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Abstract

The present paper is devoted to constructing L2 type difference analog of the Caputo fractional derivative.
The fundamental features of this difference operator are studied and it is used to construct difference schemes
generating approximations of the second and fourth order in space and the (3 — «) th-order in time for the
time fractional diffusion equation with variable coefficients. Stability of the schemes under consideration
as well as their convergence with the rate equal to the order of the approximation error are proven. The
received results are supported by the numerical computations performed for some test problems.
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1. Introduction

A significant growth of the researches’ attention to the fractional differential equations has been noticed
lately . It is brought about by many effective applications of fractional calculation to various branches of
science and engineering ﬂ, E, é, I ﬁ,’] For instance, we cannot dispense with mathematical language of
fractional derivatives when it comes to the description of the physical process of statistical transfer which,
as it is well known, brings us to diffusion equations of fractional orders ﬁ, ]

Let us consider the time fractional diffusion equation with variable coefficients

Ogu(x,t) = Lu(z,t) + f(z,t), 0<ax<l, 0<t<T, (1)
w(0,t) =0, wu(l,t)=0, 0<t<T, wu(z,0)=uo(z), 0<azx<l, (2)
where .
o _ 1 du(z,n) —a
Outot) = gy [ Tt =) 0<a < 3)
0

is the Caputo derivative of order «,

Lu(z,t) = % <k(z,t)%) —q(x, t)u,

k(x,t) > ¢1 >0, g(z,t) > 0 and f(x,t) are given functions.
The time fractional diffusion equation constitutes a linear integro - differential equation. Its solution
in many cases cannot be found in an analytical form; as a consequence it is required to apply numerical
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methods. Nevertheless, in contrast to the classical case, when we numerically approximate a time fractional
diffusion equation on a certain time layer, we need information about all the previous time layers. That is
why algorithms for solving the time fractional diffusion equations are rather labour-consuming even in one
- dimensional case. When we pass to two - dimensional and three - dimensional problems, their complexity
grows significantly. In this respect constructing stable differential schemes of higher order approximation is
a major task.

A common difference approximation of fractional derivative () is the so-called L1 method E, @] which
is specified in the following way

ts+1

1 J u(x,tsp1) — u(w, ts) / dn -
oy, . u(x,t) = . : + it 4
0tj41 ( ) 1—\(1 o Oé) ; ts-',-l o ts (tj+1 o n)a ( )
where 0 = top < ;1 < ... < tj41, and 77! is the local truncation error. In the case of the uniform

grid, 7 = ty4q — tg, for all s = 0,1,...,j + 1, it was proved that rit! = O(r2=) [d, [1d, [11]. The L1
EQ%OH% b%l ﬁmmonly used to solve the fractional differential equations with the Caputo derivatives
) ) ? ) ) ]'

The main idea of the traditional L1 formula for approximating Caputo fractional derivative 08, f(t)
of the function f tfa is to replace the integrand f(t) inside the integral by its piecewise linear interpolating
polynomial (see é, ] ). A simple technique for improving the accuracy of L1 formula is to use piecewise high-
degree interpolating polynomials instead of the linear interpolating polynomial. In general, the obtained
numerical formulae in this way improve the accuracy of L1 formula from the order 2 — o to the order
r+ 1 — «, where r > 2 is the degree of the interpolating polynomial. When such formulae are applied
to solve time-fractional PDEs, a key issue is the stability analysis of the corresponding methods for all

a€(0,1).

In Nﬁ] a new difference analog of the Caputo fractional derivative with the order of approximation
O(137%), called L1 — 2 formula, is created. Based on this formula, calculations of difference schemes for the
time-fractional sub-diffusion equations in bounded and unbounded spatial domains and the fractional ODEs
are performed. In [15] the Caputo time-fractional derivative is discretized by a (3 — @) th-order numerical
formula (called the L2 formula in this paper) which is constructed using piecewise quadratic interpolating
polynomials. By developing a technique of discrete energy analysis, a full theoretical analysis of the stability
and convergence of the method is carried out for all o € (0, 1

Using piecewise quadratic interpolating polynomials, In Nﬁ] a numerical formula (called L2—1, formula)
to approximate the Caputo fractional derivative 9§, f(t) at a special points with the numerical accuracy of
order 3 — o was derived. Then some finite difference methods based on the L2 — 1, formula were proposed
for solving the time-fractional diffusion equation. In ﬂﬁ, |2__4|] L2 — 1, formula was generalized and applied
for solving the multi-term, distributed and variable order time-fractional diffusion equations.

