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Abstract. We derive a version of Lagrange’s mean value theorem for quantum
calculus. We disprove a version of Ostrowski inequality for quantum calculus
appearing in the literature. We derive a correct statement and prove that our
new inequality is sharp. We also derive a midpoint inequality.

1. Introduction

Quantum calculus is calculus based on finite difference principle without the con-
cept of limits. It has two main branches 𝑞-calculus and ℎ-calculus. While ℎ-calculus
has important applications for ordinary and partial differential equations, optimiza-
tion theory and in applied fields such as physics, engineering and economics (see
[SAM07,AT10,CLZ11]), 𝑞-calculus has applications in number theory, combinatorics,
fractals, approximation theory, numerical analysis, ordinary and partial difference
equations, dynamical systems, quantum groups, quantum algebras, Lie algebras,
complex analysis, computer science, particle physics and quantum mechanics (see
[Gau04,FB08,Ana11,Ern12,GK13,NNA15,BPST16,MOA19,AM20]).

The well known Ostrowski inequality gives an estimate of the difference of
function values and its integral mean on a segment [Ost37]:⃒⃒⃒⃒

⃒𝑓(𝑥) − 1
𝑏 − 𝑎

ˆ 𝑏

𝑎

𝑓(𝑡)𝑑𝑡

⃒⃒⃒⃒
⃒ 6

[︃
1
4 +

(︀
𝑥 − 𝑎+𝑏

2
)︀2

(𝑏 − 𝑎)2

]︃
(𝑏 − 𝑎) ‖𝑓 ′‖∞ . (1)

It holds for every 𝑥 ∈ [𝑎, 𝑏] whenever 𝑓 : [𝑎, 𝑏] → R is continuous on [𝑎, 𝑏] and
differentiable on (𝑎, 𝑏) with derivative 𝑓 ′ : (𝑎, 𝑏) → R bounded on (𝑎, 𝑏) i.e.

‖𝑓 ′‖∞ := sup
𝑡∈(𝑎,𝑏)

|𝑓 ′ (𝑡)| < +∞.

In a published paper [TN14], the following version of Ostrowski inequality was
obtained for quantum calculus.

Theorem 1 (Incorrect result [TN14, Theorem 3.5]). Let 𝑓 : [𝑎, 𝑏] → R be a 𝑞-
differentiable function with 𝐷𝑎

𝑞 𝑓 continuous on [𝑎, 𝑏] and 0 < 𝑞 < 1. Then we
have ⃒⃒⃒⃒

⃒⃒𝑓(𝑥) − 1
𝑏 − 𝑎

𝑏ˆ

𝑎

𝑓 (𝑡) 𝑑𝑎
𝑞 𝑡

⃒⃒⃒⃒
⃒⃒

6

⎡⎣ 2𝑞

1 + 𝑞

(︃
𝑥 − (3𝑞−1)𝑎+(1+𝑞)𝑏

4𝑞

𝑏 − 𝑎

)︃2

+ −𝑞2 + 6𝑞 − 1
8𝑞 (1 + 𝑞)

⎤⎦ (𝑏 − 𝑎)
⃦⃦
𝐷𝑎

𝑞 𝑓
⃦⃦

∞ . (2)
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As we shall see later, this inequality does hold for some 𝑥 ∈ [𝑎, 𝑏] but not all
as claimed. The proof given in [TN14] uses the standard Lagrange’s mean value
theorem, which, as we show in Section 3, does not hold in quantum calculus. In
Section 4 we give a counterexample to (2) and in Section 5 we derive a correct
version of this inequality that holds for all 𝑥 ∈ [𝑎, 𝑏].

The rest of the paper is organised as follows. In Section 2 we give preliminaries
for quantum calculus. In Section 3 we obtain Lagrange’s mean value theorem for
quantum calculus and use it in Section 4 to obtain a sharp bound for 𝑞-Ostrowski
inequality for 𝑥 = 𝑎 + 𝑞𝑚 (𝑏 − 𝑎), 𝑚 ∈ N ∪ {0}. Finally, in Section 5, we obtain
Ostrowski inequality for all possible values 𝑥 ∈ [𝑎, 𝑏] and show that our bound is
optimal.

2. 𝑞-calculus preliminaries

F. H. Jackson [Jac09] in 1908 has defined what is now known as Euler-Jackson
𝑞-difference operator (𝑞-derivative of the function) by

𝐷𝑞𝑓 (𝑥) = 𝑓 (𝑥) − 𝑓 (𝑞𝑥)
(1 − 𝑞) 𝑥

, 𝑥 ∈ ⟨0, 𝑏] , 𝑞 ∈ ⟨0, 1⟩

for an arbitrary function 𝑓 : [0, 𝑏] → R, where 𝑏 > 0. Note that every such function
is 𝑞-differentiable for every 𝑥 ∈ ⟨0, 𝑏]. When lim

𝑥→0
𝐷𝑞𝑓 (𝑥) exists it is said that 𝑓 is

𝑞-differentiable on [0, 𝑏] and

𝐷𝑞𝑓 (0) = lim
𝑥→0

𝐷𝑞𝑓 (𝑥) .

The 𝑞-derivative is a discretization of ordinary derivative and if 𝑓 is differentiable
function then

lim
𝑞→1

𝐷𝑞𝑓 (𝑥) = 𝑓 ′ (𝑥) .

F. H. Jackson [Jac10] in 1910 has also defined 𝑞-integral (or Jackson integral)
by

𝑥ˆ

0

𝑓 (𝑡) 𝑑𝑞𝑡 = (1 − 𝑞) 𝑥

∞∑︁
𝑘=0

𝑞𝑘𝑓
(︀
𝑞𝑘𝑥
)︀

, 𝑥 ∈ ⟨0, 𝑏] .

If the series on the right hand side is convergent, then 𝑞-integral
ˆ 𝑥

0
𝑓 (𝑡) 𝑑𝑞𝑡 exists.

If 𝑓 is continuous on [0, 𝑏] as 𝑞 → 1 the series (1 − 𝑞) 𝑥

∞∑︁
𝑘=0

𝑞𝑘𝑓
(︀
𝑞𝑘𝑥
)︀

tends to the

Riemann integral ([AM12], [KC02])

lim
𝑞→1

𝑥ˆ

0

𝑓 (𝑡) 𝑑𝑞𝑡 =
𝑥ˆ

0

𝑓 (𝑡) 𝑑𝑡

Previous definitions and results for 𝑓 : [0, 𝑏] → R can easily be generalized for
𝑓 : [𝑎, 𝑏] → R (see [TN13]). If we have a function 𝑓 : [𝑎, 𝑏] → R then “shifted”
𝑞-derivative for 𝑞 ∈ ⟨0, 1⟩ can be defined as

𝐷𝑎
𝑞 𝑓 (𝑥) = 𝑓 (𝑥) − 𝑓 (𝑎 + 𝑞 (𝑥 − 𝑎))

(1 − 𝑞) (𝑥 − 𝑎) , if 𝑥 ∈ ⟨𝑎, 𝑏] ,

If lim
𝑥→𝑎

𝐷𝑎
𝑞 𝑓 (𝑥) exists, 𝑓 : [𝑎, 𝑏] → R is said to be 𝑞-differentiable on [𝑎, 𝑏] and

𝐷𝑎
𝑞 𝑓 (𝑎) = lim

𝑥→𝑎
𝐷𝑎

𝑞 𝑓 (𝑥) .
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“Shifted” 𝑞-integral is defined by
𝑥ˆ

𝑎

𝑓 (𝑡) 𝑑𝑎
𝑞 𝑡 = (1 − 𝑞) (𝑥 − 𝑎)

∞∑︁
𝑘=0

𝑞𝑘𝑓
(︀
𝑎 + 𝑞𝑘 (𝑥 − 𝑎)

)︀
, 𝑥 ∈ [𝑎, 𝑏] .

