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Interactions in biology and social systems are not restricted to pairwise but can take arbitrary sizes. Exten-

sive studies have revealed that the arbitrary-sized interactions significantly affect the spreading dynamics on

networked systems. Competing spreading dynamics, i.e., several epidemics spread simultaneously and compete

with each other, have been widely observed in the real world, yet the way arbitrary-sized interactions affect

competing spreading dynamics still lacks systematic study. This study presents a model of two competing sim-

plicial susceptible-infected-susceptible epidemics on a higher-order system represented by simplicial complex

and analyzes the model’s critical phenomena. In the proposed model, a susceptible node can only be infected

by one of the two epidemics, and the transmission of infection to neighbors can occur through pairwise (i.e.,

an edge) and high-order (e.g., 2-simplex) interactions simultaneously. Through a mean-field (MF) theory anal-

ysis and numerical simulations, we show that the model displays rich dynamical behavior depending on the

2-simplex infection strength. When the 2-simplex infection strength is weak, the model’s phase diagram is con-

sistent with the simple graph, consisting of three regions: the absolute dominant regions for each epidemic and

the epidemic-free region. With the increase of the 2-simplex infection strength, a new phase region called the

alternative dominant region emerges. In this region, the survival of one epidemic depends on the initial condi-

tions. Our theoretical analysis can reasonably predict the time evolution and steady-state outbreak size in each

region. In addition, we further explore the model’s phase diagram both when the 2-simplex infection strength is

symmetrical and asymmetrical. The results show that the 2-simplex infection strength has a significant impact

on the system phase diagram.

I. INTRODUCTION

Competitive epidemic spreading dynamics has received

widespread attention in network science, physics, and math-

ematics [1, 2], as it describes various spreading processes in

real-world systems. For competing spreading dynamics such

as two competing epidemics, a host can be infected by only

one of the two, since the epidemic kills the host before infec-

tion by the second can occur, or there may be cross-immunity

between the two epidemics [3]. Besides epidemics, compet-

ing spreading can also model products flowing in the market.

After choosing a product, consumers will lose interest in other

similar products for a period of time [4]. Similarly, for com-

puter viruses spreading on the Internet, after people realize

that a computer virus infects their computer, they are likely to

install anti-virus software to kill the virus, making it less likely

to be infected by other viruses [5, 6]. Studies in the literature

have been focusing on revealing the essential dynamical prop-

erties of competing dynamics, such as whether two epidemics

can coexist in the steady-state, and if not, which epidemic

will eventually survive; the phase transition between differ-

ent steady-states, as well as the type of phase transitions [1].

Studying competing spreading dynamics can provide insight

into the intervention of real-world spreading processes. For

epidemic prevention, from understandings the epidemic trans-

mission mechanism, the government could adjust and opti-

mize the epidemic prevention strategies [7, 8]. Besides, com-
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panies can do competitive product analyses to help designing

product operation strategy [9–11]. In addition, for finance, the

studies can help avoid financial risks and discovering financial

opportunities [12, 13].

Previous studies have extensively analyzed the way spread-

ing mechanisms and underlying network topology affect

the competing spreading dynamics. Newman [3] studied

two susceptible-infected-removed (SIR) competing epidemic

spreading on networks using bound percolation theory and

showed that it is possible to observe the coexistence of two

SIR epidemics. The results have raised lots of further dis-

cussions [14–16]. Prakash et al. [10] conducted a theoreti-

cal analysis for the full mutual immunity model on arbitrary

topology and proved that the ‘winner takes all,’ i.e., the more

potent product will hold the dominance, and the weaker prod-

uct will become extinct. They further studied the problem

of coexistence in the SIS model of partial competition [17].

