Gauss quadrature

points {x0,0i }Ni=1 (i.e., the zeros of Legendre polynomial of degree N + 1) are considered as collocation

points. The typical parameter values and the initial conditions for our numerical simulations are: k1 =

10, k2 = 10, K1 = 10−2, K2 = 0.5, D = 8.64 × 10−7, µ1 = 0.015, µ2 = 0.03, r1 = 2.42 × 10−5, r2 =

5.45×10−7, λ = 2.573×10−3, δ = −2.541×10−3, M0 = 5×10−5, α = 1, β = 0.01, L0 = 14×10−4, H0 =

6 × 10−4, F0 = 0, which are taken from [19, 22]. Notice that in our simulations, the radius of initial

plaque ε in (5) is considered to be 0.9 cm.

Now, in order to verify our numerical results, we need to present the following definition.

Definition 6.1 A sequence {xn}∞n=1 is said to converge to x with order p if there exists a constant C

such that |xn − x| ≤ Cn−p, ∀n. This can be written as |xn − x| = O(n−p). A practical method to

calculate the rate of convergence for a discretization method is to use the following formula

p ≈ loge(en2
/en1

)

loge(n1/n2)
, (71)

where en1
and en2

denote the errors with respect to the step sizes
1

n1
and

1

n2
, respectively [20].

It is valuable to point out that our numerical calculations are carried out using the MATLAB 2018a

program in a computer with the Intel Core i7 processor (2.90 GHz, 4 physical cores).
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Error of M=100 M=200 M=300 M=400 M=500 M=600

L 1.832329e− 05 7.33126e− 06 4.11065e− 06 2.58829e− 06 1.70362e− 06 1.12596e− 06

H 2.57909e− 07 1.03322e− 07 5.79623e− 08 3.65061e− 08 2.40324e− 08 1.58853e− 08

F 6.60404e− 09 4.21233e− 09 3.16373e− 09 2.26606e− 09 1.60468e− 09 1.11186e− 09

Table 1: Maximum time-error with N=10 and various M by considering TFBM.

100 150 200 250 300 350 400 450 500 550 600
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-7

10
-6

10
-5

10
-4

Fig. 3: Maximum time-error functions with N=10 and various M by considering TFBM.

Lies in the fact that it is hard or sometimes impossible to reach the exact solution of most of the cou-

pled nonlinear models analytically, and because we have shown that the presented method for solving

the model is stable and convergent (See Theorem 5.2), so, we consider numerical results for the large

M = 300 and N = 10 as an exact solution and for other values of M , we report the time-error in

Table 1. To better see the time-error of the presented approach numerically, we report the obtained

results in Figure 3. As we see in Table 2 and Figure 4, the non-classical finite difference method pre-

sented in (24) has almost O(h2) error, which verifies our theoretical results presented in Theorem 5.2.
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Error N=2 N=4 N=6 N=8

L 0.399186e-05 0.286885e-05 0.190745e-05 0.119180e-05

H 0.504070e-06 0.359887-06 0.239578e-06 0.149847e-06

F 0.293787e-07 0.217007e-07 0.144762e-07 0.905871e-08

Table 3: Maximum space-error with M=100 and various N by considering TFBM.

CN N=4 N=6 N=8 N=10 N=12 N=14 N=16 N=18 N=20

Eq. (1) 272e+04 115e+06 529e+07 258e+09 131e+11 689e+12 369e+12 202e+15 singular

Eq. (2) 272e+04 115e+06 529e+07 258e+09 131e+11 689e+12 369e+12 202e+15 singular

Eq. (3) 367e+05 303e+07 229e+09 166e+11 117e+13 814e+14 558e+15 380e+17 singular

Table 4: Condition number of the coefficient matrices (CN).
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Fig. 4: The behaviour of Maximum time-error

with N=10 and various M in Log-Log scale by

considering TFBM.

Rate of convergence for

M L H F

100 - - -

200 1.321 1.319 0.648

300 1.426 1.425 0.706

400 1.607 1.607 1.159

500 1.874 1.873 1.546

600 2.271 2.270 2.012

Table 2: The rate of convergence with respect

to time variable with N=10 and various M by

considering TFBM.

In Table 3, we have presented the maximum space-errors with M = 100 and various values of N .

To better see the space-error of numerical results, Figure 5 is presented. It is worth to note that in

the numerical results, the discrepancy between an exact value and some approximation to it, is called

”maximum error” and is denoted by E∞. In Table 4, the condition numbers (CN) of the coefficient

matrices of the collocation method are shown. In this table, high values of condition numbers are
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Fig. 5: Maximum space-error functions with M=100 and various N by considering TFBM.

highlighted in bold. Because of the fact that the condition number of the coefficient matrices grows

very fast when N > 10, unfortunately, the Matlab software can not accurately extract the results. To

overcome this difficulty, we need to propose proper trial functions which reduce the condition number

significantly. In this case, we decide to consider Legendre polynomials (Jacobi polynomials with α = β =

0) to construct trial functions for the collocation method [12]. So, let Ln(x) be the Legendre polynomial

of degree n and set

pn(x) = Ln(x) + cnLn+1(x) + dnLn+2(x), n ≥ 0, (72)

where the constants cn and dn are uniquely determined in such a way that pn(x) satisfies the boundary

conditions; in other word,
∂pn
∂x

(±1) = 0, ∀n ≥ 0.