If the series on the right hand side is convergent, then 𝑞-integral
ˆ 𝑥

𝑎

𝑓 (𝑡) 𝑑𝑎
𝑞 𝑡 exists

and 𝑓 : [𝑎, 𝑏] → R is 𝑞-integrable on [𝑎, 𝑥]. If 𝑐 ∈ ⟨𝑎, 𝑥⟩ 𝑞-integral over [𝑐, 𝑥] is defined
by

𝑥ˆ

𝑐

𝑓 (𝑡) 𝑑𝑎
𝑞 𝑡 =

𝑥ˆ

𝑎

𝑓 (𝑡) 𝑑𝑎
𝑞 𝑡 −

𝑐ˆ

𝑎

𝑓 (𝑡) 𝑑𝑎
𝑞 𝑡.

An important difference between the definite 𝑞-integral and Riemann integral is
that even if we are integrating a function on an interval [𝑐, 𝑏], 𝑎 < 𝑐 < 𝑏 we have
to take into account its behaviour at 𝑡 = 𝑎 as well as its values on [𝑎, 𝑐]. Beside
the improper use of Lagrange’s mean value theorem, this is the other reason for
mistakes made in [TN14].

Remark 2. In case 𝑎 = 0, when writing 𝐷0
𝑞𝑓 and

ˆ
𝑑0

𝑞𝑡, we shall omit superscript
zeros. This is consistent with the notation for original Jackson derivative and
integral.

3. Lagrange’s mean value theorem for 𝑞-calculus

Here and hereafter the symbol ‖·‖⟨𝑎,𝑏]
∞ denotes the supremum

‖𝑓‖⟨𝑎,𝑏]
∞ = sup

𝑡∈⟨𝑎,𝑏]
|𝑓 (𝑡)| .

Remark 3. This is not a norm on the space of all functions with domain [𝑎, 𝑏],
however, it is a norm, and it coincides with the standard ‖ · ‖∞ norm, for the class
of functions that are continuous at 𝑎.

Remark 4. Recall that every function 𝑓 : [𝑎, 𝑏] → R has a 𝑞-derivative 𝐷𝑎
𝑞 𝑓(𝑡) for

any 𝑡 ∈ ⟨𝑎, 𝑏]. Further, 𝐷𝑎
𝑞 𝑓(𝑎) = lim𝑥→𝑎 𝐷𝑎

𝑞 𝑓(𝑥) when this limit exists. Thus,
𝑞-differentiable functions are, by definition, continuously differentiable at 𝑎, and,
therefore, the norm of the derivative ‖𝐷𝑎

𝑞 𝑓‖∞ = sup𝑡∈[𝑎,𝑏] |𝑓(𝑡)| is the same as
‖𝐷𝑎

𝑞 𝑓‖⟨𝑎,𝑏]
∞ .

Some of the results that follow do not require 𝑞-differentiability of 𝑓 (at 𝑥 = 𝑎)
and this notation allows us to state them in full generality.

Let us first see that the standard mean value theorem does not hold in 𝑞-calculus.
Setting 𝑎 = 0 and 𝑏 = 2, consider a function

𝑓 (𝑥) =
{︂

1, 𝑥 ∈ [1, 2] ,
0, 𝑥 ∈ [0, 1⟩ .

Clearly ‖𝐷𝑞𝑓‖∞ = 1
1−𝑞 , but

|𝑓 (𝑥) − 𝑓 (𝑦)| 6̸
⃦⃦
𝐷𝑎

𝑞 𝑓
⃦⃦

∞ |𝑥 − 𝑦| (3)

for 𝑥 = 1 and any 𝑦 ∈ ⟨0, 𝑞⟩.
Note that this function, although not continuous, is 𝑞-differentiable. It is not

hard to find examples of continuous functions which also fail the standard mean
value theorem. For instance, one could take the same example we give in Remark 9
below.
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In the next theorem we show that inequality (3) does hold when both 𝑥 and 𝑦
belong to the same 𝑞-lattice, which is to say that 𝑦 = 𝑎 + 𝑞𝑛 (𝑥 − 𝑎), for some 𝑛 ∈ Z.

Theorem 5 (Mean value inequality for 𝑞-calculus). Let 𝑓 : [𝑎, 𝑏] → R be an arbitrary
function. Then for all 𝑥 ∈ ⟨𝑎, 𝑏], and all 𝑛 ∈ N ∪ {0} we have

|𝑓 (𝑥) − 𝑓 (𝑎 + 𝑞𝑛 (𝑥 − 𝑎))| 6 |𝑥 − (𝑎 + 𝑞𝑛 (𝑥 − 𝑎))|
⃦⃦
𝐷𝑎

𝑞 𝑓
⃦⃦⟨𝑎,𝑏]

∞ .

Proof. For 𝑛 = 0 the statement is trivial. When 𝑛 > 0, one can write

𝑓(𝑥) − 𝑓(𝑎 + 𝑞𝑛(𝑥 − 𝑎))
(1 − 𝑞)(𝑥 − 𝑎) =

𝑛−1∑︁
𝑖=0

𝑓(𝑎 + 𝑞𝑖(𝑥 − 𝑎)) − 𝑓(𝑎 + 𝑞𝑖+1(𝑥 − 𝑎))
(1 − 𝑞)(𝑥 − 𝑎)

=
𝑛−1∑︁
𝑖=0

𝑞𝑖 · 𝑓(𝑎 + 𝑞𝑖(𝑥 − 𝑎)) − 𝑓(𝑎 + 𝑞𝑖+1(𝑥 − 𝑎))
(𝑞𝑖 − 𝑞𝑖+1)(𝑥 − 𝑎)

=
𝑛−1∑︁
𝑖=0

𝑞𝑖 · 𝐷𝑎
𝑞 𝑓(𝑎 + 𝑞𝑖(𝑥 − 𝑎)).

Dividing this by 1 + 𝑞 + 𝑞2 + · · · + 𝑞𝑛−1 = 1−𝑞𝑛

1−𝑞 we obtain

𝑓(𝑥) − 𝑓(𝑎 + 𝑞𝑛(𝑥 − 𝑎))
(1 − 𝑞𝑛)(𝑥 − 𝑎) =

∑︀𝑛−1
𝑖=0 𝑞𝑖 · 𝐷𝑎

𝑞 𝑓(𝑎 + 𝑞𝑖(𝑥 − 𝑎))∑︀𝑛−1
𝑖=0 𝑞𝑖

.

On the right hand side, we have a weighted average of numbers

𝐷𝑎
𝑞 𝑓(𝑥), 𝐷𝑎

𝑞 𝑓(𝑎 + 𝑞(𝑥 − 𝑎)), . . . , 𝐷𝑎
𝑞 𝑓(𝑎 + 𝑞𝑛−1(𝑥 − 𝑎))

with weights 1, 𝑞, 𝑞2, . . . 𝑞𝑛−1 respectively. This average must therefore be in-between
min

06𝑖<𝑛
𝐷𝑎

𝑞 𝑓(𝑎 + 𝑞𝑖(𝑥 − 𝑎)) and max
06𝑖<𝑛

𝐷𝑎
𝑞 𝑓(𝑎 + 𝑞𝑖(𝑥 − 𝑎)) and in particular⃒⃒⃒⃒

𝑓(𝑥) − 𝑓(𝑎 + 𝑞𝑛(𝑥 − 𝑎))
(1 − 𝑞𝑛)(𝑥 − 𝑎)

⃒⃒⃒⃒
6 ‖𝐷𝑎

𝑞 𝑓‖⟨𝑎,𝑏]
∞ .

