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Abstract

In a graph G, the cardinality of the smallest ordered set of vertices that distin-
guishes every element of V (G) ∪ E(G) is called the mixed metric dimension of G,
and it is denoted by mdim(G). In [12] it was conjectured that for a graph G with
cyclomatic number c(G) it holds that mdim(G) ≤ L1(G) + 2c(G) where L1(G) is
the number of leaves in G. It is already proven that the equality holds for all trees
and more generally for graphs with edge-disjoint cycles in which every cycle has
precisely one vertex of degree ≥ 3. In this paper we determine that for every Theta
graph G, the mixed metric dimension mdim(G) equals 3 or 4, with 4 being attained
if and only if G is a balanced Theta graph. Thus, for balanced Theta graphs the
above inequality is also tight. We conclude the paper by further conjecturing that
there are no other graphs, besides the ones mentioned here, for which the equality
mdim(G) = L1(G) + 2c(G) holds.

1 Introduction

Let G be a simple connected graph with n vertices and m edges. The distance between
a pair of vertices u, v ∈ V (G) is defined as the length of the shortest path connecting u
and v in G and is denoted by dG(u, v). The distance between a vertex u ∈ V (G) and
an edge e = vw ∈ E(G) is defined by dG(u, e) = dG(u, vw) = min{dG(u, v), dG(u,w)}.
For both these distances we simply write d(u, v) and d(u, e) if no confusion arises. We
say that a vertex s ∈ V (G) distinguishes (or resolves) a pair x, x′ ∈ V (G) ∪ E(G) if
d(s, x) 6= d(s, x′). We say that a set S ⊆ V (G) is a mixed metric generator if every pair
x, x′ ∈ V (G) ∪ E(G) is distinguished by at least one vertex from S. The cardinality of
the smallest mixed metric generator is called the mixed metric dimension of G, and it is
denoted by mdim(G).
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The notion of the mixed metric dimension is the natural generalization of the notions
of the vertex metric dimension and the edge metric dimension which are defined as the
cardinality of the smallest set of vertices which distinguishes all pairs of vertices and
all pairs of edges respectively. The notion of vertex metric dimension for graphs was
independently introduced by [3] and [13], under the names resolving sets and locating
sets, respectively. Even before, this notion was introduced for the realm of metric spaces
[1]. The concept of vertex metric dimension was recently extended from resolving vertices
to resolving edges of a graph by Kelenc, Tratnik and Yero [5], which lead to the definition
of the edge metric dimension. Finally, it was further extended to resolving mixed pairs of
edges and vertices by Kelenc, Kuziak, Taranenko, and Yero [6] which resulted with the
notion of the mixed metric dimension. All these variations of metric dimensions attracted
interest (see [9, 11, 12, 15, 16]), while for a wider and systematic introduction of the topic
metric dimension that encapsulates all three above mentioned variations, we recommend
the PhD thesis of Kelenc [4].

In literature, among other questions, the mixed metric dimension of trees, unicyclic
graphs and graphs with edge disjoint cycles was studied. Denoting by L1(G) the number
of leaves in a graph G, we first cite the following result from [6].

Proposition 1 For every tree T , it holds

mdim(T ) = L1(T ).

A graph in which all cycles are pairwise edge disjoint is called a cactus graph. Having
that in mind, the following results were proven in [12], first for unicyclic graphs and after
for all cactus graphs.

Theorem 2 Let G 6= Cn be a cactus graph with c cycles. Then

mdim(G) ≤ L1(G) + 2c,

and the upper bound is attained if and only if every cycle in G has exactly one vertex of
degree ≥ 3.

The cyclomatic number of a graph G is defined by c(G) = m− n+ 1. As the number
of cycles in trees and graphs with edge disjoint cycles equals the cyclomatic number, this
lead the authors of [12] to make the following conjecture.