According to the features of Legendre polynomials we have

∂pn
∂x

(±1) =
∂Ln
∂x

(±1) + cn
∂Ln+1

∂x
(±1) + dn

∂Ln+2

∂x
(±1) =

1

2
(±1)n−1n(n+ 1) + cn

1

2
(±1)n(n+ 1)(n+ 2) + dn

1

2
(±1)n+1(n+ 2)(n+ 3) = 0, (73)

therefore, by solving (73) one can easily conclude that

cn = 0, dn = − n(n+ 1)

(n+ 2)(n+ 3)
. (74)
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Error of M=100 M=200 M=300 M=400 M=500 M=600

L 2.21985e− 06 9.74874e− 07 5.66407e− 07 3.63391e− 07 2.41969e− 07 1.61184e− 07

H 8.08703e− 06 3.67228e− 06 2.13760e− 06 1.37270e− 06 9.14550e− 07 6.09439e− 07

F 3.89421e− 06 1.68696e− 06 9.75669e− 07 6.24533e− 07 4.15285e− 07 2.76382e− 07

Table 5: Maximum time-error with N=50 and various M by considering TFBL.

100 150 200 250 300 350 400 450 500 550 600

10
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10
-6

10
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Fig. 6: Maximum time-error with N=50 and various M by considering TFBL.

Thus (72) becomes as follows

pn(x) = Ln(x)− n(n+ 1)

(n+ 2)(n+ 3)
Ln+2(x), n ≥ 0. (75)

So we can approximate the functions L(ρ, t), H(ρ, t), F (ρ, t) in the form of (37) as follows

LNn+1(ρ) =

N∑
i=0

ln+1
i pi(ρ), HN

n+1(ρ) =

N∑
i=0

hn+1
i pi(ρ), FNn+1(ρ) =

N∑
i=0

fn+1
i pi(ρ),

where

pi(ρ) = Li(ρ)− (i+ 1)i

(i+ 3)(i+ 2)
Li+2(ρ), i = 0, . . . , N, (76)

which we will denote by ”TFBL” (Trial Functions Based on Legendre polynomials).

Remark 6.1 The scaling factors in the trial functions (76) play the role of precondition factor for the

collocation matrices and reduce the condition number. [26,29].
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Error of N=10 N=20 N=40 N=80 N=100

L 1.53065e− 10 7.04107e− 12 6.98306e− 13 1.21789e− 13 7.34745e− 14

H 2.96583e− 11 8.76799e− 13 2.18054e− 13 8.28391e− 14 5.54617e− 14

F 1.44016e− 11 6.17966e− 12 3.09801e− 12 1.69595e− 12 1.34437e− 12

Table 7: Maximum space-error with M=200 and various N by considering TFBL.
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Fig. 7: The behaviour of maximum time error with

N=50 and various M in Log-Log scale by considering

TFBL.

Rate of convergence for

M L H F

100 - - -

200 1.118 1.179 1.206

300 1.339 1.334 1.350

400 1.542 1.539 1.550

500 1.822 1.822 1.828

600 2.228 2.226 2.223

Table 6: The rate of convergence with

respect to the time variable with N=50

and various M by considering TFBL.

It should be noted that in order to use Legendre polynomials, we map the domain of the problem

(19)-(23) to [−1, 1].

We also point out that the Gauss quadrature points {x0,0i }Ni=1 are considered as the collocation points.

As mentioned in TFBM case, because of the stability and convergence of the presented method, we

consider the solution of the problem with N = 100 and M = 1000 as an exact solution. In Table 5,

we have presented the maximum time-error N = 51 and various values of M . It is observed that the

time-error of the presented approach numerically, we report the obtained results in Figure 6. As we can

see from Table 6 and Figure 7, the non-classical finite difference method presented in (24) has almost

O(h2) error, which verifies our theoretical results presented in convergence Theorem 5.2. In Table 7, we

illustrate the maximum space-errors M = 200 and various values of N by considering the solution of
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Fig. 8: Maximum space error function for M=200 and various N.

the problem with N = 200 and M = 200 as an exact solution. To better observe the space-error of nu-

merical results, Figure 8 is presented. Also, the condition number of the coefficient matrices constructed

by collocation method for equations (1)-(4) are shown in Table 8 and Figure 9; which shows that, as

we expect from TFBL, the condition number of matrices do not increase significantly by increasing N

even for N = 150 . For a better comparison of condition numbers in both TFBM and TFBL cases,

Figure 10 is presented. One can easily see that using Legendre polynomials, the condition number of

the coefficient matrices in the collocation method is significantly less than TFBM.