Multiplying both sides by |(1 − 𝑞𝑛)(𝑥 − 𝑎)| we obtain the claim. �

Corollary 6. Let 𝑓 : [𝑎, 𝑏] → R be an arbitrary function. Then⃒⃒
𝑓 (𝑎 + 𝑞𝑚 (𝑏 − 𝑎)) − 𝑓

(︀
𝑎 + 𝑞𝑘 (𝑏 − 𝑎)

)︀⃒⃒
6 (𝑏 − 𝑎) |𝑞𝑚 − 𝑞𝑘|

⃦⃦
𝐷𝑎

𝑞 𝑓
⃦⃦⟨𝑎,𝑏]

∞ .

holds for all 𝑚, 𝑘 ∈ N ∪ {0}.

Proof. Without loss of generality we can assume 𝑘 > 𝑚. If we now set
𝑥 = 𝑎 + 𝑞𝑚(𝑏 − 𝑎) and 𝑛 = 𝑘 − 𝑚, and then apply Theorem 5, the statement
follows. �

If we additionally assume that the function in the Theorem 5 is continuous, we
can obtain a 𝑞-calculus version of Lagrange’s mean value theorem.

Theorem 7 (Lagrange’s mean value theorem for 𝑞-calculus). Let 𝑓 : [𝑎, 𝑏] → R be
a continuous function and let 𝑥, 𝑦 ∈ ⟨𝑎, 𝑏] be such that 𝑦 = 𝑎 + 𝑞𝑛(𝑥 − 𝑎) for some
𝑛 ∈ N ∪ {0}. Then there exists some 𝑐 ∈ [𝑦, 𝑥] such that

𝑓(𝑥) − 𝑓(𝑦) = 𝐷𝑎
𝑞 𝑓(𝑐)(𝑥 − 𝑦).

Proof. For 𝑥 = 𝑦 (𝑛 = 0) the statement is trivial, so assume 𝑥 ̸= 𝑦 (𝑛 > 0). From
the proof of Theorem 5 we have

min
06𝑖<𝑛

𝐷𝑎
𝑞 𝑓(𝑎 + 𝑞𝑖(𝑥 − 𝑎)) 6 𝑓(𝑥) − 𝑓(𝑦)

𝑥 − 𝑦
6 max

06𝑖<𝑛
𝐷𝑎

𝑞 𝑓(𝑎 + 𝑞𝑖(𝑥 − 𝑎)).
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The function 𝑓 is continuous on [𝑎, 𝑏], hence, its 𝑞-derivative

𝐷𝑎
𝑞 𝑓(𝑡) = 𝑓(𝑡) − 𝑓(𝑎 + 𝑞(𝑡 − 𝑎))

(1 − 𝑞)(𝑡 − 𝑎)

is also continuous on ⟨𝑎, 𝑏] and in particular on [𝑦, 𝑥]. Since

min
𝑡∈[𝑦,𝑥]

𝐷𝑎
𝑞 𝑓(𝑡) 6 min

06𝑖<𝑛
𝐷𝑎

𝑞 𝑓(𝑎+𝑞𝑖(𝑥−𝑎)) 6 max
06𝑖<𝑛

𝐷𝑎
𝑞 𝑓(𝑎+𝑞𝑖(𝑥−𝑎)) 6 max

𝑡∈[𝑦,𝑥]
𝐷𝑎

𝑞 𝑓(𝑡)

there must exist some 𝑐 ∈ [𝑦, 𝑥] such that

𝑓(𝑥) − 𝑓(𝑦)
𝑥 − 𝑦

= 𝐷𝑎
𝑞 𝑓(𝑐),

which proves the claim. �

4. 𝑞-Ostrowski inequality for points on 𝑞-lattice

In the following theorem we give a correct proof of 𝑞-Ostrowski inequality for the
points on the 𝑞-lattice of the form 𝑥 = 𝑎 + 𝑞𝑚(𝑏 − 𝑎). For these values of 𝑥, the
estimate we obtain here is matching that from [TN14], but the proof given there is
incorrect.

Theorem 8 (𝑞-Ostrowski inequality on 𝑞-lattice). Let 𝑓 : [𝑎, 𝑏] → R be a 𝑞-integrable
function over [𝑎, 𝑏]. Then for every 𝑚 ∈ N ∪ {0} the following inequality holds⃒⃒⃒⃒
⃒⃒𝑓 (𝑎 + 𝑞𝑚 (𝑏 − 𝑎)) − 1

𝑏 − 𝑎

𝑏ˆ

𝑎

𝑓 (𝑡) 𝑑𝑎
𝑞 𝑡

⃒⃒⃒⃒
⃒⃒ 6 (𝑏 − 𝑎)

(︂
1 + 2𝑞2𝑚+1

1 + 𝑞
− 𝑞𝑚

)︂ ⃦⃦
𝐷𝑎

𝑞 𝑓
⃦⃦⟨𝑎,𝑏]

∞ .

(4)

Proof. Let 𝑘 ∈ N ∪ {0} be arbitrary. From Corollary 6 we have⃒⃒
𝑓 (𝑎 + 𝑞𝑚 (𝑏 − 𝑎)) − 𝑓

(︀
𝑎 + 𝑞𝑘 (𝑏 − 𝑎)

)︀⃒⃒
6
⃦⃦
𝐷𝑎

𝑞 𝑓
⃦⃦⟨𝑎,𝑥]

∞ |𝑞𝑚 − 𝑞𝑘| · (𝑏 − 𝑎).

Note that

𝑓(𝑎 + 𝑞𝑚(𝑏 − 𝑎)) − 1
𝑏 − 𝑎

𝑏ˆ

𝑎

𝑓(𝑡) 𝑑𝑎
𝑞 𝑡 =

=
∞∑︁

𝑘=0

[︀
𝑓(𝑎 + 𝑞𝑚(𝑏 − 𝑎)) − 𝑓(𝑎 + 𝑞𝑘(𝑏 − 𝑎))

]︀
(1 − 𝑞)𝑞𝑘

and therefore⃒⃒⃒⃒
⃒⃒𝑓(𝑎 + 𝑞𝑚(𝑏 − 𝑎)) − 1

𝑏 − 𝑎

𝑏ˆ

𝑎

𝑓(𝑡) 𝑑𝑎
𝑞 𝑡

⃒⃒⃒⃒
⃒⃒ 6

6 (1 − 𝑞)
∞∑︁

𝑘=0

⃒⃒
𝑓(𝑎 + 𝑞𝑚(𝑏 − 𝑎)) − 𝑓(𝑎 + 𝑞𝑘(𝑏 − 𝑎))

⃒⃒
𝑞𝑘

6 (1 − 𝑞)(𝑏 − 𝑎)‖𝐷𝑎
𝑞 𝑓‖⟨𝑎,𝑏]