Conjecture 3 Let G 6= Cn be a graph, c(G) its cyclomatic number, and L1(G) the number
of leaves in G. Then

mdim(G) ≤ L1(G) + 2c(G). (1)

Notice that Proposition 1 and Theorem 2 imply that the equality in (1) holds for all
cactus graphs in which every cycle has precisely one vertex of degree ≥ 3 (this includes
all trees and unicyclic graphs with precisely one vertex on the cycle with degree ≥ 3). A
natural question that arises is - are there any other graphs for which the equality in (1)
holds? In this paper we will try to further clarify this question.
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2 Preliminaries

The (vertex) connectivity κ(G) of a graph G is the minimum size of a vertex cut, i.e. any
subset of vertices S ⊆ V (G) such that G− S is disconnected or has only one vertex. We
say that a graph G is k-connected if κ(G) ≥ k. As we are going to study the graphs for
which the equality in (1) holds, it is useful to state the following result from [12].

Proposition 4 Let G be a 3-connected graph. Then mdim(G) < 2c(G).

This proposition implies that equality in (1) may hold only for graphs with κ(G) = 1
(beside cactus graphs in which every cycle has precisely one vertex of degree ≥ 3) and
κ(G) = 2. A class of graphs with κ(G) = 2 which will be of interest to us are so called
Theta graphs.

We say that a graph G is a Theta graph or a Θ-graph if G is a graph with two vertices
u and v of degree 3 and all other vertices in G are of degree 2. We say that a Theta graph
G is balanced if the lengths of all three paths connecting u and v differ by at most 1,
otherwise we say that G is unbalanced. In this paper we will prove that the equality in
(1) holds also for balanced Theta graphs. But, before we show that, we need to introduce
the following notion which will be of use to us in the sequel.

Let G be a graph and let S ⊆ V (G) be a set of vertices of a graph G. Any shortest
path between two vertices from S is called a S-closed path. Let x and x′ be a pair of
elements from the set V (G)∪E(G). We say that a pair x and x′ is enclosed by S if there
is a S-closed path containing x and x′. We say that a pair x and x′ is half-enclosed by S
if there is a vertex s ∈ S such that a shortest path from s to x contains x′ or a shortest
path from s to x′ contains x.

Observation 5 Let G be a graph, let S ⊆ V (G) be a set of vertices in G and let x and x′

be a pair of elements from the set V (G)∪E(G). If x and x′ are enclosed by S, then x and
x′ are distinguished by S. If x and x′ are half-enclosed by S then x and x′ are distinguished
by S in all cases except possibly when x and x′ are a pair consisting of a vertex and an
edge which are incident to each other.

We say that a subgraph H of a graph G is an isometric subgraph, if for any two
vertices u, v ∈ V (H) it holds that dH(u, v) = dG(u, v). The following notation for paths is
used. Suppose that P is a path and u, v ∈ V (P ), then by P [u, v] we denote the subpath
of P connecting vertices u and v, while by P (u, v) we denote P [u, v] − {u, v}. Notions
P [u, v) and P (u, v] are also used and they denote the subpaths where only one of the
end-vertices of P [u, v] is excluded.

3 Balanced Theta graphs

Notice that every Theta graph G has the cyclomatic number c(G) = 2. Also, for every
Theta graph G the number of leaves equals zero, i.e. L1(G) = 0. Therefore, for a Theta
graph G, the equality in (1) will hold if and only if mdim(G) = 4. In this section we will
show that for balanced Theta graphs precisely that holds, i.e. mdim(G) = 4 if and only
if a Theta graph G is balanced. First we need the following lemma.
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Lemma 6 Let G be a balanced Theta graph with vertices u and v of degree 3. Let S ⊆
V (G) be a set of vertices in G such that |S| = 3 and S contains precisely one internal
vertex from each of the three distinct paths connecting vertices u and v. Then S is not a
mixed metric generator in G.