Now, in this position, the examination of the numerical solutions from the perspective of biology

and simulation is reported by presenting the rate of tumor growth with three various values of pairs

(L0, H0). The results are presented in Table 9 and Figure 11, and they are compared to the risk map

illustrated in figure 12 and Retrieved from [19]. As we expect, the level of L0 and H0 in blood di-

rectly affects the growth and shrink of the plaque, that means for the values of (L0, H0) below the

”zero growth”, the plaque grows as shown in Figure 13, and for the values of (L0, H0) above the

”zero growth” the plaque shrinks, as shown in Figure 14. To better see the radius changes, a small

part of the plaque in the vessel is magnified and is presented in the figures mentioned above. It is



28 F. Nasresfahani, M. R. Eslahchi

10
1

10
2

10
0

10
5

10
10

10
15

10
20

10
1

10
2

10
0

10
5

10
10

10
15

10
20

Fig. 10: Comparison of condition numbers of the coefficient matrices in both TFBM and TFBL cases.

noteworthy that arrows in these two figures indicate the direction of growth or shrink of the plaque.
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2

Fig. 9: Condition number of the coeffi-

cient matrices (CN).

N Eq. (1) Eq. (2) Eq. (3)

10 3.245 3.245 4.096

20 17.475 17.475 7.230

40 1.302e+02 1.302e+02 13.61

80 1.022e+02 1.022e+02 26.14

100 1.990e+02 1.990e+02 32.05

Table 8: Condition number of the coefficient ma-

trices.



Title Suppressed Due to Excessive Length 29

0 10 20 30 40 50 60

0.88

0.89

0.9

0.91

0.92

0.93

0.94

Fig. 11: Variation of the radius of the plaque toward the various level of L0 and H0 in blood during

the days.

Fig. 12: Risk Map. The values of LDL and HDL are measured in mg/dl = 10−4g/cm3 [19].
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Fig. 13: Variation of the radius of the plaque with L0 = 150 and H0 = 45 in a small part of the artery.

Fig. 14: Variation of the radius of the plaque with L0 = 120 and H0 = 60 in a small part of the artery.
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(L0, H0) 0 day 10 day 20 day 30 day 40 day 50 day 60 day

(150, 45) 0.900000 0.897461 0.894874 0.892264 0.889634 0.886984 0.884316

(120, 60) 0.900000 0.907537 0.914481 0.920822 0.926622 0.931935 0.936810

(46.5, 139.5) 0.900000 0.900008 0.900018 0.900027 0.900037 0.900046 0.900055

Table 9: Variation of the radius of the plaque toward the various level of L0 and H0 in blood during

the days.

7 Conclusion

There are many mathematical methods for solving biological models. However, mathematical modeling

often produces nonlinear differential equations. Therefore, we cannot always obtain the exact solution of

these equations; so, developing numerical techniques to solve these equations is required. In this study, a

mathematical model of Atherosclerosis is solved numerically and the convergence and stability analysis

are presented. For the readers convenience, we give the main contributions of this study as follows

• In this article, we use the front fixing method to convert the moving boundary problem (6)-(10) to a fix

one (11)-(15), because classical numerical methods are not effective to solve free and moving boundary

problems and moreover, because of the suitability of the front fixing method to apply to problems with

regular geometries along with the mesh-based methods.

• To achieve more comfortable results for numerical analysis, we have simplified the model by changing

the mix boundary condition of the equations (11)-(13) to a Neumann one by applying a suitable change

of variables (17)-(18).

• To solve nonlinear systems, one way is to linearize the equations of the system and then, solve the

linear one by classical methods. Since the model studied in this article is nonlinear, we have used Taylor

theorem simultaneously both to linearize the equations and for constructing new second-order non-

classical discretization formula to approximate time discretization (Finite difference method).

• In this article, we use spectral collocation method in space. To construct trial functions which satisfy

the boundary conditions, the first way that comes to mind is to use a linear combination of monomial

polynomials. But, there are some problems to use this kind of polynomials. some of these problems are

as follows
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1. The condition number of collocation matrices increases significantly by increasing the size of the

matrices for N ≥ 10 and because of that, we are limited to increase the collocation points and achieve

arbitrary errors. (See Table 4 and Table 3)

2. The high error of collocation method affects the error of the finite difference method (See Table 1).

To the above reasons, we use a linear combination of classical orthogonal polynomials or orthogonal

functions to construct trial functions.

So, using orthogonal polynomials, the condition number of collocation matrices does not increase sig-

nificantly by increasing the collocation points even for N = 150 (See Table 8, Figure 9 and Figure 10),

and because of that, the error of the collocation method decreases compared to the TFBM case (See

Table 7 and Figure 8).

• Moreover, the convergence and stability of the presented method is proved (See Theorem 5.2 and

Theorem 5.3) and the order of convergence is presented. Numerical results in both TFBM and TFBL

cases show that the finite difference method displays an O(h2) order of convergence, as we expect from

convergence Theorem 5.2 (See Figure 4 and Figure 7), and the space-error shows that using the collo-

cation method, the results are converging to the exact solution.

• As illustrated in Figure 11 and Table 9, we present the effect of the level of L0 and H0 in blood on the

growth and shrink of the plaque. It is easily can be seen that for (L0, H0) = (150, 45) (below the ”zero

growth”), the plaque grows and for (L0, H0) = (120, 60) (above the ”zero growth”) the plaque shrinks.
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