Difference schemes of the heightened order of approximation such as the compact difference scheme
ﬂﬁ, E, @, @, @] and spectral method m, , @] were used to enhance the spatial accuracy of fractional
diffusion equations.

By means of the energy inequality method, a priori estimates for the solution of the Dirichlet, Robin and
non-local boundary value problems for the diffusion-wave equation with the Caputo fractional derivative
have been found in ﬂﬂ, 24, @]

In the present paper we construct L2 type difference analog of the fractional Caputo derivative with
the order of approximation O(737%) for each o € (0,1). Features of the found difference operator are
investigated. Difference schemes of the second and fourth order of approximation in space and the (3 — «)
th-order in time for the time fractional diffusion equation with variable coefficients are built. By means of
the method of energy inequalities, the stability and convergence of these schemes are proven. Numerical
computations of some test problems confirming reliability of the obtained results are implemented. The
method can be without difficulty expanded to other time fractional partial differential equations with other
boundary conditions.



2. The L2 type fractional numerical differentiation formula

In this section we study a difference analog of the Caputo fractional derivative with the approximation
order O(737%) and explore its fundamental features.

We consider the uniform grid @, = {t; = j7,j = 0,1,...,M; T = 7M}. For the Caputo fractional
derivative of the order o, 0 < v < 1, of the function u(t) € C?[0,T] at the fixed point ¢;41, j € {1,2,..., M —
1} the following equalities are valid

tjt1

" _ 1 w' (n)dn
60tj+1 (t) - F(l 7 04) / (thrl B n)a
0

1 L&
CT(l-a) 0/ (tj+1 —m)™ " Il —a) 5:22 / (tjpr —m)™ )

< applying the quadratic interpolation II su(t) of u(t) that uses
an

)
nd (ts41,u(tss1)), we arrive at

(t —ts)(t —tst1)

On each interval [ts—1,t5] (1 < s
three points (ts—1,u(ts—1)), (ts,u(ts))

Hgﬁsu(t) = U(tsfl)

272
Calty) (t — ts_llgt —tst1) ulter) (t — ts_21T)2(t - ts)’
(H2,su(t))/ = Ut,s + uft,s(t - ts+1/2); (6)
and "¢
u(t) ~Thou(t) = St 1) 1), )

where t € [ts—1,ts1), & € (fsm1,tsq1), ts—12 = ts — 0.57, ups = (u(ts1) — u(ts))/7, uis = (u(ts) —
u(ts—1))/7.

In (@), we make use of Il su(t) in order to approximate u(t) on the interval [ts_1,%5] (1 < s < j). In
view of the equality

ts
2—
Ca T ey .
(7~ tomr o)ty —n) g = T— K TS5 < ®)
ts—l
with

B = S i — [P -] - % [+ 1) 1t7e], >0,

from (B) and (@) we get the difference analog of the Caputo fractional derivative of order a (0 < @ < 1) for
the function u(t), at the points ;41 (j =1,2,...), in this form:

to o tsga
1 o' (n)dn 1 5 / o' (n)dn
g = + Gt —n)"
04, 4(1) I'(l-a) 0/ (i1 —m*  I(l-a) s:ZQ ; (b2 =)
2

~_ 1 (Hz,lu(n))'dn Y (I, su(n))" dn
Nr(1a)0/ 1= 1) 1*042/ (tj+1 —m)™

(tj+1 5—2 i




to
Ut1+utt1 —t3/2)
=/ T
I'(l—a) (tj+1 —m)