Proof. Let P1, P2 and P3 denote the three distinct paths in G connecting vertices u
and v. For a pair of vertices v1 ∈ Pi and v2 ∈ Pj, where i 6= j, we denote by du(v1, v2)
(resp. dv(v1, v2)) the length of the shortest path connecting vertices v1 and v2 and which
contains vertex u (resp. v). By Cij we denote the cycle induced by paths Pi and Pj.
Let S = {s1, s2, s3} be a set of vertices which contains precisely one internal vertex from
each of the three distinct paths connecting vertices u and v, where the elements of S are
denoted so that si belongs to Pi. Let Pij and P ′

ij be the two internally vertex disjoint paths

connecting vertices si and sj, which induce the cycle Cij, denoted so that |Pij| ≤
∣∣P ′

ij

∣∣ . If
P12 and P13 do not share any other vertex besides s1, then either P12 and P23 share it or
P13 and P23 do. Therefore, at least one pair of paths Pij shares one more vertex besides
vertices from S, say P12 and P13.

Next, we distinguish the following three cases.

Case 1: |P12| < |P ′
12| and |P13| < |P ′

13| . In this case let w be the neighbor of s1 not
contained in paths P12 and P13, then s1 and s1w are not distinguished by S, so S is not
a mixed metric generator.

Case 2: |P12| = |P ′
12| and |P13| = |P ′

13| . In this case two edges incident to s1 are not
distinguished by S, so S cannot be a mixed metric generator.

Case 3: |P12| = |P ′
12| and |P13| < |P ′

13| . First notice that |P12| = |P ′
12| implies that the

cycle C12 is even and the pair of vertices s1 and s2 is an antipodal pair on C12. Since G is
a balanced Theta graph, the fact that C12 is even implies |P1| = |P2| . Therefore, u and v
are also an antipodal pair on C12 and it holds that

d(s1, u) = d(s2, v) and d(s1, v) = d(s2, u). (2)

As we assumed that P12 and P13 share another vertex beside s1, notice that precisely one
of the vertices u and v, say v, belongs to both P12 and P13.

Claim A. If d(s1, v) > d(s2, v), then |P23| < |P ′
23|.

To prove Claim A, let us assume d(s1, v) > d(s2, v). Then (2) promptly implies d(s1, u) <
d(s2, u). Also, since P13 leads through the vertex v, we have

d(s1, v) + d(v, s3) ≤ d(s1, u) + d(u, s3).

Therefore, we obtain

dv(s2, s3) = d(s2, v) + d(v, s3) < d(s1, v) + d(v, s3)

≤ d(s1, u) + d(u, s3) < d(s2, u) + d(u, s3) = du(s2, s3).

This means that P23 leads through v, while P ′
23 leads through u, and |P23| < |P ′

23| . So,
the claim is proven.
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In the light of Claim A, notice that either d(s1, v) ≤ d(s2, v) or d(s1, v) > d(s2, v). If
d(s1, v) > d(s2, v), then by Claim A we have |P23| < |P ′

23| , so switching indices 1 and 2
reduces this case to the case d(s1, v) ≤ d(s2, v). Therefore, without loss of generality, we
may assume that d(s1, v) ≤ d(s2, v). From this and (2) we immediately obtain

d(s1, v) ≤ d(s2, v) = d(s1, u). (3)

Therefore, there must exist a vertex v′ on P1, distinct from v, such that d(v, s1) = d(s1, v
′).

Let a and b be vertices on P3 such that d(v, a) = d(v, s1) and d(u, b) = d(v, s1). This
situation is illustrated by Figure 1 a) and we will further consider the position of s3 on
P3.

a) b) c)

Figure 1: In the proof of Lemma 6: a) the position of vertices s1, s2, v
′, a and b; b) the

contradictory path P13 when d(v, s3) > d(v, b); c) the undistioguished pair s3 and s3w
when d(v, s3) < d(v, a).

Claim B. It holds that d(v, s3) ≤ d(v, b).

Asume the contrary, i.e. d(v, s3) > d(v, b) and notice that

du(s1, s3) < |P1| − d(v, s1) + d(u, b) = |P1| ,
dv(s1, s3) = d(v, s1) + d(v, s3) > d(v, s1) + d(v, b) = d(v, s1) + |P3| − d(u, b) = |P3| .

