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Abstract: This paper considers the data quantization problem for a class of unknown nonaffine nonlinear discrete-time 

multi-agent systems (MASs) under the repetitive operations to perform bipartite consensus tracking tasks. Here, each agent's 

dynamic knowledge is not required to design the controller, only employing the input/output data of MAS, where the data is 

decoded by the logarithmic quantizer before transmitted. Moreover, both cooperative and competitive relationships among 

agents are considered. To perform bipartite consensus tracking tasks for MAS, a quantized distributed model-free adaptive 

iterative learning bipartite consensus control (QDMFAILBC) approach is proposed by using the dynamic linearization 

technology and the sector bound approach. The stability condition of the proposed scheme is presented by the strictly proof, and 

the effects of data quantization are also analyzed. It shows that data quantization does not destroy the stability of MASs, and the 

proposed approach can guarantee that the bipartite consensus tracking errors convergence to zero, thus the data quantization 

causes the convergence rate to slow down. Furthermore, the result is extended to time-varying switching topologies, and three 

simulations further validate the effectiveness of the designed control method. 

 
  

1 Introduction 

As one of the core cooperative control problems, the 

consensus of Multi-agent systems (MASs) has attracted 

considerable attention from the research. Numerous 

effective approaches have been developed for real-world 

applications in the past decade. The state-of-the-art methods 

of consensus issues in MASs can be found in the [1]-[3]. 

Among these results, there is a common assumption that the 

relationship among agents is collaborative. However, 

collaborative and antagonistic relationships are coexistence. 

For example, in the multi-robot systems, the relationship 

between a robot and its teammates is collaborative, but 

between it and its antagonistic robots is antagonistic. In 

biological systems, a pair of genes are viewed as activators 

when they are in cooperative interaction, and as inhibitors 

when in competitive interactions [4].  

Both the two relationships among agents are first 

investigated in the works of Altafini [5] and the concept of 

bipartite consensus (BC) is presented, where all agents are 

divided into two alliances so that all agents in each alliance 

converge to a common value, while the two alliances are 

separated in reverse. To describe the coopetition interactions 

among agents, a signed graph is introduced by Altafini, 

where if two agents exist with cooperative relationships, the 

edge between them is positive; otherwise, the edge is 

negative. Inspired by the results of [5], many interesting 

approaches of BC have been developed such as Qin et al. [6] 
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investigate the input saturation problem for generic linear 

MASs to implement the semi-global BC tasks, Cai et al. [7] 

consider the event triggering BC problem of linear MASs 

with input time delay, the robust finite-time and fixed-time 

BC issues of MASs are investigated in the works of Guo et al. 

in [8]. It is noted that the aforementioned BC control 

methods are researched with the assumption of known 

system dynamics, and these approaches are called 

model-based control (MBC) methods. It is well known that 

modern industrial processes have become more and more 

complex. It is challenging to identify an accurate 

mathematical model for each agent, especially when the 

scale of MASs is massive. Moreover, almost all the 

dynamics of the agents consist of nonlinearities. Hence, the 

research of BC problems for unknown nonlinear MASs 

without employing the knowledge of the dynamics is a 

changing topic.  

With this concern, many researchers seek for model-free 

solutions for MASs, which is named as model-free control or 

data-driven control (DDC). The DDC concept is an 

important and necessary complement for modern control 

theory [9], and it can utilize the on-line/off-line input/output 

(I/O) data available or other knowledge instead of the 

mathematical model to design the control protocol under 

reasonable assumption [10]. Several excellent results of 

MASs have been conducted as follows. Bu et al. propose a 

model-free adaptive control for MASs to achieve consensus 

control in [11]. A based-on neutral network consensus 

control is proposed by Zhang et al. in [12], and Long et al. 

[13] employ the theories of low-gain feedback theory and 

Q-learning to design a data-driven consensus control 

approaches for MASs with saturation phenomenon. For 

more detailed DDC approaches of MASs related literature, 

the readers are referred to [14]-[18] and references therein. 
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Among these mentioned approaches in [1]-[17], 

researches only considered the MASs to achieve consensus 

objective when operation time tends to infinite. Nevertheless, 

in some practical industrial process, the operation process is 

repeatable or periodic, which requires that the error is 

declined to the origin after finite periodic, and the next novel 

periodic will not existing any errors, for instance, IC welding, 

wafer manufacturing, chemical reactions and so on. To 

satisfy these industrial requirements, Iterative Learning 

Control (ILC) is one of the excellent schemes. The history of 

ILC can be traced back to the works of Arimoto et al. [19]. 

Then, Ahn et al. [20] successfully introduce ILC into 

formulating controller for MASs, and Bu et al. in [21] 

propose a DDC ILC approach for MASs. Inspired by [21], 

several effective schemes are developed. To name a few, the 

unknown disturbance problems for MASs to achieve 

time-varying formation and consensus tracking are 

investigated in [22] and [23], respectively. The constant 

learning gain and iteration-time-varying learning gain of the 

ILC approach for MASs are investigated in [24]. [25] studies 

the output saturation problem for MASs to implement 

terminal consensus control. Especially, [26] introduces the 

space dimension for the ILC and proposes a 3D-AILC for 

MASs to achieve a fast and precise iteration-varying 

formation tracking. Some other interesting results could find 

in [27] and [28]. However, to the best of our knowledge, 

consensus tracking control has not been fully studied for 

unknown nonlinear MASs with quantized data, especially 

for MASs to implement BC tracking tasks under the 

repeatable operation circumstances.  