] S
uts+utts - s+1/2)
z/ i
s=2

; ]+1 - 77)
T@-a) \\ 77 7o B "
e
1"(2—04)2 b()uts1+((a)+b(a)) s)
ri-o (@) _ p(@) _ 5(a) (@) | pla) | ple) _ pla)
CED) ((aj =7 = b5 Juro + (a2 + b7, + b5 — bJ’*Q)“t’l)
R &=V (@ | () NOEE
er <S_Z2(b] s—1 T a5 s+bj—s)ut,s+( + by )ut1j> =
-« J
_ T (@), o
o m Cj—st A0t1+1 9)
s=0
where
al® =+ 1=t >0
forj=1
o _ [0, s
€ =3 (@) (@ () (10)
al *bl bo 9 S 15
for j =2
al® 4 bgO‘)7 s =0,
@) = { gle) 4 @) Lyl _ple) g (11)
() ple) () s=2,
and for j > 3,
(a) +b(a) S = N
(a) (a) () '
1<s<93-2
N SeeITs (12)

(0‘) + b(a)l + b(a) _ b;i)Q, s :j -1,
<a> @
J

i1 s =7.

We name the fractional numerical differentiation formula (@) for the Caputo fractional derivative of order
a (0 < a < 1) the L2 formula.

Lemma 2.1. For any a € (0,1), j =1,2,...,M — 1 and u(t) € C*[0,;41]
106, w0 — A, ul = O(T° ). (13)
Proof. Let g, u— Ag, u= R2 + R} where

.1 [ W@y U (M) dn
i / (t ; /

+1—m* I(l-a) ) (tjpr — )"




1 7ww—meWM_ o 7@@—meMn

Il —a) (tj+1 —n)~ B I'(l—a) ) (thrl — )t
to
s meg I
S —t o) (i — n,
6T(1—a) /“ (&) — t1)(n — t2)(tjr1 — )~ tdy
0
j tsq1 H
U
RJ-H / B / (Tzgu(n))’ dn
170[22 (tj+1 — 77)0‘ 1fozZ J+1*77

1—a Z / — My su(n))’ (tj41 —mn) “dn
1—a Z/ — Iz su(n)) (tj+1*77)_a_1d77

170& Z / /// fs —fs—l)(n—ts)(n—ts+1)(tj+1 —U)_O‘_ldn,

2t5

Next we estimate the errors R3 and Ry
For 7 =1 we have

2]

2 «a " (& —a—1
== —t1)(n — t2)(ts — d
R = gy | [ €ntn = t)n = )t = )i
0
> 21 M.
aMst _ ““aM; 4,
i Ly e ,
=30(1 - a) /( 2 =) = are )T
For j > 2 we have
| 6| = Tl —a) / " —t1)(n — t2)(tj1 — )"
- CY
0
to
2 SCYM T3 \/_M 7-3—Ot - —« . —« \/g 1-— 3_Q)M3 —«
_fis/(tj“ n)~* _;((3—1) -G+ )S(—,T?’ :
5AT(1 — o) 270(1 — «) 270(1 — o)
0
j ts+1
J+1| /// . ity . _ Lo —p)yaly
A I U R R
j—1 tot1 tj+1
2V/3aM57 § . —a—1 aM;T? / _
<2 i =)y + | (tj1 — )
= 54r(1 - «) 22 / (b1 =) T (tjp1 —m) " “dn
s=2 { i
V3 3 o i
3aMsT 1 aMsT / Y
= on tit1 — a—id A tirq — d
270 (1 — a) /( j+1 =) T30 —a) (tj41 —m) " “dn
to i
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_ VBMrt
T2 (1 - a) (7 =55) +

aMsT? 7170‘< V3 « Ms 30
- 30( '

Jr(l—a)l —« ?jL(l—a) 1—04)7

2.1. Fundamental features of the new L2 fractional numerical differentiation formula.

Lemma 2.2. For all o € (0,1) and s = 1,2,3,...