∞

∞∑︁
𝑘=0

⃒⃒
𝑞𝑚 − 𝑞𝑘

⃒⃒
𝑞𝑘.
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Finally, since
∞∑︁

𝑘=0
𝑞𝑘
⃒⃒
𝑞𝑚 − 𝑞𝑘

⃒⃒
=

𝑚−1∑︁
𝑘=0

𝑞𝑘
(︀
𝑞𝑘 − 𝑞𝑚

)︀
+

∞∑︁
𝑘=𝑚

𝑞𝑘
(︀
𝑞𝑚 − 𝑞𝑘

)︀
= 1 − 𝑞2𝑚

1 − 𝑞2 − 𝑞𝑚 1 − 𝑞𝑚

1 − 𝑞
+ 𝑞𝑚 𝑞𝑚

1 − 𝑞
− 𝑞2𝑚 1

1 − 𝑞2

= 1
1 − 𝑞

(︂
1 + 2𝑞2𝑚+1

1 + 𝑞
− 𝑞𝑚

)︂
(5)

we obtain the desired inequality (4). �

Remark 9. Note that 𝑞-Ostrowski inequality in the previous theorem, assuming
𝑞-differentiability of 𝑓 , can equivalently be written as⃒⃒⃒⃒
⃒𝑓(𝑥) − 1

𝑏 − 𝑎

ˆ 𝑏

𝑎

𝑓(𝑡) 𝑑𝑎
𝑞 𝑡

⃒⃒⃒⃒
⃒ 6 (𝑏 − 𝑎)

⎛⎜⎝1 + 2𝑞
(︁

𝑥−𝑎
𝑏−𝑎

)︁2

1 + 𝑞
− 𝑥 − 𝑎

𝑏 − 𝑎

⎞⎟⎠ ‖𝐷𝑎
𝑞 𝑓‖∞ (6)

where 𝑥 = 𝑎 + 𝑞𝑚(𝑏 − 𝑎). But this is misleading since Theorem 8 claims that
inequality (6) holds only for 𝑥 ∈ [𝑎, 𝑏] of the form 𝑥 = 𝑎 + 𝑞𝑚(𝑏 − 𝑎).

After some algebraic manipulations, it can be checked that inequality (6) is
exactly the same as inequality (2) from [TN14, Theorem 3.5] where it is claimed
that it holds for all 𝑥 ∈ [𝑎, 𝑏].

We stress again that inequality (2) (i.e. (6)) does not hold for all 𝑥 ∈ [𝑎, 𝑏]. It is
not hard to find examples invalidating it. For example, set 𝑎 = 0, 𝑏 = 1, 𝑞 = 1

2 and
take function 𝑓 : [0, 1] → R defined as

𝑓(𝑥) =
{︃

𝑥, if 𝑥 ∈ [0, 9
10 ],

−9𝑥 + 9, if 𝑥 ∈ [ 9
10 , 1].

We leave it to the reader to confirm that
ˆ 1

0
𝑓(𝑡) 𝑑𝑞𝑡 = 𝑞2

1 + 𝑞
= 1

6 and

‖𝐷𝑞𝑓‖∞ = 1. Plugging all this into (2) (or (6)) for e.g. 𝑥 = 9
10 gives an obvi-

ous contradiction: ⃒⃒⃒⃒
9
10 − 1

6

⃒⃒⃒⃒
̸6 23

75 .

Function 𝑓 , as well as the bound it surpasses are shown in Figure 1.

Theorem 10. Ostrowski inequality for 𝑞-calculus (4) is sharp for every 𝑞 ∈ ⟨0, 1⟩.

Proof. In order to simplify notation, we prove sharpness in case 𝑎 = 0 and 𝑏 = 1.
Pre-composing the examples below with the affine transformation 𝑡 ↦→ 𝑡−𝑎

𝑏−𝑎 will
produce examples that work for any 𝑎 and 𝑏.

We will now show that for the function
𝑓 (𝑥) = |𝑥 − 𝑞𝑚| , 𝑥 ∈ [0, 1]

equality in (4) is obtained at 𝑥 = 𝑞𝑚, i.e.⃒⃒⃒⃒
⃒⃒𝑓 (𝑞𝑚) −

1ˆ

0

𝑓 (𝑡) 𝑑𝑞𝑡

⃒⃒⃒⃒
⃒⃒ =

(︂
1 + 2𝑞2𝑚+1

1 + 𝑞
− 𝑞𝑚

)︂
‖𝐷𝑞𝑓‖⟨0,1]

∞

We have 𝑓 (𝑞𝑚) = 0 and
1ˆ

0

𝑓 (𝑡) 𝑑𝑞𝑡 = (1 − 𝑞)
∞∑︁

𝑘=0
𝑞𝑘𝑓

(︀
𝑞𝑘
)︀

= (1 − 𝑞)
∞∑︁

𝑘=0
𝑞𝑘|𝑞𝑘 − 𝑞𝑚| = 1 + 2𝑞2𝑚+1

1 + 𝑞
− 𝑞𝑚,
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0 0.9 1

x

0

0.9

1

f(x)

0 q3 q2 q 0.9 1

x

0

11
15

1

Bound (2), [TN14]∣∣∣∣∣f(x)−
∫ 1

0

f(t) dqt

∣∣∣∣∣
Values at x = qm

Figure 1. A counterexample showing that inequality (2) does not
hold for every 𝑥 ∈ [𝑎, 𝑏]. Note, however, that it does hold for every
𝑥 of the form 𝑎 + 𝑞𝑚(𝑏 − 𝑎) as is claimed in Theorem 8. (Here
𝑞 = 1

2 .)

where we used the previously computed sum (5).
Since it is obvious that

𝐷𝑞𝑓 (𝑡) = −1, 0 6 𝑡 6 𝑞𝑚,

𝐷𝑞𝑓 (𝑡) ∈ ⟨−1, 1⟩ , 𝑞𝑚 < 𝑡 < 𝑞𝑚−1,

𝐷𝑞𝑓 (𝑡) = 1, 𝑞𝑚−1 6 𝑡 6 1,

we have ‖𝐷𝑞𝑓‖⟨0,1]
∞ = 1 and the equality holds. �

Corollary 11. Let 𝑓 : [𝑎, 𝑏] → R be a 𝑞-integrable function over [𝑎, 𝑏]. Then the
following inequality holds⃒⃒⃒⃒

⃒⃒𝑓 (𝑏) − 1
𝑏 − 𝑎

𝑏ˆ

𝑎

𝑓 (𝑡) 𝑑𝑎
𝑞 𝑡

⃒⃒⃒⃒
⃒⃒ 6 𝑞 (𝑏 − 𝑎)

1 + 𝑞

⃦⃦
𝐷𝑎

𝑞 𝑓
⃦⃦⟨𝑎,𝑏]

∞ .

Proof. Take 𝑚 = 0 in Theorem 8. �

Corollary 12. Let 𝑓 : [𝑎, 𝑏] → R be a 𝑞-integrable function over [𝑎, 𝑏]. Additionally,
assume that 𝑓 is continuous at 𝑥 = 𝑎. Then the following inequality holds⃒⃒⃒⃒

⃒⃒𝑓 (𝑎) − 1
𝑏 − 𝑎

𝑏ˆ

𝑎

𝑓 (𝑡) 𝑑𝑎
𝑞 𝑡

⃒⃒⃒⃒
⃒⃒ 6 𝑏 − 𝑎

1 + 𝑞

⃦⃦
𝐷𝑎

𝑞 𝑓
⃦⃦⟨𝑎,𝑏]

∞ .