In many practical engineering systems, since digital 

communication advantages over analog communication, 

which can reduce the transmission burden, digital 

communication will be preferentially selected for devices, 

where signals are often quantized before being transmitted 

through communication. Unfortunately, it introduces 

quantization error, which will influence the convergence 

property of controlled plant such that the stability of the 

controlled system will be broken. Thus, the quantization 

problem, a significant topic of modern control, has received 

considerable attention. A fully distributed protocol with 

dynamic coupling gain is designed for MASs to implement 

the BC tracking task in the works of Wu et al. [29]. Ding et al. 

[30] propose the distributed estimator-based control 

algorithm to deal with parametric uncertainties, input 

disturbances, and networked robotic systems' quantized-data 

to achieve BC. A quantized adaptive finite-time BC problem 

for MASs is investigated in [31] by Wu et al. Liu et al. [32] 

propose an event-triggered fuzzy adaptive quantized control 

approach for stochastic nonlinear nonaffine pure-feedback 

MASs. Besides, the results of quantized control in recent 

years can be found in [33]-[34]. There are few DDC results 

for MASs under data quantization to the best of our 

observation, only Bu et al. researching this problem for a 

single system in [35] and [36]. Hence, it is more difficult to 

investigate quantization problems for MASs than a single 

system, and how to design an appropriate DDC for MASs 

with quantized data is meaningful work. 

Motivated by the above discussions, the problem of 

quantized distributed model-free adaptive iterative learning 

bipartite consensus tracking control is addressed for 

unknown nonaffine nonlinear discrete-time MASs with 

quantized information under a repeatable operating 

environment. Here, the compact form dynamic linearization 

(CFDL) scheme is employed along the iteration axis by using 

the so-called pseudo-partial derivative (PPD) of the 

nonlinear system [21]-[28]. Meanwhile, the signed graph 

and sector bound theory are introduced, and then, a 

QDMFAILBC scheme is proposed only depending on the 

agents' quantized data. Compared with the existing results of 

MASs, the main contributions of this article are summarized 

as follows. 

(1)    A compact form dynamic linearization model along 

the iteration axis is established by using PPD approaches. 

Compared with MBC approaches [29]-[32], the model 

structure is more straightforward, reducing computation 

burdens. Also, it is an essential and necessary complement to 

modern control theory. 

(2)    The proposed QDMFAILBC approach is formulated 

by employing the incomplete I/O data because of the data 

quantization. Comparing with the existing DDC ILC 

approaches [21]-[28], the designed scheme can use fewer 

data to ensure the convergence of MASs, that is, it reduces 

the consumption of communication resources. 

(3)    The relationship between the convergence rate and 

the quantization level is estimated, which can provide a 

guideline for digital communication. 

(4)    Both cooperative and competitive relationships of 

MASs with fixed and switching topologies are considered in 

the QDMFAILBC approach. Most of the existing methods 

[21]-[34] merely consider one or two elements of it. These 

differences bring some difficulties in the analysis of 

convergence of MASs. 

The rest work of this paper is structured as follows. 

Several necessary preliminaries are presented in Section II. 

Section III introduces the distributed QDMFAILBC 

algorithm and gives rigorous mathematical proof. Section IV 

extends the design to MASs with switching topologies. The 

three simulation experiments are shown in Section V. Finally, 

conclusions and future work are provided in Section VI. 

2 Preliminary and Problem Formation 

Signed Graph Theory  

In this study, R , N NR , and I  denote the set of real 

numbers, N N  real matrices, and identity matrix with an 

appropriate dimension, respectively.   denotes the 

Euclidean norm of a vector  R . the diagonal matrix is 

expressed by ( )diag • . Here, a signed digraph 

 = 0  is employed to describe the coopetition 

communication network among N  agents and 1  virtual 

leader, where ( )= , ,  denotes the communication 

relationship between N  follower agents. the set of agents is 

denoted as NA .  = , , , Nv v v , 

( )   = , ,i j i jv v v v , and 
 =     N N

i ja R  with 

= 0iia  indicate the nodes set, edges set, and adjacency 

matrix, respectively. Moreover, if  0i ja , the agent i  can 

receive the information from the agent j .  0i ja  (or 



  

 0i ja ) represents that the relationship between agent i  and 

j  is collaborative (or antagonistic). The neighbors set of 

agent i , degree matrix, and the Laplacian matrix of  are 

represented by ( )=  ,{ | , }i j iN j j i v v , 

 = , , ,in in in
Nd d d with ( )

=  ijj Ni i
in ad , and 

= − +  N NR , separately. Furthermore, define a 

diagonal matrix   = , , N N
Ndiag b b R  with  0,1ib   

as an expression of the information transmission relationship 

between the leader and followers. =1ib  represents the agent 

i  can directly receive the information from the leader. The 

direction of information transmission is directed such as 

( ),j iv v  denotes the information flow from node iv  to node 

jv  and also a directed path could be obtained as 

( ) ( ) ( ) , , , , , ,i k k k km jv v v vv v . If the network  contains 

a spanning tree, the information can flow from the leader to 

any other followers. Meanwhile, the signed graph  is 

called structurally balanced [5]. The main character of 

structurally balanced graph is that existing a dichotomization 

of nodes  and  satisfy  =  and  =  , 

where if agent i  belongs to , 1is = ; otherwise, 0is = . 