1—«a - <1—o¢
(s + 1) s s>

a(l —a) a(l —a)
(5t apart ~ % TG S T

1— 1—
_ol-a) 0 _all-a)
12(s + 1)a+t 1250+

Proof. The validity of Lemma follows from the following equalities:

1
s — Us - 17 d )
@~ s1 = o O‘/”/s+£+na+1
0

0
(-a) [
« —
bs = T o2—a /77d77 / gotl’
0 2s+1—n
For j = 1 we have
(@ _ 2+« (@ _ 2=3a () g _27%(1-0)
O T kp_ar U Tp_a 9 T4 2—a

For j > 2, the next lemma shows properties of the coefficient ¢ defined in () and (@2

Lemma 2.3. For any a € (0,1) and cga) (0 < s <y, j>2) the following inequalities are valid

11 1—« - (a)<1—a
— T < —
6 G+oe 9 ST

?

(@) o ( ) ) (@) (@)

( > Cy > >y >y >,
céa) + 3010‘) — 4cgl) > 0.
Proof. For j > 2 we get
a oz @ « 1704
) = @) —p@ _pl) - ?* a _ol-0) _aoll-a)
J J J J (] + 1)a 12ja+1 12(] o 1)a+1
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 l-« <1g <j+1>a 1 a <j+1>a 1 >
RS 12 J j o1 j—1 j—1

2

I CRE I R g
G+

Inequality () is proved. Let us prove inequality (IS]).

N B Y S B Y BT LY RS
For j > 5,2 <s<j—3 we have

Cga) - 021)1 = aga) - a’iﬁr)l - bgoi)l + nga) - bgi)1

1
= 5 (s + 2+ 3(s 4 177 = 3577 4 (s — 1))

—% (—(s+2)" " +3(s+1)' " =3s' "+ (s = 1))

1 1 1
Z3
a(l — d d
a/zl/ Zz/ 571+21+Z2+23)a+1
0 0 0

( 1 1 1
1—a 1+Oé z3
— d d
/ 21/ Z2/ S*l+zl+22+z3)a+2
0

_ 4o 1
2 s—1+z1+22+23
s—1+zl+22+23)0‘+1

1 1
d d
Zl/ 22/1+21+22+23
0 0

1 1
ng 1
d d e 44In2 —27In3
/Zl/ 22/1-1—21-1-22—1—,23 2( " n3) <
0 0

Since

=}
l\3|>—

> 0.

(o) _ () all —a) 1_1+a - a(l —a)
s 4 2(s + 2)ott

For j > 4 we get

a(l —a) p(@ a(l — a) a(l - a) 5ol —a)
2ja+1 J 2ja+1 12j0+1 - 12j0+1

For j7 > 3 we have
A — ) = @) — ol ple), 4 op(@) y gple)
(@) _ gl@) _ (@) | gp(@) _ ple) a(l —a)
>aj71—aj b +2b bj >W>O.
Inequality ([I8) is proved.
For j =2 we get
& 436l — ael™ = ol 4 3a{™ — a5 — 2b(® + 7B 4 7B
7



2
2—a
Since, for any function f(z) € C?[0,1], if f(0) =0, f(1) =0 and f”(z) < 0 for all z € (0,1) then f(z) >0
for all z € (0,1), we have

> 0l —al® oy =3 g1 _

« (o7 (o7 — 2
& 4364 — 4l > fa) =3 -2 “—gT=>0 forall a€(0,1).

For j = 3 we get
5 43¢l — 4el = ol + 30\ — 40l — 265" + 7B — 4B — 40{Y)

(e} « « « (e} (e} — 2
> ol - af®) 2 + 4o - o)~ 8 >3m0 - 2 sp

O

Lemma 2.4. For any real constants co,c1 such that co > max{ci, —3c1}, and {v; }] ' the following in-
equality holds

Vj+1 (CQ’Uj+1 — (CO — Cl)’Uj — Cl’Uj_l) Z Ej+1 — Ej, _j = 1, .. .,M — 1, (20)

where

2 2
1 Jcg—c1 1 [co+ 3¢ 2 co— C1 1 \/CO —C1 1 \/CO + 3¢ .
E, == —\ ] — . = = — i =1,2,...
' (2\/ > 3V 2 )UJ+ o v \aV T2ty T ) e

Proof. The proof of Lemma 2.4l immediately follows from the next equality

Vj+1 (CO’UjJrl (CO — Cl)’l)j — C1U5— 1 ]Jrl + E
1\/0061 1\/Co+301 0761 0761 CO+301
— — — = Uj+1 —_ .
2 2 2 2 V \/

Lemma 2.5. l@/ If g§+1 > ggiri > > gngl >0,7=0,1,...,M — 1 then for any function v(t) defined
on the grid W, one has the inequalities

. 1 2
v]+1gA8tj+1 = 29A8tj+1 (U2) + W (gAgtj+1v) 9 (21)
J

O

where ‘
J

1 1

oA v =Y (Wt =) gl
s=0

is a difference analog of the Caputo fractional derivative of the order a (0 < o < 1).