Proof. Let 𝑚 → ∞ in Theorem 8. The claim follows because 𝑓 is continuous at
𝑥 = 𝑎, hence lim

𝑚→∞
𝑓 (𝑎 + 𝑞𝑚 (𝑏 − 𝑎)) = 𝑓 (𝑎). �

The tight bound in the classical Ostrowski inequality is obtained for 𝑥 = 𝑎+𝑏
2 . In

that case (1) reduces to midpoint inequality⃒⃒⃒⃒
⃒𝑓
(︂

𝑎 + 𝑏

2

)︂
− 1

𝑏 − 𝑎

ˆ 𝑏

𝑎

𝑓(𝑡)𝑑𝑡

⃒⃒⃒⃒
⃒ 6 𝑏 − 𝑎

4 ‖𝑓 ′‖∞ .
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We now argue that for 𝑞-Ostrowski inequality the tight bound is obtained for
𝑚 =

⌊︀
log𝑞

1
2
⌋︀
. For a fixed 𝑞 ∈ ⟨0, 1⟩ we want to find

min
𝑚∈N∪{0}

{︂
1 + 2𝑞2𝑚+1

1 + 𝑞
− 𝑞𝑚

}︂
.

It is easy to check that the function

𝑓 (𝑥) = 1 + 2𝑞2𝑥+1

1 + 𝑞
− 𝑞𝑥, 𝑥 ∈ [0, ∞⟩

has only one critical point 𝑥 = log𝑞
1+𝑞
4𝑞 at which a strict global minimum occurs.

So we want to find the largest 𝑚 ∈ N for which the following inequality holds

1 + 2𝑞2𝑚+1

1 + 𝑞
− 𝑞𝑚 6

1 + 2𝑞2(𝑚−1)+1

1 + 𝑞
− 𝑞𝑚−1.

In case this does not hold for any 𝑚 ∈ N, the minimum is clearly attained at 𝑚 = 0.
From the inequality above we get

𝑞𝑚−1 (1 − 2𝑞𝑚) (1 − 𝑞) 6 0,

𝑞𝑚 >
1
2 ,

hence

𝑚 6 log𝑞

1
2 ,

and therefore 𝑚 =
⌊︀
log𝑞

1
2
⌋︀
.

The following corollary is the midpoint inequality for 𝑞-calculus.

Corollary 13 (Midpoint inequality for 𝑞-calculus). Let 𝑓 : [𝑎, 𝑏] → R be a 𝑞-
integrable function over [𝑎, 𝑏]. Then the following inequality holds⃒⃒⃒⃒

⃒⃒𝑓 (︁𝑎 + 𝑞⌊log𝑞
1
2 ⌋ (𝑏 − 𝑎)

)︁
− 1

𝑏 − 𝑎

𝑏ˆ

𝑎

𝑓 (𝑡) 𝑑𝑎
𝑞 𝑡

⃒⃒⃒⃒
⃒⃒

6 (𝑏 − 𝑎)
(︃

1 + 2𝑞2⌊log𝑞
1
2 ⌋+1

1 + 𝑞
− 𝑞⌊log𝑞

1
2 ⌋
)︃ ⃦⃦

𝐷𝑎
𝑞 𝑓
⃦⃦⟨𝑎,𝑏]

∞ .

Proof. Take 𝑚 =
⌊︀
log𝑞

1
2
⌋︀

in Theorem 8. �

5. 𝑞-Ostrowski inequality

We shall now derive the correct bound for all the other 𝑥 ∈ [𝑎, 𝑏] which are not
of the form 𝑥 = 𝑎 + 𝑞𝑚(𝑏 − 𝑎).

Theorem 14. Let 𝑓 : [𝑎, 𝑏] → R be 𝑞-integrable over [𝑎, 𝑏], and further assume that
𝑓 is continuous at 𝑥 = 𝑎. Then for all 𝑥 ∈ [𝑎, 𝑏] the following inequality holds⃒⃒⃒⃒

⃒𝑓(𝑥) − 1
𝑏 − 𝑎

ˆ 𝑏

𝑎

𝑓(𝑡) 𝑑𝑎
𝑞 𝑡

⃒⃒⃒⃒
⃒ 6 (𝑏 − 𝑎)

(︂
𝑥 − 𝑎

𝑏 − 𝑎
+ 1

1 + 𝑞

)︂
‖𝐷𝑎

𝑞 𝑓‖⟨𝑎,𝑏]
∞ . (7)

Moreover, this bound is sharp whenever 𝑥 is not of the form 𝑎 + 𝑞𝑚(𝑏 − 𝑎).

Remark 15. Note that the bound given in this theorem is strictly worse than the
one in Theorem 8. But unlike that bound, this one holds for all 𝑥 ∈ [𝑎, 𝑏].
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Proof of Theorem 14. In Theorem 5 we proved a version of mean value inequality
for 𝑞-calculus:

|𝑓(𝑥) − 𝑓(𝑎 + 𝑞𝑛(𝑥 − 𝑎))| 6 |𝑥 − (𝑎 + 𝑞𝑛(𝑥 − 𝑎)| ‖𝐷𝑎
𝑞 𝑓‖⟨𝑎,𝑏]

∞ ,

holds for all 𝑥 ∈ [𝑎, 𝑏], and 𝑛 ∈ N ∪ {0}. Fixing 𝑥 and letting 𝑛 → ∞ we get

|𝑓(𝑥) − 𝑓(𝑎)| 6 (𝑥 − 𝑎) ‖𝐷𝑎
𝑞 𝑓‖⟨𝑎,𝑏]

∞ , for all 𝑥 ∈ [𝑎, 𝑏],

where we made use of the continuity of 𝑓 at 𝑥 = 𝑎.
From Corollary 12 we know that⃒⃒⃒⃒

⃒𝑓(𝑎) − 1
𝑏 − 𝑎

ˆ 𝑏

𝑎

𝑓(𝑡) 𝑑𝑎
𝑞 𝑡

⃒⃒⃒⃒
⃒ 6 𝑏 − 𝑎

1 + 𝑞
‖𝐷𝑎

𝑞 𝑓‖⟨𝑎,𝑏]
∞ .

Putting these two inequalities together we obtain the claim⃒⃒⃒⃒
⃒𝑓(𝑥) − 1

𝑏 − 𝑎

ˆ 𝑏

𝑎

𝑓(𝑡) 𝑑𝑎
𝑞 𝑡

⃒⃒⃒⃒
⃒ 6 |𝑓(𝑥) − 𝑓(𝑎)| +

⃒⃒⃒⃒
⃒𝑓(𝑎) − 1

𝑏 − 𝑎

ˆ 𝑏

𝑎

𝑓(𝑡) 𝑑𝑎
𝑞 𝑡

⃒⃒⃒⃒
⃒

6

(︂
𝑥 − 𝑎 + 𝑏 − 𝑎

1 + 𝑞

)︂
‖𝐷𝑎

𝑞 𝑓‖⟨𝑎,𝑏]
∞ = (𝑏 − 𝑎)

(︂
𝑥 − 𝑎

𝑏 − 𝑎
+ 1

1 + 𝑞

)︂
‖𝐷𝑎

𝑞 𝑓‖⟨𝑎,𝑏]
∞ .