Now, there are two possibilities, either |P3| ≥ |P1| or |P3| < |P1| . Assuming |P3| ≥ |P1|
leads us to the conclusion that dv(s1, s3) > |P3| ≥ |P1| = du(s1, s3), which means that
the shortest path P13 from s1 to s3 contains u which is a contradiction (see Figure 1
b)). Assuming the other possibility |P3| < |P1| , leads us to dv(s1, s3) > |P3| = |P1| −
1 = du(s1, s3) − 1, i.e. dv(s1, s3) ≥ du(s1, s3). Therefore, either dv(s1, s3) > du(s1, s3)
which again leads to the conclusion that P13 contains u which is a contradiction, or
dv(s1, s3) = du(s1, s3) which implies |P13| = |P ′

13| which contradicts the assumption of
this case. Therefore, we have proven that assumption d(v, s3) > d(v, b) always leads to a
contradiction, so Claim B is proven.

Claim C. If d(v, s3) < d(v, a), then S is not a mixed metric generator.
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Assume d(v, s3) < d(v, a) and let w denote the neighbor of s3 such that d(w, v) > d(s3, v)
as is illustrated by Figure 1 c). Let x = s3 and x′ = s3w and notice that x and x′ are not
distinguished by s3. To prove that x and x′ are not distinguished by s2 either, recall that
the vertex a was chosen so that d(v, a) = d(v, s1) = d(u, s2). Having that in mind, notice
that

du(w, s2) ≥ d(a, u) + d(u, s2) = |P3| − d(a, v) + d(u, s2) = |P3| ,
dv(w, s2) ≤ d(a, v) + d(v, s2) = d(a, v) + |P2| − d(u, s2) = |P2| ,

so we have
dv(w, s2)− du(w, s2) ≤ |P2| − |P3| ≤ 1.

If dv(w, s2)− du(w, s2) ≤ 0 then the shortest path from both x and x′ to s2 leads through
v, so they are not distinguished by s2. Otherwise, if dv(w, s2)−du(w, s2) = 1, that implies
du(w, s2) < dv(w, s2) and dv(s3, s2) + 1 = du(s3, s2), from which we further obtain

d(x′, s2) = d(w, s2) = du(w, s2)

d(x, s2) = d(s3, s2) = dv(s3, s2) = dv(w, s2)− 1 = du(w, s2)

so x and x′ are again not distinguished by s2. The inequality (3) now implies that x and
x′ are not distinguished by s1 either. We conclude that x and x′ are not distinguished by
S, so the claim is established.

Given Claims B and C, the only remaining possibility is d(v, a) ≤ d(v, s3) ≤ d(v, b).
Recall that |P1| = |P2| and let |P3| = |P1| + r where the fact that G is balanced implies
that r can take only values −1, 0, 1. Let us further denote

q =
d(v′, u) + d(u, s3)− d(v, s3)

2
=

2 |P1| − 2d(v, s1) + r − 2d(v, s3)

2
. (4)

Notice that the second expression for q in (4) implies that q is integer if and only if r = 0.
We also want to use the first expression for q in (4) to derive a bound on d(v′, u) from it.
For that purpose notice that

d(u, s3)− d(v, s3) = |P3| − 2d(s3, v) = |P1|+ r − 2d(v, a)− 2d(s3, a)

≤ |P1|+ r − 2d(v, a) = |P1|+ r − 2d(v, s1) = d(v′, u) + r

with equality holding if and only if d(s3, a) = 0. Plugging this in (4) yields

q ≤ d(v′, u) + d(v′, u) + r

2

which further implies d(v′, u) ≥ q − r
2
. Let w be the vertex from P1[v

′, u] such that
d(v′, w) = bqc . Notice that such a vertex w must exist on P1 because the fact that q is
integer only for r = 0 implies

d(v′, w) = bqc ≤ q − r

2
≤ d(v′, u).
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Moreover, notice that in the case when r = −1 even stricter upper bound for d(v′, w)
holds, i.e. d(v′, w) ≤ q − r

2
− 1 ≤ d(v′, u)− 1. Now, let w′ be the vertex on P2 such that

d(w′, v) = bqc.

Claim D. It holds that du(w, s3) < dv(w, s3).

