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A doubly stochastic block Gauss—Seidel algorithm for solving
linear equations

Kui Du?  Xiao-Hui Sun'

Abstract

We propose a simple doubly stochastic block Gauss—Seidel algorithm for solving linear
systems of equations. By varying the row partition parameter and the column partition
parameter of the coefficient matrix, we recover the Landweber algorithm, the randomized
Kaczmarz algorithm, the randomized Gauss—Seidel algorithm, and the doubly stochastic
Gauss—Seidel algorithm. For general (consistent or inconsistent) linear systems, we show
the exponential convergence of the norms of the expected iterates via exact formulas. For
consistent linear systems, we prove the exponential convergence of the expected norms of the
error and the residual. Numerical experiments are given to illustrate the efficiency of the
proposed algorithm.
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1 Introduction
Randomized iterative algorithms for solving a linear system of equations
Ax=b, AcR™" becR™ (1)

have attracted much attention recently; see, for example, [21, 1T}, 24} 16}, 17, 13, (9} 14, 1], 2 13, [5, [4,
&, 191 15 23], 12, 221 6, 18], 20]. At each step, to generate the next iterate from the current iterate,
the randomized Kaczmarz algorithm [21] uses a randomly picked row, the randomized Gauss—
Seidel (i.e., randomized coordinate descent) algorithm [I1] uses a randomly picked column, and
the doubly stochastic Gauss—Seidel algorithm [19] uses a randomly picked entry of the coefficient
matrix A. It is natural to ask whether one can design a randomized algorithm which uses a
randomly picked submatrix of A.

In this paper, we propose a doubly stochastic block Gauss—Seidel (DSBGS) algorithm which
uses a submatrix of A at each step (see Algorithm 1 in §2). We can view DSBGS as a stochastic
gradient descent for solving the following optimization problem

1
1 = ———J|b—- A 2 . 2
smin { £ 1= g b — Al 2
The Landweber iterative algorithm [10], the randomized Kaczmarz (RK) algorithm, the random-
ized Gauss—Seidel (RGS) algorithm, and the doubly stochastic Gauss—Seidel (DSGS) algorithm
are special cases of our algorithm. Our algorithm does not need to use projections and Moore-
Penrose pseudoinverses of submatrices, so it is different from the block algorithms in [16, 17, [9].
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Numerical experiments for both synthetic data and real-world data are given to illustrate the
efficiency of DSBGS.

Main contributions. We propose a simple doubly stochastic block Gauss—Seidel algorithm
for solving linear equations and prove its convergence theory. More specifically, we show the
exponential convergence of the norms of the expected iterates via exact formulas (see Theo-
rems [2| and [5)) for general (consistent or inconsistent) linear systems, and prove the exponential
convergence of the expected norms of the error and the residual (see Theorems [§f and for
consistent linear systems.

Organization of this paper. In the rest of this section, we give some notation. In Section 2 we
describe the doubly stochastic block Gauss—Seidel algorithm and prove its convergence theory.
In Section 3 we report the numerical results. Finally, we present brief concluding remarks in
Section 4.

Notation. For any random variables € and ¢, we use E[£] and E[€ |(] to denote the expectation
of & and the conditional expectation of & given (, respectively. For an integer m > 1, let
m] :={1,2,3,...,m}. Lowercase (upper-case) boldface letters are reserved for column vectors
(matrices). For any vector u € R™, we use u;, u' and ||ulz to denote, the ith entry, the
transpose and the Euclidean norm of u, respectively. We use I to denote the identity matrix
whose order is clear from the context. For any matrix A € R™*" we use A;j, A;., A.; AT,
AT, ||A|p, range(A), rank(A), 01(A) > 02(A) > --- > 0,(A) > 0 to denote the (i, j) entry, the
1th row, the jth column, the transpose, the Moore-Penrose pseudoinverse, the Frobenius norm,
the column space, the rank, and all the nonzero singular values of A, respectively. Obviously,
rank(A) = r. We call a matrix A € R"™*" full column rank if rank(A) = n and rank deficient
if rank(A) < n. For index sets Z C [m] and J C [n], let Az., A. 7, and Az s denote the row
submatrix indexed by Z, the column submatrix indexed by J, and the submatrix that lies in
the rows indexed by Z and the columns indexed by J, respectively. The linear system is
called consistent if b € range(A), i.e., a solution exists; otherwise, it is called inconsistent.