In order to investigate time-varying switching topologies, 

let ( )k  indicate a time-varying switching graph with a 

virtual leader, which is dependent on k , and the adjacency 

matrix, degree matrix and Laplacian matrix are expressed by 

( ) ( )  =    N N
i jk a k R , 

( ) ( ) ( ) ( ) = , , ,in in in
Nk kd d dk k  with 

( ) ( ) ( )
=  ijj N

n
i i
id k a k , and ( ) ( ) ( ) = − +  N Nk k k R , 

respectively. Meanwhile, the corresponding matrix iN  and 

 become ( )iN k  and ( )k . Moreover, the set of all 

directed graphs for the agents is expressed by 

 = , ,...,p , where +Z   denotes the total number 

of possible interaction graphs. 

Problem Formation 

A class of SISO (simple-input-simple-output) nonaffine 

nonlinear discrete-time MASs with N  agents is investigated 

and the nonlinear dynamics of the ith  agent is described as: 

u

y ( , 1) = ( ( , ), , ( , ),

( , ), , ( , n ))

i i i i y

i i

l k f y l k y l k n

u l k u l k

+ −

−
,                (1) 

where =0,1,2,l  and ( )k  1,2, ,T  are denoted as 

iteration number and the time interval. yn , un  are two 

unknown positive integers. ( )iu l,k R and ( )iy l,k R  are 

control input and output of agent i  with Ni A  at time 

instant k , respectively. ( )if  denotes an unknown 

nonlinear function and the communication topology of 

MASs is expressed by . 

In the following, some reasonable assumptions with respect 

to the agent’s dynamics are given. 

Assumption 1: The partial derivative of ( )if  with respect 

to the control input ( )iu l,k  is continuous. 

Assumption 2: Equation (1) satisfies the generalized 

Lipschitz condition, that is, ( ) ( )1i  iy l ,k r u l ,k   +    

holds for all k , where r  is a positive constant, 

( ) ( ) ( )1 1 1 1i i iy l,k =y l,k y l ,k + + − − +  and 

( ) ( ) ( )1 0 i  i  iu l,k =u l,k u l ,k − −  . 

Remake 1: The Assumptions 1 and 2 are necessary 

assumptions of the proposed QDMFAILBC method and the 

reasonability of them has been discussed in [18], [21] and 

[22]. 

Lemma 1 ([26], [27]): Suppose the dynamics (1) satisfies 

Assumptions 1 and 2, then the following compact form 

dynamic linearization model can be obtained. 

( ) ( ) ( ), 1 , ,i i iy l k l k u l k + =   ,                 (2) 

where ( ),i l k  is named as pseudo-partial-derivative (PPD) 

and it is a time-varying parameter. ( ),i l k r   and input 

gain ( ),iu l k a  . r  and a  are small positive constant, 

which are dependent on the controlled plant. 

Remake 2: From Equation (2) we can find that the PPD is 

only dependent on the I/O gain of the controlled plant, which 

is easy to be estimated. Here, the all nonlinear behaviors are 

fused on this simple parameter so that we only need to 

estimate the value sequences of PPD to construct the 

equivalent dynamic linear model of the controlled plant. 

Assumption 3: For all ( )k  1,2, ,T  and 0 1 2l= , , , , 

( ), 0i l k     ( ( ), 0i l k   −  ) holds, where   is an 

arbitrarily small positive constant. As the analysis in [18], 

[21], and [28], we also assume ( ), 0i l k    . 

Assumption 4: Suppose  and p  are strongly connected, 

that +  and ( ) ( )+k k  are reducible matrices [37] 

with nonpositive off-diagonal elements [5]. 

Definition 1: The objective of the QDMFAILBC approach is 

to design an appropriate control protocol ( ),iu l k  for MASs 

to track the desired trajectory, where ( ),iu l k  is only 

dependent on I/O data of agent i  and its neighbours. Here, 

each agent satisfies the following conditions. 

( ) ( )( )0i i
k
lim y l ,k s y l ,k =0

→
− ,                        (3) 

where ( )0y l,k  denotes the position of the virtual leader and 

Ni A . Let ( ) ( ) ( )0i i ie l,k s y l,k y l,k= −  donate the BC 

tracking error. 

Definition 2: i ( , )l k  denotes the distributed BC 

information measured or received of the agent i  at lth  

iteration, which is defined as below. 

0

( , ) | | ( ( ) ( , ) ( , ))

( ( , ) ( , ))

i

i ij ij i j

j N

i i i

l k a sign a y l k y l k

b s y l k y l k




= −

+ −


,     (4) 

where ( )sign   is sign function. 