�

5.1. Sharpness of the inequality. In order to simplify notation in this subsection,
we set 𝑎 = 0 and 𝑏 = 1. All the claims hold in full generality for any shifted domain
[𝑎, 𝑏] and corresponding 𝑞-derivative 𝐷𝑎

𝑞 and 𝑞-integral.
Our goal is to show that for any 𝑞 ∈ ⟨0, 1⟩, and for each 𝑥 ∈ [0, 1] not of the form

𝑥 = 𝑞𝑛, there exist a function 𝑓𝑥 : [0, 1] → R which attains the bound⃒⃒⃒⃒
𝑓(𝑥) −

ˆ 1

0
𝑓(𝑡) 𝑑𝑞𝑡

⃒⃒⃒⃒
6

(︂
𝑥 + 1

1 + 𝑞

)︂
‖𝐷𝑞𝑓‖⟨0,1]

∞ . (8)

We assume that 𝑞 ∈ ⟨0, 1⟩, once it was chosen, is fixed.
Observe that inequality (8) is scale invariant, so it is sufficient to look for examples

𝑓 with ‖𝐷𝑞𝑓‖⟨0,1]
∞ = 1. Setting 𝑓 = 𝑀𝑓 for any 𝑀 > 0 then produces examples

with ‖𝐷𝑞𝑓‖⟨0,1]
∞ = 𝑀 which also attain the bound.

We now proceed with the construction of 𝑓𝑥 where we fixed 𝑥 ∈ [0, 1] not of the
form 𝑥 = 𝑞𝑛. We further assume that 𝑥 ∈ ⟨𝑞, 1⟩. We will show how to treat other 𝑥
afterwards.

Let 𝑓𝑥 : [0, 1] → R be a function such that 𝑓𝑥(𝑞𝑛) = −𝑞𝑛 and 𝑓𝑥(𝑥𝑞𝑛) = 𝑥𝑞𝑛 for
all 𝑛 ∈ N∪ {0}. Further let 𝑓𝑥(0) = 0, and for all other 𝑡 ∈ [0, 1] let 𝑓𝑥(𝑡) be defined
as the linear interpolation of the previously defined points. More precisely, let 𝑓𝑥 be
defined as:

𝑓𝑥(𝑡) =
{︃

− 1+𝑥
1−𝑥 𝑡 + 2𝑥

1−𝑥 𝑞𝑛, if 𝑥𝑞𝑛 6 𝑡 6 𝑞𝑛,
𝑥+𝑞
𝑥−𝑞 𝑡 − 2𝑞𝑥

𝑥−𝑞 𝑞𝑛, if 𝑞𝑛+1 6 𝑡 6 𝑥𝑞𝑛,

where 𝑛 ∈ N ∪ {0} and additionally 𝑓𝑥(0) = 0 see Figure 2.
Note that 𝑓𝑥 is continuous on [0, 1] but is not 𝑞-differentiable at 𝑡 = 0. Later, we

will show how to alter these examples to produce 𝑞-differentiable examples.

Claim 1. 𝑓𝑥 is 𝑞-differentiable on ⟨0, 1] with ‖𝐷𝑞𝑓‖⟨0,1]
∞ = 1.

Note that 𝑓𝑥 is self-similar. To be precise, 𝑓𝑥 over ⟨𝑞2, 𝑞1] is scaled version of 𝑓𝑥

over ⟨𝑞, 1]. Indeed, it is readily checked that 𝑓𝑥(𝑞𝑡) = 𝑞𝑓𝑥(𝑡) for all 𝑡 ∈ ⟨0, 1]. This
allows us to easily compute 𝐷𝑞𝑓𝑥.

𝐷𝑞𝑓𝑥(𝑡) = 𝑓𝑥(𝑡) − 𝑓𝑥(𝑞𝑡)
𝑡(1 − 𝑞) = 𝑓𝑥(𝑡) − 𝑞𝑓𝑥(𝑡)

𝑡(1 − 𝑞) = 𝑓𝑥(𝑡)
𝑡

,
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y = ±t
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0
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1
1+q

Bound (2), [TN14]

Bound (6)∣∣∣∣∣fx(t)−
∫ 1

0

fx(s) dqs

∣∣∣∣∣
Values at t = qm

Values at t = xqm

Figure 2. An example showing that the bound in Theorem 14
is sharp. Here 𝑞 = 0.6, 𝑥 = 0.8, and 𝑓𝑥 attains the bound at all
𝑡 = 𝑥𝑞𝑚. Note that 𝑓𝑥 is not 𝑞-differentiable at 𝑡 = 0, but somewhat
surprisingly, its 𝑞-derivative over ⟨0, 1] never exceeds 1 in absolute
value. Also, the incorrect bound (2) does hold for 𝑡 of the form
𝑡 = 𝑞𝑚.

hence
|𝐷𝑞𝑓𝑥(𝑡)| =

⃒⃒⃒⃒
𝑓𝑥(𝑡)

𝑡

⃒⃒⃒⃒
6 1.

�

Claim 2. 𝑓𝑥 is 𝑞-integrable on [0, 1] with
ˆ 1

0
𝑓𝑥(𝑡) 𝑑𝑞𝑡 = − 1

1 + 𝑞
.

We calculate:
ˆ 1

0
𝑓𝑥(𝑡) 𝑑𝑞𝑡 = (1 − 𝑞)

∞∑︁
𝑛=0

𝑓(𝑞𝑛)𝑞𝑛 = (1 − 𝑞)
∞∑︁

𝑛=0
−𝑞𝑛𝑞𝑛 =

= (1 − 𝑞)
∞∑︁

𝑛=0
−𝑞2𝑛 = − 1

1 + 𝑞

�

Lastly, note that⃒⃒⃒⃒
𝑓𝑥(𝑥) −

ˆ 1

0
𝑓𝑥(𝑡) 𝑑𝑞𝑡

⃒⃒⃒⃒
=
⃒⃒⃒⃒
𝑥 −

(︂
− 1

1 + 𝑞

)︂⃒⃒⃒⃒
= 𝑥 + 1

1 + 𝑞

which completes the proof that 𝑓𝑥 attains the bound at 𝑥 for 𝑥 ∈ ⟨𝑞, 1⟩.
For 𝑥 ̸∈ ⟨𝑞, 1⟩, we first find 𝑛 ∈ N such that 𝑞𝑛+1 < 𝑥 < 𝑞𝑛 and set �̃� = 𝑥

𝑞𝑛
. Now

�̃� ∈ ⟨𝑞, 1⟩ and for function 𝑓�̃� as above we have⃒⃒⃒⃒
𝑓�̃�(𝑥) −

ˆ 1

0
𝑓�̃�(𝑡) 𝑑𝑞𝑡

⃒⃒⃒⃒
=
⃒⃒⃒⃒
𝑓�̃�(�̃�𝑞𝑛) −

(︂
− 1

1 + 𝑞

)︂⃒⃒⃒⃒
= �̃�𝑞𝑛 + 1

1 + 𝑞
= 𝑥 + 1

1 + 𝑞

so 𝑓�̃� attains the bound at 𝑥 for 𝑥 ∈ ⟨𝑞𝑛+1, 𝑞𝑛⟩.
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0 q3 q2 xq q x 1

t

0

xq3 + C

−q3

xq2 + C

−q2

xq + C

−q

x+ C

−1

1 + C

gx(t)

y = t+ C

y = −t

Figure 3.

Putting together Theorems 8 and 14 and taking into account the examples
following each, we obtain the following corollary.