2 A doubly stochastic block Gauss—Seidel algorithm
Let {Z1,Zs,...,Zs} denote a partition of [m] such that, for i,5 =1,2,...,s and i # 7,
Zl#Q), LDIJ:@, UL:[m]
i=1
Let {J1,J2, ..., i} denote a partition of [n] such that, for 7,j =1,2,...,¢ and i # j,
t
Ji#0, Jngi=0, |JTJi=n.
i=1

Let

P = {Il,IQ, ce ,IS} X {jl,jz, . ,%}
We propose the following doubly stochastic block Gauss—Seidel algorithm (Algorithm 1) for
solving the linear system Ax = b.

Algorithm 1: A doubly stochastic block Gauss—Seidel algorithm
Let a > 0. Initialize x € R”
for k=1,2,...,do
|Az,7 %

Pick (Z,J) € P with probability ——>==
| Al

k—1 I:,J(AIJ)T(I:J)T (Axk—l _ b)
|Az7|7

Set xF = x




Here we consider constant step size for simplicity. By varying the row partition parameter s
and the column partition parameter ¢, we recover the following well-known algorithms as special
cases:

e Landweber [I0] (s =1 and t = 1),

kb1, AT
1A%

(AxF~1 —b).

e Randomized Kaczmarz [21] (s = m and t = 1),

k k—1 Ai,ixk_l —b; (A, .)T'
1A 13 i

e Randomized Gauss—Seidel [I1] (s =1 and ¢t = n),

k k—1 (A:,j>T(AXk71 —b)

X =X —

I,

1A-513 -
e Doubly Stochastic Gauss—Seidel [19] (s = m and t = n),
A (A X1 —by)
k k—1 2,5 \ 423,10 i
X' =X -« I.,.
A l? »
The conditional expectation of x* given x*~! is
I 7(Az )T (1.o)T
]E[Xk |Xk‘—1] — Xk‘—l —aFE |: -7\.7( I7\7) (2 -7I) :| (Axk‘—l _ b)
Az 7lF
L 7(Az )Y@ A 2
— oo ¥ A ;J) (2.,1) I iJQHF (AxE1 — b)
Zop  TAzglE TAR
AT
k—1 k—1
= X" —« (Ax"7" —b).
AR

Note that the gradient of the objective function of the optimization problem is

AT
Vf(x) = —5(Ax —b).
IAE
It follows
E[x* [x"71] = x*1 —aVf(x").

Therefore, DSBGS can be viewed as a stochastic gradient descent method for solving the opti-
mization problem .

2.1 The exponential convergence of the norms of the expected iterates

In this subsection we show the exponential convergence of the norms of the expected iterates for
general (consistent or inconsistent) linear systems. The following lemma will be used to prove
Theorems [2| and [5| Its proof (via singular value decomposition) is straightforward and we omit
the details.



Lemma 1. Let o > 0 and A be any nonzero real matriz. For every u € range(A), it holds

aAAT g
AR ) © < ( max |1 - [[all2.
F 9 Ss

In Theorem [2| we show the exponential convergence of the norm of the expected error for
consistent linear systems.

ac?(A)
1A%

Theorem 2. Let x* denote the kth iterate of DSBGS applied to the consistent linear system
Ax = b with arbitrary x° € R™. It holds
k
) I =2l

= (I-ATAX"+ A

ac?(A)

1—
1A%

Bt = < (

1<z<7"

where

is the orthogonal projection of x° onto the solution set {x € R" | Ax = b}.

Proof. The conditional expectation of x* — x? given x*~1 is
Ex* —x? |x71] = E[x* |x*1] —x?
k—1 AT k—1 0
= X" —« (AX"7" —b) —x
AR i
AT
k—1 k—1 0 0
= X" - (Ax"7" — Ax]) — x
A% o
_ ( O‘ATA) ( k-1 _ Xo)
*
AR
Taking expectation gives
Ex* —x% = E[E[x"—x? [x*71]]
ATA
- ( a ) s
HAHF

Applying the norms to both sides we obtain

_ad(A)
1A%

ax
1<i<r

k
)uﬂ—xw}

x0—x¥ = AfAx’ — Atb e range(AT)

56t - xlz < (o

Here the inequality follows from the fact that

and Lemma [l O
Remark 3. If x° € range(AT), then x? = A'b.
Remark 4. To ensure convergence of the expected iterate, it suffices to have

2JAJL
01 (A)

_agf(A)
AR

<1l e, O0<a<

1<i<r



In Theorem [5, we show the exponential convergence of |[E[Ax* — Ax,]||» for the consistent
or inconsistent linear system Ax = b, where x, is any solution of the normal equations

ATAx = ATb.