Notice that

du(w, s3) = d(w, u) + d(u, s3) = d(v′, u)− d(w, v′) + d(u, s3),

dv(w, s3) = d(w, v′) + 2(v, s1) + d(v, s3).

Therefore, we have

du(w, s3)− dv(w, s3) = d(v′, u)− 2d(w, v′) + d(u, s3)− 2(v, s1)− d(v, s3).

Now the fact that d(v′, w) = bqc and the definition of q further imply

du(w, s3)− dv(w, s3) = −2 bqc − 2(v, s1) + 2q < 0

which concludes the proof of Claim D.

Claim E. It holds that dv(w
′, s3) < du(w′, s3).

Notice that

dv(w
′, s3) = d(w′, v) + d(v, s3) = bqc+ d(v, s3),

du(w′, s3) = d(w′, u) + d(u, s3) = |P2| − bqc+ d(u, s3).

Therefore, having in mind that |P2| = |P1| we further have

dv(w
′, s3)− du(w′, s3) = 2 bqc+ d(v, s3)− |P1| − d(u, s3) =

= 2 bqc+ d(v, s3)− d(v′, u)− 2d(v, s1)− d(u, s3)

from which, given the definition of q, we obtain

dv(w
′, s3)− du(w′, s3) = 2 bqc − 2d(v, s1)− 2q < 0

which proves Claim E.

Now we distinguish the following three subcases with respect to the value of r.

Subcase 3.a: r = −1. Recall that in this case d(v′, w) ≤ d(v′, u) − 1, which implies
w 6= u, so there exists a neighbor z of the vertex w on P1, which is further from s1 than
w. Also, let z′ be the neighbor of w′ on P2 which is further from v than w′. We want to
prove that the edges x = wz and x′ = w′z′ are not distinguished by S, see Figure 2 a) for
illustration. First note that

d(x, s1)− d(x′, s1) = bqc+ d(v′, s1)− (bqc+ d(v, s1)) = 0

which implies that s1 does not distinguish x and x′. Since s1 and s2 are an antipodal pair
of vertices on the even cycle C12, if s1 does not distinguish x and x′ then s2 does not
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distinguish them either. The only remaining possibility is for s3 to distinguish x and x′,
but Claims D and E here imply

d(x, s3)− d(x′, s3) = d(v′, u)− bqc − 1 + d(u, s3)− (bqc+ d(v, s3)),

where the definition of q further implies

d(x, s3)− d(x′, s3) = −2 bqc − 1 + 2q = 0

from which we conclude that s3 does not distinguish x and x′ either. Therefore, x and x′

are not distinguished by S, which means that S cannot be a mixed metric generator.

a) b) c)

Figure 2: With the proof of Lemma 6, the undistinguished pair x and x′ when d(v, a) ≤
d(v, s3) ≤ d(v, b) and a) r = −1; b) r = 0; c) r = 1.

Subcase 3.b: r = 0. In this subcase vertices x = w and x′ = w′ are not distinguished by
S (see Figure 2 b)), which is shown similarly as in Subcase 2.a, so S cannot be a mixed
metric generator.

Subcase 3.c: r = 1. In this subcase notice that w = u if and only if d(s3, a) = 0, i.e.
s3 = a. When s3 = a then x = s3 and x′ = s3z are not distinguished by S, so we may
assume s3 6= a which implies w 6= u, so there is a neighbor z of w on P1 further from s1
than w. Now, let z′ be the neighbor of w′ on P2 which is further from v than w′. Then
x = wz and x′ = w′z′ are not distinguished by S (see Figure 2 c)), which is shown by a
similar calculation as in Subcase 3.a.

We will use Lemma 6 to prove the exact value of the mixed metric dimension of
balanced Theta graphs.

Theorem 7 If G is a balanced Theta graph, then mdim(G) = 4.