Corollary 16 (Full 𝑞-Ostrowski inequality). Let 𝑓 : [𝑎, 𝑏] → R be 𝑞-integrable over
[𝑎, 𝑏], and further assume that 𝑓 is continuous at 𝑥 = 𝑎. Then for all 𝑥 ∈ [𝑎, 𝑏] the
following sharp inequality holds⃒⃒⃒⃒

⃒𝑓(𝑥) − 1
𝑏 − 𝑎

ˆ 𝑏

𝑎

𝑓(𝑡) 𝑑𝑎
𝑞 𝑡

⃒⃒⃒⃒
⃒ 6𝑀(𝑥)‖𝐷𝑎

𝑞 𝑓‖⟨𝑎,𝑏]
∞ ,

where 𝑀(𝑥) is a discontinuous function:

𝑀(𝑥) =

⎧⎪⎨⎪⎩(𝑏 − 𝑎)
(︂

1+2𝑞( 𝑥−𝑎
𝑏−𝑎 )2

1+𝑞 − 𝑥−𝑎
𝑏−𝑎

)︂
, if 𝑥 = 𝑎 + 𝑞𝑚(𝑏 − 𝑎) for 𝑚 ∈ N ∪ {0},

(𝑏 − 𝑎)
(︁

𝑥−𝑎
𝑏−𝑎 + 1

1+𝑞

)︁
, otherwise.

Remark 17. It is reasonable to ask whether the hypothesis in Theorem 14, and
consequently in the corollary above, could be further relaxed.

It is immediately clear that instead of requiring 𝑓 to be continuous at 𝑥 = 𝑎, it is
sufficient to ask for existence of limit lim𝑥→𝑎+ 𝑓(𝑥) but then the claim only holds
for 𝑥 ∈ ⟨𝑎, 𝑏]. If that is the case, one might as well redefine 𝑓 at 𝑥 = 𝑎 in order to
make it continuous.

Relaxing the hypothesis even further is not possible as the following example
shows. Assuming 𝑎 = 0, 𝑏 = 1, construct a piecewise linear map 𝑔𝑥 : ⟨0, 1] → R
in a similar fashion as 𝑓𝑥 was constructed before, but set 𝑔𝑥(𝑞𝑛) = −𝑞𝑛 and
𝑔𝑥(𝑥𝑞𝑛) = 𝑥𝑞𝑛 + 𝐶 for some fixed 𝐶 > 0, and all 𝑛 ∈ N ∪ {0}, see Figure 3. Note
that lim𝑥→0+ 𝑓(𝑥) does not exist. Now, using Lemma 18 below, it can be checked
that |𝐷𝑞𝑔𝑥(𝑡)| 6 1 for 𝑡 ∈ ⟨0, 1], and

⃒⃒⃒
𝑓(𝑥) −

´ 1
0 𝑓(𝑡) 𝑑𝑞𝑡

⃒⃒⃒
can be made arbitrarily

large by choosing a large 𝐶.

5.2. 𝑞-differentiable examples. One might wonder whether imposing more re-
strictions on 𝑓 in Theorem 14 could lead to a better bound. We shall show that
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0 qc qd c d 1

t

0

f(qc)

f(d)

f(qd)

f(c)

1

Figure 4. An example of a function for which Lemma 18 applies.
Note that the values of 𝑓 corresponding to dashed lines are irrelevant
and 𝑓 is not required to be piecewise linear there.

asking for 𝑞-differentiability (at 𝑎) does not improve things. We do this by construct-
ing 𝑞-differentiable examples that show the bound in Theorem 14 is best possible
even if one considers a class of 𝑞-differentiable functions. The examples we shall
construct will be piecewise linear functions with finitely many pieces. The following
lemma will make it easier to bound the 𝑞-derivative of such a function.

Lemma 18. Let 𝑐, 𝑑 ∈ R be such that 0 < 𝑞𝑐 < 𝑞𝑑 < 𝑐 < 𝑑 6 1, and assume
that 𝑓 : [0, 1] → R is a function whose values over [𝑞𝑐, 𝑞𝑑] are obtained as linear
interpolation of values of 𝑓 at endpoints 𝑞𝑐 and 𝑞𝑑; and similarly the values over
[𝑐, 𝑑] are linear interpolation of values of 𝑓 at endpoints 𝑐 and 𝑑 (see Figure 4).

More precisely, assume that 𝑓(𝛼𝑐 + (1 − 𝛼)𝑑) = 𝛼𝑓(𝑐) + (1 − 𝛼)𝑓(𝑑) and 𝑓(𝛼𝑞𝑐 +
(1 − 𝛼)𝑞𝑑) = 𝛼𝑓(𝑞𝑐) + (1 − 𝛼)𝑓(𝑞𝑑) for all 𝛼 ∈ [0, 1].

Then, the 𝑞-derivative of 𝑓 over [𝑐, 𝑑] satisfies the following inequality
min(𝐷𝑞𝑓(𝑐), 𝐷𝑞𝑓(𝑑)) 6 𝐷𝑞𝑓(𝑡) 6 max(𝐷𝑞𝑓(𝑐), 𝐷𝑞𝑓(𝑑)) , for all 𝑡 ∈ [𝑐, 𝑑].

Proof. We first write 𝑡 ∈ [𝑐, 𝑑] as 𝑡 = 𝛼𝑐 + (1 − 𝛼)𝑑 for some 𝛼 ∈ [0, 1]. We then
calculate

𝐷𝑞𝑓(𝑡) = 𝑓(𝑡) − 𝑓(𝑞𝑡)
(1 − 𝑞)𝑡 = 𝑓(𝛼𝑐 + (1 − 𝛼)𝑑) − 𝑓(𝛼𝑞𝑐 + (1 − 𝛼)𝑞𝑑)

(1 − 𝑞)(𝛼𝑐 + (1 − 𝛼)𝑑)

= 𝛼𝑓(𝑐) + (1 − 𝛼)𝑓(𝑑) − 𝛼𝑓(𝑞𝑐) − (1 − 𝛼)𝑓(𝑞𝑑)
(1 − 𝑞)(𝛼𝑐 + (1 − 𝛼)𝑑)

= 𝛼(𝑓(𝑐) − 𝑓(𝑞𝑐)) + (1 − 𝛼)(𝑓(𝑑) − 𝑓(𝑞𝑑))
(1 − 𝑞)(𝛼𝑐 + (1 − 𝛼)𝑑)

= 𝛼𝑐𝐷𝑞𝑓(𝑐) + (1 − 𝛼)𝑑𝐷𝑞𝑓(𝑑)
(𝛼𝑐 + (1 − 𝛼)𝑑)

Since the last expression is a weighted average of 𝐷𝑞𝑓(𝑐) and 𝐷𝑞𝑓(𝑑) the statement
of the lemma follows. �

We will now show that for any 𝑥 not of the form 𝑥 = 𝑞𝑚, and any 𝜀 > 0 we can
find a 𝑞-differentiable function 𝑓𝑥,𝜀 which comes 𝜀-close to the bound in Theorem
14, thus showing that the bound in the theorem is best possible.

As before, we shall first show that we can do this for 𝑥 ∈ ⟨𝑞, 1⟩. Once 𝑥 is fixed,
let 𝜀 > 0 be sufficiently small (𝜀 6 2𝑥), and let 𝑓𝑥,𝜀 : [0, 1] → R be a function such
that 𝑓𝑥,𝜀(𝑞𝑛) = −𝑞𝑛, and 𝑓𝑥,𝜀(𝑥𝑞𝑛) = max(𝑥𝑞𝑛 − 𝜀, −𝑥𝑞𝑛) for all 𝑛 ∈ N∪ {0}. Note
that 𝑓𝑥,𝜀(𝑥) = 𝑥 − 𝜀.
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Bound (2), [TN14]
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∫ 1

0

fx,ε(s) dqs

∣∣∣∣∣
Values at t = qm

Values at t = xqm

Figure 5. A 𝑞-differentiable example showing that the bound in
Theorem 14 is best possible. Here 𝑞 = 0.6, 𝑥 = 0.8, and 𝑓𝑥,𝜀 comes
𝜀-close to the bound at all 𝑡 = 𝑥𝑞𝑚. Again, the incorrect bound (2)
does hold for 𝑡 of the form 𝑡 = 𝑞𝑚.