Remake 3: It is noted that Equation (4) only employs the 

measured output of agent i , Ni S  and agent i ’s neighbors. 



  

Moreover, some agents even cannot directly receive the 

information from the virtual leader when =0ib . Hence, the 

proposed QDMFAILBC doesn’t need the full information 

from the network, that is, it is a distributed method and can 

reduce the costs of the computation. 

Generally, the type of quantizer is selected as the 

logarithmic type, which is described as 

   0: , 0,1, 1, 2, 0p

p pU h h h p=  = =   , where 

0 0h   and   with 0 1   denotes the quantization 

density.  

Definition 3: In this study, the quantizer is defined as below. 

1 1
x, 1 1

(x) 0, x 0

( x), x 0

p p
p

if h hh

q if

q if

 


  + +


= =

− − 



   (5) 

where ( ) ( )1 / 1  = − + . It is noted that ( x)= (x)q q− −  

and 0 1  . 

Remark 4: As we all know, the information transmitting 

from the network is dependent on cable or wireless 

connecting. In the industrial process, as hardware restrictions, 

the bandwidth of the communication channel cannot be 

designed with infinite length. Thereby, using the 

quantization technique to deal with the analog data from the 

sensors before transmitted is one of the important methods to 

reduce the communication burden of the communication 

network.  

3 Main results 
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Figure 1.  Diagram of agent i with an DMFAC scheme. 

A diagram of the unknown dynamics MASs is governed 

by the proposed QDMFAILBC approach shown in Fig. 1, 

where we can see that the output gain 

( , )= ( , ) ( 1, )i i iy l k y l k y l k − −  and the BC tracking error 

( )ie l,k  are quantized before they are transmitted into BC 

control protocol, respectively. 

For the above BC tracking objective (3), the QDMFAILBC 

scheme is designed as below. 

( )

2

( 1, )ˆ ( , ) ( ( ( 1, 1))
| ( 1, ) |

ˆ ˆ1, ( 1, )) ( 1, )

i

i i i

i

i i i

u l k
l k q y l k

u l k

l k u l k l k






 −
 =  − +

+  −

−  −  − +  −

,   (6) 

ˆ| ( , ) |

ˆ ˆ( , ) (1, ), | ( 1, ) |

ˆ ˆ( ( , )) ( (1, ))

i

i i i

i i

l k c

l k k u l k c

sign l k sign k

  


 =   − 


  

,   (7) 

2

ˆ ( , )
( , ) ( 1, ) ( 1, 1)

ˆ| ( , ) |

i

i i qi

i

l k
u l k u l k l k

l k







= − + − +

+ 
,   (8) 

where 0 1   and 0   are weighing factors.   and   

are stability parameters, and they will be analyzed in the 

following part. ˆ ( , )i l k is the estimation of ( , )i l k  and its 

initial value is ˆ ( , )i l k . c  is a gain threshold of (7) often 

selected as 10−4 or 10−5. ( , )qi l k is the quantized distributed 

measurement output of (4), which also will be discussed in 

the following part. 

Remark 5: It is noted that the proposed QDMFAILBC 

approach merely depend on input gain ( 1, )iu l k − , 

quantized output gain ( ( 1, 1)i iq y l k  − + , and the quantized 

distributed measurement output ( , )qi l k . Beyond that, the 

proposed QDMFAILBC doesn’t employ any other 

information of MASs. Comparing with the related DDC ILC 

approaches for MASs formulated in [25], [27], and [28], it 

needs fewer data of controlled MASs so that the proposed 

scheme can further reduce the costs of the communication 

and improve the practicability that it is more suitable for 

industrial production 

In this paper, we introduce i  and ei  to donate the 

quantization densities of ( )iq   and ( )eiq  , separately. 

According the sector bound approach [36], [38] and 

Definition 3, we can obtain 

( ( , )) ( , ) ( , )
i i

i i iq y l k y l k y l k 
 −  =              (9) 

( ( , )) ( , ) ( , )
i i

e i i ie
q e l k e l k e l k− =                 (10) 

where 
i i

   , 
1

1
1

i

i

i












−
= 

+
, 

i ie e  , and 

1
1

1

i

i

i

e

e

e






−
= 

+
. 

Lemma 2 ([27], [37]): Suppose the set of all possible 

time-varying irreducible substochastic ( )W k with 

non-negative diagonal element are denoted by W . Then, we 

have  

|| ( ) ( 1) (1) ||W Q W Q W −  . 

where 0 1   and ( )W k , 1,2, ,k Q= , are Q  

matrices arbitrarily selected from W . 

Then, the stability analysis of the proposed QDDDBFC 

algorithm is presented in the following Theorem. 

Theorem 1: Consider the dynamics (1) of agent satisfying 

Assumptions 1-3, MASs’ communication topology satisfies 

Assumption 4, and MASs is governed by the proposed 

QDMFAILBC algorithm (6)-(8) to implement BC tracking 

task. If  satisfies the following condition 

1

1

max
n

N

i S ij i

j

a b





=



+
 



  

and 
2

4
min

r
   , the tracking error ( )ie l,k  can be 

declined to the zero when l  tends to infinity. 

Proof: The proof comprises three steps as follows. 