Proof. Let u and v be the two vertices in G of degree 3 and let w and z be two neighbors
of v. We want to prove that S = {u, v, w, z} is a mixed metric generator. Let x and x′

be a pair of elements from V (G) ∪ E(G). Let P1, P2 and P3 be the three distinct paths
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connecting vertices u and v in G. If x and x′ belong to a same path Pi then they are
certainly distinguished by u ∈ S or by v ∈ S. Assume therefore that x belongs to Pi and
x′ belongs to Pj where i 6= j. If x and x′ are distinguished by u or v, then the proof is
done, so we may assume that they are not distinguished by either u or v. If Cij is even,
this implies x and x′ are a pair of vertices or a pair of edges, while in the case of odd cycle
Cij the pair x and x′ must be a mixed pair consisting of a vertex and an edge. Notice
that at least one of the paths Pi and Pj must contain at least one more vertex from S
besides u and v, say Pi contains w. Then w certainly distinguishes x and x′, so we proved
that S is a mixed metric generator in G which implies mdim(G) ≤ 4.

To conclude the proof, we still need to prove that any set S with |S| < 4 cannot be a
mixed metric generator. Asume first that both u and v are contained in S, then |S| < 4
implies that two of the paths P1, P2 and P3 do not share an internal vertex with S, say Pi

and Pj. Let ui and uj be the neigbors of vertex u on paths Pi and Pj respectively. If Pi

and Pj are of the same length, then ui and uj are not distinguished by S, so S cannot be
a mixed metric generator. If Pi and Pj are not of the same length, say |Pi| < |Pj| , then
the fact that G is balanced implies |Pi| = |Pj| − 1, but this further implies u and uuj are
not distinguished by S.

Assume now that precisely one of the vertices u and v is contained in S, say u. This
implies that there is a path Pi in G which does not share any other vertex with S besides
u. Denote by ui the neighbor of u on Pi. Since G is a balanced Theta graph it holds that
d(ui, w) ≥ d(u,w) for every internal vertex w from the path Pj, j 6= i. Therefore, u and
uui are not distinguished by S.

Finaly, assume that neither u nor v are contained in S. If there is a path Pi which does
not share an internal vertex with S, then u and uui are obviously not distinguished by
S. Assume therefore that each path Pi shares at least one internal vertex with S, which
together with the fact |S| < 4 further implies |S| = 3 and each Pi shares precisely one
internal vertex with S. But then Lemma 6 implies S cannot be a mixed metric generator
and the proof is established.

Since c(G) = 2 and L1(G) = 0 holds for any Theta graph G, Theorem 7 immediately
yields the following corollary.

Corollary 8 For a balanced Theta graph G, it holds that mdim(G) = L1(G) + 2c(G).

This result implies that Conjecture 3 holds for balanced Theta graphs, moreover it
holds with equality in (1).

4 Unbalanced Theta graphs

To complete the results we will now prove that Conjecture 3 holds also for unbalanced
Theta graphs, but for them the equality in (1) does not hold.

Lemma 9 Let G be an unbalanced Theta graph, then mdim(G) ≤ 3.

Proof. Let u and v be the two vertices of degree 3 in G and let P1, P2 and P3 be three
distinct paths in G connecting vertices u and v, where without loss of generality we may
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assume that |P1| ≤ |P2| ≤ |P3| . Since G is an unbalanced Theta graph, it follows that
|P3| − |P1| ≥ 2. By Cij we denote the cycle induced by paths Pi and Pj. Let us now
consider the cycle C13 and vertices u and v which belong to it. If the cycle C13 is even,
then each of the two vertices u and v has precisely one antipodal vertex on C13. On the
other hand, if C13 is an odd cycle, then vertices u and v each have precisely two antipodal
vertices.

Let us denote antipodal vertices of u on C13 by au and a′u (where we assume au = a′u
when C13 is an even cycle) and by av and a′v the two antipodals of the vertex v. We may
asume that the pair of antipodal vertices au and a′u are denoted so that d(v, au) ≤ d(v, a′u).
Similarly, we denote vertices av and a′v so that the inequality d(u, av) ≤ d(u, a′v) holds.
From |P3| − |P1| ≥ 2 it follows that all of the vertices au, a

′
u, av, a

′
v belong to P3, where

au and a′u are distinct from v and, similarly av and a′v are distinct from u. Further, let
w be a vertex from the path P2 such that distance from w to vertices u and v differs by
at most one (i.e. w is the middle or ”almost middle” vertex of the path P2). Finally, we
define the set S = {au, av, w} for which we will prove that it is a mixed metric generator
in G. All these vertices and the set S are illustrated by Figure 3.

a) b)

Figure 3: In the proof of Lemma 9, the position of vertices w, au, a
′
u, av, a

′
v and the mixed

metric generator S = {w, au, av} in the case when both P2 and C13 are: a) of even length,
b) of odd length.