Lemma 2.6. For any function v(t) defined on the grid @, one has the inequality

7-—(1 T—Ot T—Ot o
Vi 118G,V > Te—a) (Ej41 — Ej) + Aoml”Q “Te—ao (Ejr1— &) — TE—a) g, (22)
where
—a J
A & _ T ~(a) :
Afy,, v = T2—a) SZOCj_s(Us+1 —vs), Jj=12,...,M,
g =, fqY =, d =, =23,

for 7=1,2,3,....M, E;=FE



Proof. For j =1 we have

—Q

U2 Ay, v = 704)1’2 (Céa)(w — )+ Cga)(vl - vo))

T—Ot

=t a2 (@7 =& = (=)o = (el = i)

(63

T o
g ()
T ¢ T ¢ (@) /2 9
> T (BB -
e T R v oy (v — o)
T 1+
=———(Eh — F ZAY ?
F(Q—a)( 2= B1)+ 5 A0,Y
For j =2,3,..., M — 1 we have
T (@
Vj 180G,V = T2 —a)H DY (vsr1 — v)
s=0
T a a a o A o
m“j-ﬁ-l ((Cé = ) w1 —vp) + () = ) (v — Uj—l)) + 04140, .,V
T_a « « « « « « A Q0
~Te—a ((Cé N )1 — () = Py — () ))Ujfl) + V414G,V
T—Ot
2 m (Bjr1 = By + A0t1+1

In addition, the following equality holds

—a J o J
A 2_ T ~(a) 2 2
AOtj+1U - F(2 o Oé) j*S(’USJrl - US) 2 . Oé (Z S+1 ch 1—s S+1
s=0

3. A difference scheme for the time fractional diffusion equation

4713

In this section for problem ([[)—(@) a difference scheme with the approximation order O(h? + 737%) is
constructed. The stability of the constructed difference scheme as well as its convergence in the grid Lo
- norm with the rate equal to the order of the approximation error is proved. The obtained results are

supported with numerical calculations carried out for a test example.

3.1. Derivation of the difference scheme

Lemma 3.1. [24] For any functions k(z) € C3 and v(z) € C* the following equality holds true:

_ k(@iga2)o(@inn) = (K(Zig1/2) + k(@ioay2))v(@) + k(@io1p)v(@i-1)

+ O(h?).

% (kz(z)%v(z))

h2

T=T;

(23)



Let u(x,t) € Ci:f be a solution of problem ([I)—(2). Then we consider equation () for (z,t) = (x;,tj41) €
Qp,i=1,2,....N—1,j=12....M—1:

8&j+lu = Eu(m,t)|(ziﬁtj+l) +f($i;tj+1)- (24)
On the basis of Lemmas [2.1] and B.I] we have
oty = Afy,,u+ O(r37%)

Lu(x,t) Au(zi,tj11) + O(R?),

|(Ii1tj+1) -

where the difference operator A is defined as follows

Air1Yi+t1 — (@1 + a3)y; + a;yi—1
(Ay): = ((ayz)s — dy); = ——=>F ( s ) — diyi,

o _ Y% Y _ Y1 Y
ym,z h I yz,z h )

with the coefficients a{“ = k(z;—1/2,tj41), dg“ = g(x;,tj41). Let @{H = f(xi,tj41), then we get the
difference scheme with the approximation order O(h? + 7379):

Ag =Myl =12 N-1, j=12... M-1, (25)

y(0,t) =0, y(l,t)=0, tew,, y(x0)=uo(zr), z€w, (26)
Remark. We assume that the solution y is found with the order of accuracy O(h*+737%). For example,
we can use Ll-formula and solve problem (1.2)-(1.4) on the time layer [0, 7] with step 7 = (9(7%).