Step 1 (Proving the Boundedness of ˆ ( , )i l k ): Define 

ˆ( , ) ( , ) ( , )i i il k l k l k =  −  and 

( , ) ( , ) ( 1, )i i il k l k l k =  − − . According to Lemmas 1, 

Equations (6) and (9), we can obtain that  

( )

( ) ( )( )

2

2

( 1, )
( , ) ( 1, ) ( , )

| ( 1, ) |

ˆ( ( ( 1, 1)) 1, ( 1, ))

( 1, )
( 1, ) ( , )

| ( 1, ) |

ˆ+1 ( 1, 1) 1, ( 1, )

( 1, ) ( , )

i

i i i

i

i i i i

i

i i

i

i i i i

i i

u l k
l k l k l k

u l k

q y l k l k u l k

u l k
l k l k

u l k

y l k l k u l k

l k l k















 −
 =  − −  +

+  −

  − + −  −  −

 −
=  − −  +

+  −

   − + −  −  −

=  − −  +

( )( )

( )(

)

2

2

2

2

2

2

( 1, )

| ( 1, ) |

ˆ+1 ( 1, ) ( 1, )

( 1, )
( 1, ) ( , )

| ( 1, ) |

+1 ( 1, ) ( 1, )

ˆ+ ( 1, ) ( 1, )

( 1, )
( 1, ) ( , )

| ( 1, ) |

i

i

i i i

i

i i

i

i i i

i i

i

i i

i

i i

u l k

u l k

l k l k

u l k
l k l k

u l k

l k l k

l k l k

u l k
l k l k

u l k

















 −

+  −

   − − −

 −
=  − −  +

+  −

   − −  −

 − − −

 −
=  − −  +

+  −

  ( )
2

2

2

2

( 1, ) ( 1, )

( 1, )
1 ( 1, ) ( , )

| ( 1, ) |

( 1, )
( 1, )

| ( 1, ) |

i

i

i i

i

i

i i

i

l k l k

u l k
l k l k

u l k

u l k
l k

u l k










− −  −

  −
= −  − −  

+  − 

 −
+   −

+  −

    (11) 

Then, we have  
2

2

2

2

( 1, )
( , ) 1 ( 1, ) + ( , )

| ( 1, ) |

( 1, )
( 1, )

| ( 1, ) |

i

i i i

i

i

i i

i

u l k
l k l k l k

u l k

u l k
l k

u l k










 −
  −  − 

+  −

 −
+   −

+  −

 

(12) 

Since 0 1   and 0  , we can obtain that  
2 22( 1, ) ( 1, ) + ( 1, )i i iu l k u l k u l k  −   −   − . Then, we 

can obtain 
2

2

( 1, )
0 1

| ( 1, ) |

i

i

u l k

u l k





 −
 

+  −
                  (13)  

Hence, there must be a constant  to satisfy the following 

inequality sequences. 

 
2

2

( 1, )
0 1 1

| ( 1, ) |

i

i

u l k

u l k





 −
 −  

+  −
            (14) 

According to ( , )i l k r  , 0 1
i   , and (14), Equation 

(12) becomes  

( )

( )

( )
( )

1 2

2

1

( , ) ( 1, ) 2

( 2, ) 3 3

(1, ) 1 3

1
(1, ) + 3

1

i i

i

k k

i

k

k

i

l k l k r r

l k r r

k r

k r

− −

−

−

   − + +

  − + +

  + + + +

−
 

−

  (15) 

Hence, 
( )

3
lim ( ,

1
)i

k

r
l k

−
 =

−
, that is, ( , )i l k  is bounded. 

Meanwhile, since ( , )i l k  is also bounded, we can obtain 

that ˆ ( , )i l k  is bounded. 

Then, we define the following collective stack vectors: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

1 2

1 2

1 2

T

N

T

q q q q N

T

1 2 N

T

N

T

N

T

0 0 0 0

e e e

u l,k u l ,k ,u l ,k , ,u l ,k

l ,k l ,k , l ,k , , l ,k

e l ,k e l ,k ,e l ,k , ,e l ,k

y l ,k y l ,k , y l ,k , , y l ,k

y l ,k y l ,k , y l ,k , , y l ,k

y l ,k y l ,k , y l ,k , , y l ,k

q x q x ,q x , ,q

   

=   

 =  

=   

=   

 =     

=   

= ( )
T

eN x  

 

Step 2 (Proving the Convergence of ( )ie k ): Firstly, 

according to ( ) ( ) ( )0i i ie l,k s y l,k y l,k= −  and Assumption 

4, Equation (4) becomes. 

( )

( )

( )

i

0

0

0

( , ) ( ( ) ( , ) ( , ))

( ( , ) ( , ))

= ( , ) ( , ) e ( , )

= ( , ) ( , ) e ( , )

e ( , )

= ( , ) ( , ) e ( , )

e ( ,

i

i

i

i

ij ij j i

j N

i i i

ij j ij i i i

j N

ij j ij i ij i

j N

i i

ij j ij j ij i

j N

i i

l k a sign a y l k y l k

b s y l k y l k

a y l k a y l k b l k

a y l k a s y l k a l k

b l k

a y l k a s y l k a l k

b l k










= −

+ −

− +

− +

+

− +

+









( )

)

= e ( , ) e ( , ) e ( , )
i

ij i ij j i i

j N

a l k a l k b l k


− +

  (16) 

Then, from (10) and (16), we can obtain the error quantized 

expression as below.  