In order to prove that S is a mixed metric generator, let x and x′ be a pair of elements
from the set V (G)∪E(G). We distinguish the following three cases regarding the position
of x and x′ in G.

Case 1: Both x and x′ belong to C13. Notice that there are two subpaths of C13 which
connect vertices au and av, one of them is P3[au, av], the other is C13 − P3(au, av). If x
and x′ belong to different subpaths of C13 connecting au and av, since au and av is not
an antipodal pair on C13, it follows that x and x′ are distinguished by au or av. If both x
and x′ belong to P3[au, av], they are distinguished by au or av according to Observation
5. The only remaining possibility is that both x and x′ belong to C13 − P3(au, av). Here
we distinguish several further possibilities. If x or x′ is an internal vertex or an edge from
P1, then x and x′ are distinguished by au or av. Similarly, if one from the pair x and x′

10



belongs to P3[u, av] and the other to P3[v, au], then again x and x′ are distinguished by
au or av. Now, if both x and x′ belong to P3[u, av] they are enclosed by av and w, so
they are distinguished by S according to Observation 5. Finally, if both x and x′ belong
to P3[v, au], they are enclosed by au and w, so Observation 5 again implies x and x′ are
distinguished by S.

Case 2: Both x and x′ belong to P2. Notice that if both x and x′ belong to P2[u,w],
or they both belong to P2[v, w], then x and x′ are enclosed by av and w in the first
case and by au and w in the second case, either way they are S-enclosed and therefore
distinguished by S according to Observation 5. The only remaining possibility is when
they belong to different sides of w, say x belongs to P2[u,w] and x′ belongs to P2[v, w],
with both x and x′ being distinct from w. In this case if x and x′ are not distinguished
by w, this implies that |d(x, u)− d(x′, v)| ≤ 2 where without loss of generality we may
assume d(x, u) ≤ d(x′, v), i.e. 0 ≤ d(x′, v) − d(x, u) = ∆ where ∆ ≤ 2. If the shortest
path from x to au leads through w, then x and x′ are distinguished by au according to
Observation 5. The similar argument holds when the shortest path from x′ to av leads
through w. So, let us assume the opposite, i.e. that the shortest path from x to au and
from x′ to av leads through P1. Notice that if C13 is even, then there is a shortest path
which leads both through P1 and another one through P3. And if C13 is odd, then there
is only one which leads only through P1. Hence, we have

d(x, au) = d(x, u) + |P1|+ d(v, au) = d(x′, v)−∆ + |P1|+ d(v, au) =

= d(x′, au)−∆ + |P1| .

Therefore, x and x′ are not distinguished by au only when |P1| = ∆. But in that case we
have

d(x′, av) = d(x′, v) + |P1|+ d(u, av) = d(x, u) + ∆ + |P1|+ d(u, av) =

= d(x, av) + 2 |P1| > d(x, av),

so x and x′ are distinguished by av ∈ S and we are finished.