3.2. Stability and convergence

Theorem 3.1. The difference scheme (23)—(28)) is unconditionally stable and its solution meets the following
a priori estimates:

M—1 M—-1
| » |
S (I 3+ 3 IR) 7 < M gt I3+ 15003+ D e+ 3r | (27)
j=1 j=1

N
where ||y]|2 = 3 y?h, My > 0 is a known number independent of h and .
i=1

Proof. Taking the inner product of the equation ([25) with ¢+, we have
(yj“,Aé‘tmy) — (LAY = (T ) (28)
Using Lemma [Z8 we obtain

T*O&

i o 1’(1
(y]+17A0tj+ly) > T2—a) (Ej+1 — Ej) + §A0tj+1|\y|\3

—

T T o ‘
:m(gjﬂfgj)*mc;)||y0||3,, j=1,2,...,.M—1,
where 2
OO OV e S O L€ S et ) T
! 2 2 2 2 0
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2
c(()a) — cga) . 1\/céa) — cga) + 1\/Cga) + 3050‘) - 4c§a) yi-1
2 2

J _
4 2 2

0
L (o)
—(x
& =Ej+5 &l S
s=0

For the difference operator A using Green’s first difference formula for the functions vanishing at z = 0
and = =1, we get (—Ay,y) > c1llys][5-
From (28], using that

. . C1 . 12 . C1 i+1 l2 -
(") < G + EIW“H% < Sl 6 + 4—Cll\<ﬁ”1||3,

one obtains the inequality
e ey ety P e T (002

Eivt — &)+ =12 < — |7 — . 29
( J+1 ]) 2 Hyz ]|O — 401 ||SD HO + 2F(2 . Oé) C_] ||y HO ( )

re-a)

Multiplying inequality (29) by 7 and summing the resulting relation over j from 1 to M — 1 and taking into
account inequality (7)), one obtains a priori estimate (27]).
The stability and convergence of the difference scheme [@8) - ([26) follow from the a priori estimate

@D). O

3.8. Numerical results

Numerical computations are executed for a test problem on the assumption that the function
u(z,t) = sin(rz) (LT + 2 + 1)

is the exact solution of problem ([{)—(2]) with the coefficients k(z,t) = 2 — cos(xt), ¢(x,t) = 1 — sin(xt) and
I=1,T=1.
The errors (z = y —u) and convergence order (CO) in the norms || - [0 and || - [|¢(a,, ), Where [|y[lc(@,,) =

max |y|, are given in Table 1.
(zi,tj)EDRT

Table 1 demonstrates that as the number of the spatial subintervals and time steps increases, while
h? = 737 then the maximum error decreases, as it is expected and the convergence order of the approximate

scheme is O(h?) = O(3%), where the convergence order is given by the formula: CO= logs, 11
ho

Ty (%038

the error corresponding to h;).
Table 2 shows that if h = 1/50000, then as the number of time steps of our approximate scheme increases,

then the maximum error decreases, as it is expected and the convergence order of time is O(73~%), where
[E21
[EX]

the convergence order is given by the following formula: CO= log=.

4. A compact difference scheme for the time fractional diffusion equation

In this section for problem ([{)-(2l), we create a compact difference scheme with the approximation order
O(h* + 7379) in the case when k = k(t) and ¢ = ¢(t). The stability and convergence of the constructed
difference scheme in the grid Lo - norm with the rate equal to the order of the approximation error are
proved. The found results are supported by the numerical calculations implemented for a test example.
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Table 1: The error and the convergence order in the norms [ - |lo and || - ||¢(a,, ) When decreasing time-grid size for different
values of a = 0.1;0.5;0.9, 73~% = h2.