( )( ) ( )( )( )

( )( )

( , ) , ,

,

i

qi ij ei i ij ej j

j N

i ei i

l k a q e l k a q e l k

b q e l k




= −

+


.    (17) 

To express clearly, Equation (17) can be written as a 

compact form as 

( ) ( ) ( )( )

( ) ( )( ) ( )





+

+ + +

=, ,

, ,

q el k q e l k

l k I e l k
,               (18) 



  

where ( )1( , )= , ,e eNl k diag   . Then, from (18), we can 

obtain the compact form of the control law (8) as below: 

( ) ( )( ) ( )( ) ( )  + + =, , , ,u l k l k l k I e l k       (19) 

where  

( )
( )

( )

( )

( )
1

2 2

1

N

N

ˆ ˆl ,k l ,k
l ,k diag , ,

ˆ ˆ| l ,k | | l ,k | 

  
 =   +  +  

. 

 

From ( ) ( ) ( )0i i ie l,k s y l,k y l,k= − , ( )0y l,k =constant , (2), 

and (19), we can obtain that  

( ) ( ) ( )

( ) ( )( )

( ) ( )( )

( )( ) ( )







+ = − + −  +

= − + −  +

 − +

= −  − +

+

, , ,

, ,

, ,

, ,

e l k e l k y l k

e l k l k

e l k l k I

I l k e l k

        (20) 

where ( ) ( ) ( )( )1 Nl,k =diag l,k , , l,k  , 

( )
( ) ( )

( ) 2

i i

i

i

ˆl,k l,k
l,k

ˆ| l,k |




 
=

+ 
, and 

( ) ( )( ) ( )( ) + += , , ,l k l k l k I . 

Step 3 (Obtaining the Convergence Condition of MASs): 

From Assumption 3, Lemma 1, and 
2

4
min

r
   ，we have 

( )
( )

( )
0 1

2 2

i

i

i

ˆr l,k r
l,k

ˆ| l,k | m


 


   


.             (21) 

Then, according to Definitions 3-4, Equation (21), 

0 1
ie   , and   satisfies  

( ) ( )
1

1

max
n

N

i i

j

S j ia k b k





=



+
, 

which means that all of the diagonal entry in L B+  are 

larger than the reciprocal of  , we can obtain that 

( )l,k I −  is an irreducible substochastic matrix with 

positive diagonal entries [21]-[23]. Thus, (20) can be written 

as below. 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

1 1 1

1 2 1

1

1 1

e l,k l,k I e l ,k

l,k I l ,k I e l ,k

l,k I l ,k I

l,k I e ,k



 

 



+ =  − − +

  −  − − − +

  −  − −

 − +

, 

(22) 

Then, applying Lemma 2, we can obtain that  

( )lim , 1 lim (1, 1)

l

Q

k k
e l k e k

 
 
 

− −

 
 + = +
 
 

  

where     denotes the floor function [27]. Since 0 1  , 

( )lim , 1 =0.
k

e l k
−

+                                                              □ 

4 Extension to Switching Topologies  

In this part, time-varying switching topologies are 

investigated. The stability and convergence of MASs with 

quantization data to perform BC tracking tasks are analyzed.  

According to the signed graph theory of the section 2, 

Definition 2 becomes  

( )

0

( , ) ( ) (sign ( ) ( , ) ( , ))

( )( ( ) ( , ) ( , ))

i

i ij ij j i

j N

i i i

l k a k a k y l k y l k

b k s k y l k y l k




= −

+ −


.   (26) 

Theorem 2: When nonlinear MASs satisfies Assumptions 

1-4, the (7)-(9) of the QDMFAILBC method are applied, the 

value of   satisfies 

( ) ( ), 1,2, , 1

1

max
N

N p p

i S p j ij ia k b k


 = =


+

, 

and 
2

4
min

r
    exists, the bipartite formation objective 

(3) can be achieved as k →  . 

Proof: According to (26), the bipartite formation tracking 

errors of the QDDDBFC approach in (23) becomes 

( ) ( ) ( ) ( )( ) ( )( )( )
( )

 + = − + +

 − +

, ,

,

e l k I k k k l k I

e l k

   26) 

where all the reciprocals of the diagonal entry in 

( ) ( )+k k , 1 2p , , ,=  are larger than  . Hence, 

applying the similar analytical method of Section 3 we can 

obtain that ( ) ( ) ( )( ) ( )( )  + −+, ,l k k k l k I I  is also 

irreducible substochastic matrix with non-negative diagonal 

entries and ( )lim , 1 =0
k

e l k
→

+ .                  □ 

Remark 6: In the existing consensus or formation methods 

for MASs, most of them are dependent on the assumption 

that an accurate mathematical model is available to analyze 

the convergence and stability of controlled systems. 

However, it is noted that the mathematical model is not a 

requirement in the QDMFAILBC algorithm. Moreover, the 

existing DDC ILC approaches for MASs [21]-[29] don’t 

consider the quantization data and switching topologies 

problems. 