Case 3: x belongs to P2 and x′ belongs to C13. Recall that w is the middle (or ”al-
most” middle) vertex of the path P2, where without the loss of generality we may assume
d(w, u) ≥ d(w, v). Denote by ui the neighbor of u on the path Pi and by vi the neighbor
of v on the path Pi. Now, when P2 is of even length, then x and x′ are not distinguished
by w only if x ∈ {u, v} and x′ ∈ {u, v, uu1, uu3, vv1, vv3}. But, since both u and v belong
also to C13, this means x belongs also to C13, so this case reduces to Case 1. Assume,
therefore, that the length of P2 is odd. Recall that in this case d(w, u) > d(w, v). Notice
that x and x′ are not distinguished by w only if x ∈ {u2, u2u} and x′ ∈ {v, vv1, vv3}. Also,
notice that there certainly exists a shortest path from x to au which leads through v (if
there is a shortest path from x to au which leads through P3, then C13 is even and there
is also a shortest path which leads through P1, so the claim holds). Finally, notice that
d(x, au) > d(v, au). On the other hand it obviously holds that d(x′, au) ≤ d(v, au). We
conclude that d(x, au) > d(x′, au), which implies that x and x′ are distinguished by S.

We have established that any x and x′ are distinguished by S, so S is a mixed metric
generator. Since |S| = 3, this implies mdim(G) ≤ 3.
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Theorem 10 If G is an unbalanced Theta graph, then mdim(G) = 3.

Proof. Given the result from Lemma 9, it is sufficient to prove that a set S ⊆ V (G) such
that |S| = 2 cannot be a mixed metric generator. We use the same notation as before, i.e.
P1, P2 and P3 are the three paths connecting vertices u and v of degree 3 in G denoted
so that |P1| ≤ |P2| ≤ |P3| . By Cij we denote the cycle induced by paths Pi and Pj. Let
us further denote by s1 and s2 the only pair of elements from S.

Assume first that both s1 and s2 belong to C12. As the mixed metric dimension of
any cycle equals three, it follows that S is not a mixed metric generator in C12. Since
C12 is an isometric subgraph of G it follows that S cannot be a mixed metric generator
in G either. The similar argument holds when both s1 and s2 belong to C13. The only
remaining possibility is that s1 belongs to P2 and s2 belongs to P3. Notice that both s1
and s2 in this case must be of degree two, otherwise the pair s1 and s2 would belong to
C12 or C13 and the case would reduce to the already proven cases. Let w and z be two
neighbors of s1. There are only two possibilities with respect to the distances from w and
z to s2, it is either d(w, s2) = d(z, s2) or d(w, s2) 6= d(z, s2). If d(w, s2) = d(z, s2), then
ws2 and zs2 are not distinguished by S. On the other hand, if d(w, s2) 6= d(z, s2) we may,
without the loss of generality, assume that d(w, s2) < d(z, s2). But then s2 and s2z are
not distinguished by S and we are finished.

As for an unbalanced Theta graph G we have L1(G) = 0 and c(G) = 2, we immediately
obtain the following result.

Corollary 11 For an unbalanced Theta graph G it holds that mdim(G) < L1(G)+2c(G).

We conclude from this result that Conjecture 3 holds for the class of unbalanced Theta
graphs with the strict inequality in (1).

5 Concluding remarks

In [12] it was conjectured that mdim(G) ≤ L1(G)+2c(G) for all graphs, where c(G) is the
cyclomatic number and L1(G) the number of leaves in a graph G (see Conjecture 3). In
this paper we focused our interest on graphs for which the conjecture holds with equality.
It was already proven in literature that the equality holds for all trees, even more for all
cactus graphs in which every cycle has precisely one vertex of degree ≥ 3. We wanted
to find other graphs for which the equality holds. By Proposition 4 we know that the
equality can hold only for graphs with κ(G) = 1 or κ(G) = 2. Since all cactus graphs
(except a cycle graph) have vertex conectivity equal to 1, this means there were no known
graphs with κ(G) = 2 for which the equality holds. In this paper we found such a family,
i.e. balanced Theta graphs, for which the equality also holds. We further proved that for
unbalanced Theta graphs Conjecture 3 also holds, but with strict inequality in (1). The
natural question that arises is: Are there any other graphs for which the equality holds?
Our investigation of the question leads us to the opinion that there are not, i.e. having in
mind that trees are a subclass of cactus graphs we state the following formal conjecture.
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Conjecture 12 For a graph G it holds that mdim(G) = L1(G) + 2c(G) if and only if G
is a cactus graph in which every cycle has precisely one vertex of degree ≥ 3 or a balanced
Theta graph.
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