«Q T h max ||27]|o coO max ||Zj||C(th) coO max ||z2]]o coO
0<j<M 0<j<M 0<j<M
0.1] 1/10 1/29 1.694597e-3 2.387728e-3 5.341255e-2
1/20 1/78 2.343539e-4 2.8541 3.304157e-4 2.8533 7.389758e-4 2.8536
1/40 1/211 3.204204e-5 2.8707 4.517782e-5 2.8706 1.010417e-4 2.8706
1/80 1/575 4.316975e-6 2.8918 6.086836e-6 2.8919 1.361321e-5 2.8919
1/160 | 1/1571 5.786215e-7 2.8993 8.158422e-7 2.8993 1.824621e-6 2.8993
05| 1/10 1/18 4.556026e-3 6.401088e-3 1.434106e-2
1/20 1/43 8.011052e-4 2.5077 1.129064e-3 2.5032 2.524196e-3 2.5063
1/40 1/101 1.452643e-4 2.4633 2.047995e-4 2.4628 4.577935e-4 2.4630
1/80 1/240 2.575571e-5 2.4957 3.631166e-5 2.4957 8.116952e-5 2.4956
1/160 | 1/570 4.568945e-6 2.4950 6.441587e-6 2.4949 1.439907e-5 2.4950
09| 1/10 1/12 1.181474e-2 1.662948e-2 3.707516e-2
1/20 1/24 2.931153e-3 2.0110 4.125467¢e-3 2.0111 9.218339e-3 2.0078
1/40 1/49 7.018065e-4 2.0623 9.891705e-4 2.0603 2.208378e-3 2.0615
1/80 | 1/100 1.678681e-4 2.0637 2.367034e-4 2.0631 5.283157e-4 2.0635
1/160 | 1/207 3.921292e-5 2.0979 5.529153e-5 2.0979 1.234141e-4 2.0979
Table 2: The error and the convergence order in the norms [ - |lo and || - ||¢(w,,,) When decreasing time-grid size for different
values of o = 0.3;0.5;0.7, h = 1/50000.
a| 7 | max | | CO | max [Zlc@,,) | CO | max |zl | CO
0.3 ] 1/10 7.281556e-5 1.036431e-4 2.293180e-4
1/20 1.202886e-5 2.5977 1.712493e-5 2.5974 3.787942e-5 2.5978
1/40 1.881330e-6 2.6766 2.674734e-6 2.6786 5.928309e-6 2.6757
1/80 2.908398e-7 2.6934 4.140875e-7 2.6914 9.159351e-7 2.6943
0.5 1] 1/10 2.726395e-4 3.880588e-4 8.586014e-4
1/20 5.051848e-5 2.4321 7.190513e-5 2.4321 1.590939e-4 2.4321
1/40 9.152847e-6 2.4645 1.302443e-5 2.4648 2.882759¢-5 2.4643
1/80 1.623335e-6 2.4952 2.310709e-6 2.4948 5.112271e-6 2.4954
0.7 1/10 8.556143e-4 1.217803e-3 2.694425e-3
1/20 1.810137e-4 2.2408 2.576392e-4 2.2408 5.700338e-4 2.2408
1/40 3.759528e-5 2.2674 5.351332e-5 2.2673 1.183890e-4 2.2675
1/80 7.685019e-6 2.2904 1.093830e-5 2.2905 2.420107e-5 2.2903

4.1. Derivation of the difference scheme

Let a difference scheme be put into a correspondence with differential problem (I)—(2]) in the case when
k = k(t) and ¢ = ¢(t):

NG Huys = Tl — AT Myl Hp =1, N =1, =0,1,..., M — 1, (30)

y(0,t) =0, y(l,t)=0, tew, y(z,0)=up(x), x €wp, (31)

where ’Hhvi =v; + h2vjz7i/127 = 1, ceey N — 1, aj+1 = k(ﬁj+1), dj+1 = q(tj+1), (pg—’_l = f(l’i,ﬁj+1).
From Lemma [21] it follows that if u € Cff, then the difference scheme has the approximation order
O(13=« 4+ h%).
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4.2. Stability and convergence

Theorem 4.1. The difference scheme (30)—(F1)) is unconditionally stable and its solution meets the following
a priort estimate:

M—1 M—-1
S (It 0+ IgE ) 7 < Mo [ 1y I3 + 100”13 + 3 IHae R | (32)
j=1 j=1

where Ms > 0 is a known number independent of h and T.