Wu et al. [18] studied two SIS epidemics with different re-

productive numbers that spread on scale-free networks and

found the coexistence of the two epidemics. Li et al. [19]

studied two mutually reinforcing epidemics spread under the

limit of resources and find the critical value of resources that

inhibit the spread of these two epidemics. The interaction

between epidemics can not only be competitive but also be

promotional [20–24], or asymmetrical [25]. When consider-

ing multi-layer networks, the competitive spreading problem

becomes more complex [26]. Funk and Jansen [27] studied

bond percolation of two different processes on overlay net-

works of arbitrary joint degree distribution. Faryad et al. [28]

discussed the spread of two competing viruses in host popu-

lations with different contact networks from a comprehensive

topology perspective.
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Most of the studies are based on simple graphs which re-

gard individuals as nodes and the relationship between in-

dividuals as connected edges. The fundamental limitation

of simple graphs is that it only captures pairwise interac-

tions, while many systems display group interactions [29–

35]. For instance, scientific research is often carried out by

a group of people, and the contagion of rumors or spread-

ing of ideas can take place in the form of groups. The im-

portance of higher-order interactions has been realized for a

long time [34, 36, 37]. Facing the challenges of modeling

higher-order interactions, scientists tried to use pairwise inter-

actions to approximate group interactions. For example, there

has been studies using bipartite graph [38] or clique expan-

sion [39–44] to model higher-order interaction, however the

results were not satisfactory.

Researchers have been committed to designing a proper

mathematical framework for describing group interactions in

a natural way [45, 46]. Simplicial complex [47, 48] describes

the higher-order interactions by interaction sets rather than

pairwise edges. If a simplex σ included in simplicial com-

plex κ, then all the sub-simplices v ⊂ σ of simplex σ are also

contained in κ. Iacopini et al. [48] proposed a higher-order

model of social contagion on simplicial complex and found a

discontinuous phase transition and bistable region in the phase

diagram. Through a mean-field analysis, they found that the

2-simplex infection strength decides the discontinuous transi-

tion, and the steady-state in the bistable region relies on the

fraction of initial seeds. The microscopic Markov chain ap-

proach [49] and the epidemic link equations [50] have been

adopted in improving the accuracy of mean-field approaches.

Matamalas et al. obtained a more accurate prediction of the

spreading dynamics on simplicial complex [51]. Compared

to simplicial complex, hypergraphs [52–56] do not require the

appearance of all subsets in each interaction set, thus is more

flexible in describing higher-order interactions. Hypergraph

models, such as the uniform hypergraph, have been proposed

to describe the higher-order interactions and to investigate the

dynamics of group epidemic spreading [57, 58].

From previous studies, higher-order interactions have an es-

sential effect on the spread of a single epidemic. To the best

of our knowledge, there still lacks theoretical studies of its in-

fluence on the competitive spreading dynamics when two epi-

demics spreading on the network simultaneously. This study

proposes an absolute competing model for two SIS-type epi-

demics that are homogeneously mixed on the simplicial com-

plex with a highest interaction dimension D = 2. In Sec. II,

we introduce the competing spreading dynamics model on the

simplicial complex. Then, we derive the MF theory rate equa-

tions in Sec. III, which includes both interactions of the first

and second order. We obtain seven fixed points of the rate

equation and analyze their stability of the system. In Sec. IV

we study the conditions for the fixed points to be stable and

obtain the phase diagram of the proposed model. When the 2-

simplex infection strength is weak, the phase space has three

regions, similar to simple graphs. The regions include the ab-

solute dominant regions for each epidemic and the epidemic-

free region. With the increase of the 2-simplex infection

strength, alternative dominant regions emerge, in which the

fraction of the initial seeds decide the survival of the epidemic.

In this case, the phase diagram has into nine regions with the

hysteresis loop appears. Combining both the theory and ex-

tensive numerical simulations, we illustrate the evolution pro-

cess of epidemics in each region by evolution diagram and

predict the outbreak size of the epidemics. The results show

that the theory and simulation agree well. We further discuss

the influence of the 2-simplex infection strength on the phase

diagram. When the 2-simplex infection strength of epidemics

is symmetrical and asymmetrical, the existence and size of

alternate dominant regions are related to the 2-simplex infec-

tion strength. Finally, we present conclusions and discussions

in Sec. V.