Theorem 5. Let x* denote the kth iterate of DSBGS applied to the consistent or inconsistent
linear system Ax = b with arbitrary x° € R™. It holds
ac?(A)

)

1A

k
|IE[AXF — Ax,]||2 < <max 1 ) |AXY — Ax,||2,

1<i<r

where X, is any solution of ATAx = ATh.

Proof. The conditional expectation of Ax* — Ax, given x*~1 is
E[Ax* — Ax, [x*71] = AEK' ¥ -x)
k-1 AT k—1
= A <x - —a”AHQ (Ax"7" —b) X*>
F
k aA” k T T
= A <x - e (AxF! — Ax,) — x*> (by ATb = ATAx,)
F
aAAT
= A.inl — A.X* — W(Axkil - A.X*)
F
aAAT
— A k—1 — A
(1- Tafp) (ax! - A

Taking expectation gives

E[Ax* — Ax,] = E[E[Ax" - Ax, [x*71]]
T
_ (1 - aAA2> E[Ax"! — Ax,]
A&
aAAT>k
= - (Ax" — Ax,).
( AR

Applying the norms to both sides we obtain

" ac?(A)[\"
IE[AX"” — Ax,]||2 < <max - —0 ) ||AxO — Ax,||o.
L<isr [Nl
Here the inequality follows from the fact that Ax? — Ax, € range(A) and Lemma O

2.2 The exponential convergence of the expected norms of the error and the
residual

In this subsection we prove the exponential convergence of the expected norms of the error or
the residual for consistent linear systems. The convergence depends on the positive number p
defined as

|Az,73

~ @er |AzglE

The following two lemmas will be used. Their proofs are straightforward and we omit the
details.



Lemma 6. For any vector u € R™ and any matriz A € R™*™ it holds
uTAATu < ||A|ZuTu.
Lemma 7. For any matriz A € R™*"™ with rank r and any vector u € range(A), it holds
uTAATu > o?(A)]lull.

For full column rank consistent linear systems, we prove the exponential convergence of the
expected norm of the error in the following theorem. We recall that in this case A'b is the
unique solution of Ax = b.

Theorem 8. Let x* denote the kth iterate of DSBGS applied to the full column rank consistent
linear system Ax = b with arbitrary x° € R". Assume 0 < o < 2/(tf3). It holds

200 — ta?)ol (A F
Bl - ATblg) < (1- G20 AN) o iy
F

Proof. Note that
2

I 7(A )T
HAIJHF 2
Is(A )T 2
= x’”—a< 7(Azg)" >A —ATb)— A'b
HAIJHF 2
2
. 7(A TA
HAIJHF 2
LAz )" L7)TA
_ ka,1 i ATb||2 _ 20[(in1 i ATb)T -,j( I,J) ( -71) (kal _ ATb)
2 Az 73
+a?(xEL — ATH)T AL 7A77(Az7) (Lr)TA (x*1 — A'h)
Az, 7%
L 7/(Az )T (@)TA
< ka,1 N ATbHQ _ 2a<xk71 _ ATb)T -7\7( I,J) ( -,I) (kal _ ATb)
? HAIJH%
2 ATL7(I.7)TA
+a?(xF 1 — ATh)T < 5 2(L.7) > (x*=1 — ATb) (by Lemma [6)
Az 7% ||AIJ||F
A TA
< ka—l B ATbH% _ 2a(xk—1 _ ATb)T < ( IJ) ( ) > ( ATb)
Az 7%

ATL (1. )\TA
B2t — Ayt (ALILI AN (e i)
Az 7%

Taking expectation gives

ATA
E[ka - ATng ’inl] < ”in1 - ATbH% - (2& - tﬁa2)(xk71 - ATb)T <’A”2 ) (xkil - ATb)
F
20 — tfa)ol (A
< (1 _ (o= thet Joy )) Ix*~! — Ab|3. (by Lemmal7)
IA[E
Taking expectation again gives
E[|x* — ATb|3] = E[E[|x" — ATb[3 [x*"]]
200 — tBa?) o2 (A _
< (1= e Y atby
[N
20 — tBa?)o2(A)\"
< (1- B oAt O
A%
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Remark 9. For the special case s =m, t =1, a =1 (i.e., the randomized Kaczmarz algorithm,
we have = 1 in this case) and the special case s = m, t = n, a« = 1/n (i.e., the doubly
stochastic Gauss—Seidel algorithm, we have = 1 in this case), the results of Theorem @ are
giwen in [21, Theorem 2] and [19, Theorem 1], respectively.