Remark 7: In this study, we have proposed a BC algorithm 

for MASs with quantization data, switching topologies, and 

competition relationships, where the type of each agent is 

SISO. In the practical process, we can find that existing 

systems are multiple-input-multiple-output (MIMO), and the 

operating environment is more complicated such as existing 

the unknown disturbance, packet dropout, and sensor 

saturation. Hence, we will try to further design a robust BC 

scheme for SISO systems with a more complex operating 

environment and extend the proposed approach to the 

MIMO systems. 

5 Simulation 

In this Section, three simulations are given to test the 

correctness and efficiency of the theoretical and analysis. 

The first one is for MASs with fixed topology and 

quantization data to implement the BC tracking task, and the 

second one is for MASs with time-varying switching 

topologies and quantization data to perform BC tracking task. 



  

To demonstrate the practicality of the proposed 

QDMFAILBC approach, we employ even DC motors to test 

both fixed and time-varying switching topologies and 

quantization data in the third simulation. all of the possible 

communication topologies of MASs are given in Fig. 2. 
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Figure 2.  Communication topologies of MASs. 

Fixed topology tracking example  

In this simulation, we select , which is shown in Fig. 2, as 

the communication topology of MASs. Here, the note 0 

denotes virtual leader, which directly connects with the 

agents 1, 2, 4, and 6. In addition, the direction of transmitting 

information is fixed that the information among agents only 

transmits along with the arrows. We also can see that seven 

agents are allotted into two alliances (agents 1, 2, 3 belong to 

the alliance , and agents 4, 5, 6, 7 belong to the alliance 

), where using the black solid line to represent the 

collaborative relationships among agents and the 

antagonistic interactions among agents is expressed by red 

solid line.  

According the communication topology  in Fig. 2, we 

can get that the reciprocal of the greatest diagonal entry of 

+  is 0.5. According to the convergence condition of 

Theorem 2 for all 1 2 3 4 5 6 7i , , , , , ,= , the controller 

parameters are selected as 0 3  . = , 0 5. = , 1 = , 1 = , 

and 410 −= . Meanwhile, the initial conditions are chosen 

as ( ) 00iu ,k = , ( ) ( )0 0 005 0 005iy ,k =rand . , .− , and 

( )1 2i ,k =  for all agents in this simulation. Moreover, the 

agents are governed by 
2

1 1 1
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1 1 1
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2 2 2

2 2

2 2 2
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+ − − + −

− − + + −
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+ − − + −
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Remark 8: From the dynamics of each agent, it is noted that 

each agent has a unique dynamics model, that is, MASs is 

heterogeneous. Furthermore, it is noteworthy that the above 

dynamics models are only employed to generate the I/O data 

for the simulation, while the designed QDMFAILBC method 

doesn’t use any model information of the plant. During 

designing this algorithm, the dynamics models of MASs are 

unknown. 

From Figs. 3-5, we can see that the BC tracking 

performance of MASs when = =0.9i ei   and 0 =5h , where 

the BC tracking errors have rapidly reduced to the origin. 

When setting = =0.2i ei   and 0 =5h , we can find that it can 

also achieve BC tracking, though the convergence rate is 

declined in Figs. 6-8. Moreover, the effect of the 

quantization density   for the convergence property of the 

proposed QDMFAILBC is presented in Fig. 9. It clearly 

shows that the quantization density of each agent will affect 

the convergence steps of them. Generally, when the level of 

the quantization density is small, it strictly influences the 

convergence rate. As the density increases, the intensity of 

the influence decreases. 

 

Figure 3.  Tracking performance of MASs with =0.9  at 10th (example 

1). 

 



  

Figure 4.  Tracking performance of MASs with =0.9  at 370th 

(example 1). 

 

Figure 5.  Tracking errors of MASs with =0.9  (example 1). 

 
Figure 6.  Tracking performance of MASs with =0.2  at 10th (example 

1). 

 

Figure 7.  Tracking performance of MASs with =0.2  at 370th 

(example 1). 

 

Figure 8.  Tracking errors of MASs with =0.2  (example 1). 

 

Figure 9.  Convergence speed of MASs with different   (example 1). 

Remark 9: According to the results of simulation 1, it is 

noted that the proposed QDMFAILBC scheme can deal with 

the quantization problem for MASs with fixed topology to 

implement BC tracking tasks. Compared with the existing 

DDC ILC results, it is more closed to the industrial 

environment. It is the first time to consider the quantization 

problem for unknown dynamics heterogeneous discrete-time 

MASs to perform BC tracking tasks to the best of our 

knowledge. 

Time-varying topologies tracking example  

In this simulation, the time-varying switching topologies 

issues is discussed. All of the possible communication 

topologies is shown in Fig. 2 and related parameters are 

selected as same as the example 1 ( z = = =0.2i i i   ) to 

accomplish this simulation. Moreover, a piecewise function 

of how to change the topology of MASs is given as below: 

  


 
  

,

,

,

k

k

k

, 

The tracking performances are shown in Figs 10-11 under 

difficult interaction steps. The tracking errors of agents are 

shown in Fig 12. It can see that time-varying switching 

topologies doesn’t affect the stability of MASs to implement 

BC tracking tasks. Especially, when some agents defer to a 

hostile alliance there can immediately track a new trajectory. 