Proof. Taking the inner product of the equation [B0) with Hpy/ ! = (Hpy)I+!, we have

(Hny? ™ AG,  Hay) — o/ (Mg yid )

+dj+1(’thj+1,thj+1) — (thj+1,7'[h(pj+1). (33)
We transform the terms in identity (33) as
[e3 T_a
(Hny* AG, Hiy) > W(Ej-i-l Ej)+ 5 Amﬁglmhyﬂg =

—Q

T T (@) 012 .
— Eir1 — &) — ‘ =12...,.M-1
1—\(2_&) ( J+1 J) 21—‘(2—(1)6] Hth HOH J PE) ) )
where
( ) (a) ’
ca ca 1 —|—3ca — 4ex” .
B = |51/ M e B TAL
(a) (a) (a) (a) ( ) (a) (a) ’
o =" i (1 o =" 1 )+ 3c;™ — dey” i1
+ 5y 2\/ > T3 2 Fny ’
0
l — H s+1(12
TS S
s=0
1 Nl
i 1 j 1 1 1 1 1
) =~ ) — I = 1 - S I, —
i=1
) 1 . 92 .
1 1 1
> yi 06 — z1lyaIG = 3l 213,
. _ . 1 .
(Hny’™1 Hin? 1) < el|Hny TG + 4—5|\th”1|\3
N—=1 / j+1 G+l gL\ 2
y; 1 +10y; T +yiy 1 12
= h+ — J+
(e RN
. 1 . 1 .
<elly’* 5 + 4—5|\th]+1|\3 Hy”l]lo + 4_€||Hh90]+1||(2)-

In view of the above-performed transformations, from 1dent1ty B3) at € = 5% we get the inequality

Tfa cl i1 . o o
ey G &)+ gl < - 2 a1 + * ey el
The following process is similar to the proof of Theorem Bl and we leave it out. 0
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The norm ||Hryllo is equivalent to the norm |y||o, which follows from the inequalities

5
1916 < I1Hnylls < l1yll6.

Using a priori estimate ([B2), we obtain the convergence result.

Theorem 4.2. Let u(z,t) € Cg,f be the solution of problem (@)-(2) in the case k = k(t), ¢ = q(t), and let
{y710<i<N,1<j <M} be the solution of difference scheme (30)-(31). Then it holds true that

M—-1
> (I3 +12M13) 7 < Cr (P 4+ AY), 1<G<M,
j=1

where z] = u(x;, t;) — yzj and Cg is a positive constant independent of T and h.

4.8. Numerical results

Numerical calculations are performed for a test problem when the function
u(z,t) = sin(rz) (1 + 2 + 1)

is the exact solution of the problem (II)-([]) with the coefficients k(z,t) = 2 — cos(t), g(x,t) = 1 — sin(¢t) and
1=1,T=1.
The errors (2 = y —u) and convergence order (CO) in the norms || - [0 and || - [|¢(a,, ), Where [|y[lc(@,,) =

max |y|, are given in Table 1.
(zi,tj)EDRT

Table 3 shows that as the number of the spatial subintervals and time steps increases keeping h* = 7372,
the maximum error decreases, as it is expected and the convergence order of the compact difference scheme
llz1]]
llz2]]

is O(h?) = O(737%), where the convergence order is given by the formula: CO= log s, (z; is the error
ho

corresponding to h;).
Table 4 demonstrates that if h = 1/2000, then as the number of time steps of our approximate scheme

increases, then the maximum error decreases, as it is expected and the convergence order of time is O(73~%),
[zl
(B[

where the convergence order is given by the following formula: CO= logm
T2

5. Conclusion

In the current paper we construct a L2 type difference approximation of the Caputo fractional derivative
with the approximation order O(73~%). The fundamental features of this difference operator are studied.
New difference schemes of the second and fourth approximation order in space and the 3 — « approximation
order in time for the time fractional diffusion equation with variable coefficients are also constructed. The
stability and convergence of these schemes with the rate equal to the order of the approximation error are
proved. The method can be without difficulty expanded to include other time fractional partial differential
equations with other boundary conditions.

Numerical tests entirely corroborating the found theoretical results are implemented. In all the calcula-
tions Julia v1.5.1 is used.
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