Remark 10. For rank deficient consistent linear systems, if t = 1 and x° € R™, we can show
xP —x0 € range(AT) by induction, where x0 = (I — ATA)x% + A'b is the orthogonal projection
of x0 onto the solution set {x € R" | Ax = b}. Then by the same approach as used in the proof
of Theorem@ for any s € [m] and t = 1, we can prove the convergence bound

200 — Ba?)o?(A) b
Bl — i) < (1- C2= ) e gy
F

This result for the special case s = m and t =1 (i.e., the randomized Kaczmarz algorithm, we
have 3 = 1 in this case) with x" € range(A™) is given in [2{, Theorem 3.4].

Next, we prove the exponential convergence of the expected norm of the residual for full
column rank or rank-deficient consistent linear systems.

Theorem 11. Let x* denote the kth iterate of DSBGS applied to the consistent linear system
(full column rank or rank deficient) Ax = b with arbitrary x° € R*. Ift =n and 0 < a <
202(A)/ (3| Al12), then

2002(A)\"
BllAx" bl < (14502 - 25 ) ax® - b2
TATZ
Ift<nand 0 < a < 202(A)/(tpB), then
2002(A) — tpBa?\ "
BllAx" - bl < (1- 2RI ) axd b2
F

where
2
pr— . . .
max o} (A.7;)
Proof. Note that

AL 7(Az )T (L.7)" ’

|Ax* —b|3 = HAX’H —a < > (Ax*"'—b)—b

|Az 7% )
AL (A7 T HT
= |[[Ax"*! —b|3 — 20(Ax""1 —b)?T ( ST (Az7) 2( .T) ) (Axt=1 _ b)
Az, 7ll%
IL7A7 7(I. /) TATAL ;(A7z )T (1. 1)T
Fa?(AxET - b)T( 1Az 71 7) .,:17( r.7) (L1) ) (AxE1_b).
Az 7%

If t = n, then it follows from (I. 7)TATAI 7 = ||A. 7|2 (since AL 7 = A. 7 is a column vector)

)



that

AL (A7 DT T
JAxE BB = [Axt! — b|3 - 2a(Axt! by (ALIALI) LD Yy 1y
Az 7%
A. 7|21 7A A Ta T
ta2(AxF1 —b)T A7 [FL AL ( 4I,J) (Lz) (Axt=1 _ b)
Az 7%
AL (A7 DT T
< HAXk—l _ bH% _ 204(AXI€_1 _ b)T ~7\7( I,J) 2( .,I) (Axk—l B b)
Az 7%
A7 712 |A. 7|21 (1. )T
to2(Axt1— b)T I IJ”S A 7% .,1(2.,1) (Ax*"'—b) (by Lemma[f)
Az 7% Az 7%
AL (A7 DT T
< HAXk:—l N bH% N 204(AX'I€_1 N b)T ~7\7( I,J) 2( -,I) (Axk—l N b)
Az 7%
2 T
—f—BaQ(Axk*l _ b)T < IHI(;[I,I) > (Axkfl _ b)
Az 7%

Taking expectation gives

AAT

E[|Ax" — b3 [x"] < (1+8a?)|Ax*"" — |5 — 2a(Ax*"" —b)* (HAH2
F

2002 (A) _
(1 + Ba? — W) |AX"" — b3
F

) (axt1 by

IN

The last inequality follows from Ax*~! —b € range(A) and Lemma Taking expectation again

gives
E[|Ax* —b|3] = E[E[|Ax" —b|3 [x" ]
2
< (1 T o - 20‘"““*)) Ef| Ax* i3
AR
2002(A)\ "
< (1 + Ba? - O“’(Q)) |AX" — b|2.
A%

If t < n, then it follows from (I. 7)TATAL 7 = A?jA:J = plI (since p = maxi<j<; 01 (A. 7))
that