 



  

From Figs. 11-12, we also can obtain the same result with 

Example 1 that the convergence rate is affected by the 

parameters  . Moreover, we further investigate the effect of 

the sensor saturation phenomenon of MASs with switching 

topologies in Figs. 13-14. Comparing with Figs. 12 and 14, 

we can see that the convergence speed of Fig. 12 is faster 

than Fig. 14. It can conclude that the sensor saturation 

doesn’t change the convergence property of the proposed 

QDMFAILBC approach, though it causes the convergence 

rate to slow down. From Figs 9-14, we can see that the 

bipartite formation tracking tasks can be accomplished when 

MASs suffer the data quantization, sensor saturation even 

agents exchanging their alliances. 

 

Figure 10.  Tracking performance of MASs with =0.2  at 10th (example 

2). 

 

Figure 11.  Tracking performance of MASs with =0.2  at 370th  

(example 2). 

 

Figure 12.  Tracking errors of MASs with =0.2  (example 2). 

This result further verifies the correctness of Theorem 2 

that the proposed QDMFAILBC approach can guarantee 

that the tracking error of each agent converges to the zero 

when MASs is subject to quantization and switching 

topologies influences. 

Realistic DC linear Motors  

In this example, we utilize seven permanent magnet DC 

linear motors to verify the effectiveness and practicability of 

proposed QDMFAILBC approach. Here, the mathematical 

model of this DC motor has been studied in [39], [40], which 

is identified as following model [21], [28]. 

 

( ) ( )

( )
( ) ( ) ( )

( ) ( )

friction ripple

x t v t

u t f t f t
v t

m

y t v t .

=


− −
=


 =


  

where ( )v t , ( )x t  express the position (m) and the speed 

(m/s), respectively. The m  denotes the combined mass of 

translator and load and ( )u t  denotes the developed force 

(N). ( )frictionf t  and ( )ripplef t  are the friction force (N) and 

the ripple force (N), respectively. Meanwhile, the model of 

friction and ripple forces are expressed by following 

equations.  

( ) ( ) ( )

( ) ( )( )0

x
x

friction c s c v

ripple 1

f t = f f f e f x sign x

f t =b sin w x t





 − 
 

 
 + − +
 
  , 

where ( )sign  is sign function , cf  denotes the minimum 

level of Coulomb friction, sf  denotes the level of static 

friction,   is an additional empirical parameter. x  and vf  

are lubricant and load parameters. In this example, these 

parameters are selected as: 0 59m . kg= , 0 1x = . , 1= , 

10cf = N , 20sf = N , 
110vf = N s m−  , 8 51b = . N , 

1

0 314w = s−
.The desired velocity is given as 

( ) ( ) ( )0 5 30 0 3 10y t . sin t / . cos t / = + ,  0 100t , . 

Applying Euler Formula to discretize above model and 

selecting sampling time as 0 001h .=  , we have 1000T = .  

 

Figure 13.  Tracking performance of MASs with with fixed topology and 

=0.2  at 370th (example 3). 



  

 

Figure 14.  Tracking errors of MASs with fixed topology and =0.2  

(example 3). 

 

Figure 15.  Tracking performance of MASs with switching topologies and 

=0.2  at 370th (example 3). 

 

Figure 16.  Tracking errors of MASs with switching topologies and 

=0.2  at 370th (example 3). 

Here, we use the same parameters and the communication 

topology of Example 1 to test the efficiency of the proposed 

QDMFAILBC scheme for MASs with fixed topology. The 

performances of seven DC motors are shown in Fig. 13 at 

370th iteration, and the corresponding tracking error of each 

motor is presented in Fig. 14. The time-varying switching 

topologies problem of seven DC motors is investigated in 

Figs. 14-15. It is noteworthy that the BC tracking objective 

of the seven-motor system with fixed or switching topologies 

can be well achieved by applying the QDMFAILBC 

approach.  

Remark 10: From above simultaneous, we can see that the 

proposed approach can ensure the MASs to track the 

objective trajectory when MASs suffers quantization data, 

corresponding relationships, and switching topologies under 

repeatable operating environment. 

6 Conclusion 

In this paper, the problems of data quantized and 

coopetition interactions among agents have been 

investigated for unknown nonlinear discrete-time multiagent 

systems to perform bipartite consensus tracking tasks under a 

repeatable operation circumstance. To formulate an 

appropriate control scheme, a time-varying linear data model 

along the iteration axis has been established, and a 

QDMFAILBC scheme has been proposed. Moreover, both 

fixed and switching topologies are considered. Compared 

with the existing data-driven iteration leader control 

approaches, it not only considers the cooperative and 

competitive relationships among agents but also it can 

employ incomplete feedback data to update control protocol, 

that is, it can further reduce the costs of the communication. 

The results of theoretical analysis and simulations 

demonstrate the effectiveness of the proposed scheme. In our 

future efforts, we will consider the unknown disturbance, 

packet dropout, and the delay problems of MASs to perform 

bipartite formation tracking tasks. 
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