If we denote by 𝑚 ∈ N ∪ {0} the integer such that 𝑥𝑞𝑚+1 < 𝜀
2 6 𝑥𝑞𝑚, i.e.

𝑚 = ⌊log𝑞
𝜀

2𝑥 ⌋, then 𝑓𝑥,𝜀(𝑥𝑞𝑛) = 𝑥𝑞𝑛 − 𝜀 for all 𝑛 6 𝑚 and 𝑓𝑥,𝜀(𝑥𝑞𝑛) = −𝑥𝑞𝑛 for
all integers 𝑛 > 𝑚.

Further let 𝑓𝑥,𝜀(0) = 0, and for all other 𝑡 ∈ [0, 1] let 𝑓𝑥,𝜀(𝑡) be defined as the
linear interpolation of the previously defined points. Graph of 𝑓𝑥,𝜀(𝑥𝑞𝑛) is shown in
Figure 5.

Claim 1. 𝑓𝑥,𝜀 is continuously 𝑞-differentiable over [0, 1].
Note that 𝑓𝑥,𝜀(𝑡) = −𝑡 for all 𝑡 ∈ [0, 𝑞𝑚+1], and 𝑓𝑥,𝜀 is therefore differentiable at

𝑡 = 0. This further means that 𝑓𝑥,𝜀 is continuously 𝑞-differentiable over [0, 1] as 𝑓𝑥,𝜀

itself is continuous. �

Claim 2. 𝑓𝑥,𝜀 is 𝑞-integrable on [0, 1] with
ˆ 1

0
𝑓𝑥,𝜀(𝑡) 𝑑𝑞𝑡 = − 1

1 + 𝑞
.

The values 𝑓𝑥,𝜀 match those of 𝑓𝑥 at 𝑡 = 𝑞𝑛 for all 𝑛 ∈ N ∪ {0}. Hence,
ˆ 1

0
𝑓𝑥,𝜀(𝑡) 𝑑𝑞𝑡 =

ˆ 1

0
𝑓𝑥(𝑡) 𝑑𝑞𝑡 = − 1

1 + 𝑞
.

�

Claim 3. |𝐷𝑞𝑓𝑥,𝜀(𝑡)| 6 1 for all 𝑡 ∈ [0, 1].
To show this we employ Lemma 18. It is follows immediately from the definition

of 𝑓𝑥,𝜀 that 𝐷𝑞𝑓𝑥,𝜀(𝑞𝑛) = −1 for all 𝑛 ∈ N ∪ {0}. Also, 𝐷𝑞𝑓𝑥,𝜀(𝑥𝑞𝑛) = 1 for all
𝑛 6 𝑚 − 1, and 𝐷𝑞𝑓𝑥,𝜀(𝑥𝑞𝑛) = −1 for 𝑛 > 𝑚 + 1. The only problematic point is
𝑡 = 𝑥𝑞𝑚 so we calculate

𝐷𝑞𝑓𝑥,𝜀(𝑥𝑞𝑚) = 𝑓𝑥,𝜀(𝑥𝑞𝑚) − 𝑓𝑥,𝜀(𝑥𝑞𝑚+1)
(1 − 𝑞)𝑥𝑞𝑚

= 𝑥𝑞𝑚 − 𝜀 − (−𝑥𝑞𝑚+1)
(1 − 𝑞)𝑥𝑞𝑚

=
1 + 𝑞 − 𝜀

𝑥𝑞𝑚

1 − 𝑞
.

Taking into account that 𝑥𝑞𝑚+1 < 𝜀
2 6 𝑥𝑞𝑚, it follows that 2𝑞 < 𝜀

𝑥𝑞𝑚 6 2, and
hence 𝐷𝑞𝑓𝑥,𝜀(𝑥𝑞𝑚) ∈ [−1, 1].
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To sum up, we have shown that 𝐷𝑞𝑓𝑥,𝜀(𝑡) ∈ [−1, 1] for all 𝑡 that are equal to 𝑞𝑛

or 𝑥𝑞𝑛 for some 𝑛 ∈ N ∪ {0}. Since any other 𝑡 ∈ ⟨0, 1⟩ lies inside some interval
[𝑐 = 𝑥𝑞𝑛, 𝑑 = 𝑞𝑛] or inside [𝑐 = 𝑞𝑛+1, 𝑑 = 𝑥𝑞𝑛] for some 𝑛, and since the endpoints
of interval [𝑞𝑐, 𝑞𝑑] are again two neighbouring points of the same form, and since
𝑓𝑥,𝜀 is defined to be linear interpolation of values at those endpoints — all the
conditions of Lemma 18 are met. We can therefore conclude that |𝐷𝑞𝑓𝑥,𝜀(𝑡)| 6 1
for all 𝑡 ∈ [0, 1]. �

It now only remains to note that⃒⃒⃒⃒
𝑓𝑥,𝜀(𝑥) −

ˆ 1

0
𝑓𝑥,𝜀(𝑡) 𝑑𝑞𝑡

⃒⃒⃒⃒
=
⃒⃒⃒⃒
𝑥 − 𝜀 −

(︂
− 1

1 + 𝑞

)︂⃒⃒⃒⃒
= 𝑥 + 1

1 + 𝑞
− 𝜀

which completes the proof that there are 𝑞-differentiable functions 𝑓𝑥,𝜀 that come
arbitrarily close to the bound at 𝑥 for any 𝑥 ∈ ⟨𝑞, 1⟩.

As before, if 𝑥 ̸∈ ⟨𝑞, 1⟩, we first find 𝑛 ∈ N such that 𝑞𝑛+1 < 𝑥 < 𝑞𝑛 and
set �̃� = 𝑥

𝑞𝑛
so that �̃� ∈ ⟨𝑞, 1⟩. Then choose 𝜀 > 0 sufficiently small so that

max(�̃�𝑞𝑛 − 𝜀, −�̃�𝑞𝑛) = �̃�𝑞𝑛 − 𝜀, i.e. 𝜀 6 2𝑥. Now for the function 𝑓�̃�,𝜀 as above we
have⃒⃒⃒⃒

𝑓�̃�,𝜀(𝑥) −
ˆ 1

0
𝑓�̃�,𝜀(𝑡) 𝑑𝑞𝑡

⃒⃒⃒⃒
=
⃒⃒⃒⃒
𝑓�̃�,𝜀(�̃�𝑞𝑛) −

(︂
− 1

1 + 𝑞

)︂⃒⃒⃒⃒
= �̃�𝑞𝑛 − 𝜀 + 1

1 + 𝑞
=

= 𝑥 + 1
1 + 𝑞

− 𝜀

so 𝑓�̃�,𝜀 comes arbitrarily close to the bound at 𝑥.

Remark 19. In the light of the previous examples, one could ask whether there
are any 𝑞-differentiable functions that achieve the bound (7) exactly at some 𝑥 not
of the form 𝑥 = 𝑎 + 𝑞𝑚(𝑏 − 𝑎). We do not know of such examples and conjecture
that any such an example will fail to be 𝑞-differentiable at 𝑎.
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