AL 7 (Az7)"(LD)"
JAx* “ b} < [Axt —bl3 - 2a(Axt! byt (ALIALI) LD Y () ey
1Az 7%

I.7A A T 7T
Fa2(Axh! —p)T (PRI 7,5 ( 1,34) (L.1) (Ax1 _b)
IAz7[l%

_ _ AL 7(A7.7)" (L 17)" -
< JJAxF! —b|]2 — 20(AX* L —b)T < A /]2 (Ax*~1 —b)
A IL7(L7)7T
Fa?(Ax b)T |Az 7113 pL.z(L 1) )(Axk—l_b) (by Lemma )
|Az 7|3 HAIJHF
AL 7(Az )T (L.1)" _
< |Ax"! —b|3 - 2a(Ax"! —b)T ( [As 2 (Ax"! —b)
BI I > k—1
+a?(Ax b)T ( (Ax"1 —b).
||AIJHF



Taking expectation gives

AAT
AR

kw2 jok—1 tpfa’ k=1 nn2 k=1 _ T
E[||Ax" = b|5 [x"7] < 1+ IR ||Ax b5 — 2a(Ax b)
F

2 _ 2
S <1 - 2OéO'T (A) ZtP/BOé > HAxk—l _ bH%
A%

) (Ax*~1 —b)

The last inequality follows from Ax*~! —b € range(A) and Lemma Taking expectation again
gives

E[|Ax* ~bJ}] = E[E[JAx* —bl}} [x*]
2002(A) — tpBa? _
< (1o TR wjax - bl
JAT2
2 . 2\ k
< (1- 2R A bl O
AT

Remark 12. For the special case s =1, t =n, a = o2(A)/||Al|% (i.e., the randomized Gauss—
Seidel algorithm, we have 3 = 1 in this case) and the special case s =m, t =n, a = o2(A)/||A]|%
(i.e., the doubly stochastic Gauss—Seidel algorithm, we have B = 1 in this case), the results of
Theorem [11] are given in [11, Theorem 3.2] and [19, Theorem 2], respectively.

Remark 13. Let x, be any solution of ATAx = ATb. We have (A. 7)Tb = (A. 7)TAx,.
Then for s =1 and t € [n], by the same approach as used in the proof of Theoremm we can
prove that the convergence bounds (replacing b by Ax, ) in Theorem still hold for inconsistent
linear systems. The result for the special case s =1 andt = n (i.e., the randomized Gauss—Seidel
algorithm) was already given in the literature, for example, [11l, Theorem 3.2/, [13, Lemma 4.2]
and [8, Theorem 3].

3 Numerical results

In this section, we compare the performance of the doubly stochastic block Gauss—Seidel (DS-
BGS) algorithm proposed in this paper against the randomized Kaczmarz (RK) algorithm for
solving consistent linear systems. We only run on small or medium-scale problems. The purpose
is to demonstrate that even in these simple examples, DSBGS offers significant advantages over
RK. All experiments are performed using MATLAB (R2019a) on a laptop with 2.7-GHz Intel
Core i7 processor, 16 GB memory, and macOS Sierra (version 10.12.6).

We use DSBGS(«, £, 7) to denote the doubly stochastic block Gauss—Seidel algorithm em-
ploying the step size o, the row partition {Z;};_; with s = [7]:

T, = {(—1D0+1,3G—-10)0+2,...i), i=12...,s—1,
Zs = {(s—1l+1,(s—=1)+2,...,m},

and the column partition {~7J}§:1 with ¢ = [2]:

k7j = {(]_1)T+1?(]_1)T+277]T}7 j:1727"'at_17
Jo= {t-r+1,t—-1)1+2,...,n}.

The randomized Kaczmarz algorithm with step size o = 1 is the special case DSBGS(1,1,n).
To construct a consistent linear system, for a given coefficient matrix A, we set b = Ax

where x is a vector with entries generated from a standard normal distribution. All algorithms

are started from the initial guess x° = 0, terminated if |x* — Atb|ly < 107°. We report the



average number of iterations (denoted as ITER) of RK and DSBGS. We also report the average
computing time in seconds (denoted as CPU) and the speed-up of DSBGS against RK, which

is defined as
CPU of RK

CPU of DSBGS’
In each experiment, ITER and CPU are averaged over 20 trials.

speed-up =

3.1 Synthetic data

Two types of coefficient matrices are generated as follows.

e Type I: For given m, n, r = rank(A), and k > 1, we construct a matrix A by
A =UDVT,

where U € R™" and V € R™*". Entries of U and V are generated from a standard
normal distribution, and then, columns are orthonormalized:

[U,~] = qr(randn(m,r),0); [V, ~] = qr(randn(n,r),0);

The matrix D is an r X r diagonal matrix whose diagonal entries are uniformly distributed
numbers in (1, k):
D =diag(1+ (k —1). x rand(r,1));

So the condition number of A, which is defined as ¢1(A)/o,(A), is upper bounded by &.

e Type II: For given m, n, entries of A are generated from a standard normal distribution:
A = randn(m,n);
So A is a full (column or row) rank matrix with probability one.

In Figures |l] and [2f we plot the error ||x* — ATb||s of DSBGS with different step size o and
different block size for full column rank consistent linear systems. From these figures, we observe
that appropriate step size and block size improve the convergence remarkably. In Tables [1| and
we report the average numbers of iterations and the average computing times for RK and
DSBGS. From these results we see DSBGS vastly outperforms RK in terms of computing times
with significant speed-ups for general (overdetermined or underdetermined, full column rank or
rank deficient) consistent linear systems. It should be noted that the step size o € (0,2/(t5))
given in Theorem [§is a sufficient condition for DSBGS’s convergence. Numerical experiments
show that DSBGS with some large step size (for example o = 15 in the experiment for Figure
2) converges much faster than with step size o € (0,2/(t3)).

3.2 Real-world data

We test RK and DSBGS on eight real-world problems from the University of Florida sparse
matrix collection [7]: abtahal, WorldCities, cari, df2177, flower 5.1, football, relat6,
Sandi_authors. The first two matrices are of full column rank and the last six matrices are rank-
deficient. In Table |3| we report the average numbers of iterations and the average computing
times of RK and DSBGS. We observe that DSBGS based on good choices of step size and
block size significantly outperforms RK. Moreover, good step size and block size are problem
dependent.
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Figure 1: The average (20 trials of each case) convergence history of DSBGS with different step
size (o = 5,10,15,17) and fixed block size (¢ = 50,7 = 50) for a full column rank consistent
linear system with random coefficient matrix A of Type II (A=randn(500,250)).

rAr(a',é, ) = (1,1, '250)
3k (a, 6, 7) = (2.5,25,25)

10 (e, €,7) = (5,25,50)
N S (a,t,7) = (15,50, 50)

Figure 2: The average (20 trials of each case) convergence history of DSBGS with different
step size and different block size for a full column rank consistent linear system with random
coefficient matrix A of Type II (A=randn(500,250) ).
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Table 1: The average (20 trials of each experiment) ITER and CPU of RK and DSBGS(«, ¢, 7)
for consistent linear systems with random coefficient matrices A of Type I: A = UDVT.

mxn rank | RK:ITER, CPU | DSBGS: ITER, CPU, (o, ¢,7) | speed-up

3.12
3.89
3.69
4.71

125 x 250 100 2 3162.55  0.0805 628.85 0.0258 (5,5,n)
125 x 250 100 10 | 26413.55 0.6813 | 5255.70 0.1751 ( )
125 x 250 100 20 | 158506.00  3.8662 | 31751.35 1.0482 (5,5,m)
250 x 500 200 2 6791.10  0.2270 638.40 0.0482 ( )
250 x 500 200 10 | 69568.35 2.3030 | 6912.85 0.5141 ( ) 4.48
250 x 500 200 20 | 252768.05  8.3663 | 25328.15 1.8639  ( ) 4.49
250 x 125 125 2 4215.20  0.1138 975.25 0.0291  (5,25,25) 3.90
250 x 125 125 10| 38675.35  1.0213 | 8241.10 0.2396 ( ) 4.26
250 x 125 125 20 | 101769.10  2.6832 | 23687.75 0.6682  ( ) 4.02
500 x 250 250 2 8637.00  0.2758 993.80 0.0602 (10, 50,50) 4.58
500 x 250 250 10 | 85328.80  2.7336 | 9732.80 0.5871 (10,50, 50) 4.66
500 x 250 250 20 | 448211.30 14.1407 | 45301.45 2.7288 (10,50, 50) 5.18

Table 2: The average (20 trials of each experiment) ITER and CPU of RK and DSBGS(«, ¢, 7)
for consistent linear systems with random coefficient matrices A of Type II: A=randn(m,n).
Here k(A) = 01(A)/o-(A).

mxn k(A)| RK:ITER, CPU | DSBGS: ITER, CPU, (o, ¢,7) | speed-up
125 x 250  5.66 | 16118.20 0.4160 | 3210.75 0.1063 (5,5,m) 3.91
125 x 500  2.87 5876.40 0.1719 | 1134.60 0.0756 (5,5,n) 2.28
125 x 1000 2.09 3867.00 0.1571 727.65 0.0691 (5,5,m) 2.27
250 x 500 5.56 | 30557.05 1.0139 | 3091.35 0.2273 (10,10, n) 4.46
250 x 1000 2.96 | 12015.30 0.5085 | 1174.55 0.1310 (10, 10,n) 3.88
250 x 2000  2.06 7927.15 0.4963 751.75  0.1959  (10,10,7) 2.53
500 x 750  9.66 | 173700.40 7.2715 | 17381.35 1.7435 (10,10, n) 4.17
500 x 1500 3.66 | 33019.55 2.1238 | 3325.55 0.5445 (10,10,n) 3.90
500 x 3000 2.34 | 18520.60 2.4642 | 1813.70 0.7393 (10,10,n) 3.33
250 x 125 5.33 | 13981.95 0.3709 | 3053.15 0.0864 (5,25,25) 4.29
500 x 125  2.96 6095.05 0.1811 | 1338.45 0.0393 (5,25,25) 4.60
1000 x 125  2.07 4112.30 0.1488 | 1003.05 0.0344 (5,25,25) 4.32
500 x 250 5.77 | 32563.80 1.0330 | 6958.60 0.4097  (5,50,25) 2.52
1000 x 250  2.87 | 11965.45 0.4537 | 2724.85 0.1763 (5, 50,25) 2.57
2000 x 250  2.12 8489.30 0.4305 | 2086.25 0.1430 (5,50,25) 3.01
750 x 500 9.50 | 148619.65 5.9663 | 32345.90 2.8518 (5,50, 50) 2.09
1500 x 500 3.68 | 33655.05 1.6979 | 7212.25 0.6977 (5,50,50) 2.43
3000 x 500 2.36 | 18990.70 1.3557 | 4378.90 0.5279 (5,50, 50) 2.57
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Table 3: The average (20 trials of each experiment) ITER and CPU of RK and DSBGS(«, ¢, 7)
for consistent linear systems with coefficient matrices from the University of Florida sparse
matrix collection. Here k(A) = 01(A)/o,(A). The first two matrices are of full column rank
and the last six matrices are rank deficient.

Matrix mxn  k(A) | RK: ITER, CPU | DSBGS: ITER, CPU, (a,4,7) | speed-up
abtahal 14596 x 209 12.23 | 1.83e05 42.2491 | 3.91e04 ~ 2.8988  (5,10,n) | 14.57
WorldCities 315x 100 66.00 | 7.38¢04  1.9794 | 3.09¢04  0.8624 (2.5,10,n) |  2.30
cari 400 x 1200 3.13 | 9.79¢03  0.5035 | 2.76e03  0.3186  (2.5,5,n) |  1.58
df2177 630 x 10358 2.01 | 1.63e04  8.5768 | 2.66e03 50829  (5,10,n) | 1.69
flower 5.1 211 x 201 13.70 | 9.55¢04  2.6053 | 3.83e04 12001  (2.5,5,n) | 2.17
football 35x 35 166.47 | 7.88¢05 15.1897 | 3.94e05  8.4485 (2,4,m) | 1.80
relat 2340 x 157 7.74 | 2.66e04  1.4331 | 1.03e04  0.3969 (2.5,10,n) | 3.61
Sandi_authors 86 x 86 189.58 | 2.16e06 45.6432 | 8.66e05 21.5159  (2.5,5,n) |  2.12

4 Concluding remarks

We have proposed a doubly stochastic block Gauss—Seidel algorithm for solving linear systems
and prove its convergence theory. The randomized Kaczmarz algorithm, the randomized Gauss—
Seidel algorithm, and the doubly stochastic Gauss—Seidel algorithm are special cases of the
doubly stochastic block Gauss—Seidel algorithm. Numerical experiments show that appropriate
step size and block size significantly improve the performance. Finding appropriate variable
step size, proposing more effective sampling strategies for submatrices, and designing other
block variants via the ideas in [I5] should be valuable topics in the future study.
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