II. MODEL DESCRIPTIONS

In this section, we propose a competing spreading dynam-

ics on simplicial complex H = (V, κ), where V denotes

the node set, κ stands for the k-simplex set. A k-simplex

σ ∈ {κ} is defined as the interactions of a set of k + 1
vertices σ = [v0, ..., vk]. Therefore, 0-simplex is one sin-

gle node, and 1-simplex represents two nodes, and 2-simplex

is the collection of three nodes, and so on. There is an extra

requirement for simplicial complex that if a simplex σ ∈ κ,

then all the sub-simplices v ⊂ σ of simplex σ are also con-

tained in κ. For example, a 2-simplex is consists of three

nodes σ = [v0, v1, v2] ∈ κ, whose subsimplices [v0], [v1],
[v2], [v0, v1], [v0, v2] and [v1, v2] are also belong to κ.

We use random simplicial complex (RSC) model [48] to

generate the artificial simplicial complex. The RSC allows

us to generate the simplicial complex with specified average

degree to each dimension. To generate the D dimension sim-

plicial complex, we need D + 1 parameters that is N vertices

and D probabilities {p1, ..., pD} whose elements control the

creation of simplices in each dimension. In this paper, we set

D = 2. The RSC model can be generated as follows. Given

a set V with N vertices, we first connect the pair of nodes

first with probability p1 = (〈k〉 − 2〈k′〉)/(N − 1 − 2〈k′〉)
(i.e., the 1-simplex connecting probability), where 〈k〉 is the

average degree of the 1-simplex, and 〈k′〉 means the average

degree of the 2-simplex. Next, randomly select three vertices

with probability p2 = 2〈k′〉/[(N − 1)(N − 2)] to create 2-

simplex. The average degree of the simplicial complex is

〈k〉 = (N − 1)p1 + 2〈k′〉(1− p1).
Consider the absolute competition between epidemic A and

epidemic B in the simplicial complex. If the host has disease

A, it will not be infected by epidemic B or vice versa. For

each spreading dynamics, we assume that it follows a sim-

plicial susceptible-infected-susceptible (SIS) model, which is

proposed in Ref. [48]. A node can transform among three

states: susceptible state S, A-infected state IA, and B-infected

state IB . S state node can transform to IA state with probabil-

ity IA∆, and becomes IB state with probability IB∆. An IA
(IB) state node recovers to S state by itself with probability

µA (µB). The above state transition is illustrated in Fig. 1.

Epidemic X ∈ {A,B} spreading on simplicial complex is

governed by 2 control parameters IX∆ ∈ {βX1, βX2}, βX1
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Fig 1. State transformation on competitive simplicial complex. In the

simplex where the infection of epidemic X ∈ {A,B} is infected,

susceptible individuals become X-infected with rate IX∆, and X-

infected individuals recover to susceptible with rate µX .

describes the 1-simplex infectivity rate (pairwise interaction),

and βX2 describes the 2-simplex infectivity rate (2-order in-

teraction). If a susceptible node i and X-infected nodes j are

connected by a 1-simplex, node i obtains the infection through

this 1-simplex j → i with rate βX1. When a susceptible node

i and two nodes j and ℓ are connected by a 2-simplex, there

are two situations. (i) If one of nodes j and ℓ is in the X-

infected state, node i can only get the infection through 1-

simplex with rate βX1. (ii) If nodes j and ℓ are in the X-

infected state, node i will get the infection from j and ℓ with

rate 1− (1− βX1)
2 through the two pieces of 1-simplex con-

nected between j → i and ℓ → i. In addition, node i also

get an addition infection rate through the 2-simplex with rate

βX2. Therefore, the infection probability of node i in situation

(ii) is 1− (1 − βX1)
2(1 − βX2).

III. THEORETICAL RESULTS

In this section, we first develop a MF theory and then ana-

lyze the stability of the system.

A. Rate equations

Let us denote s(t), ρA(t) and ρB(t) as the fraction of sus-

ceptible state, A-infected state and B-infected state, they sat-

isfy the conservation function that s(t) + ρA(t) + ρB(t) = 1.

The dynamics of the model can be described as MF equations,

in which we assume that there are no statistical differences

among distinct nodes. That is to say, for any node i and j,

i 6= j, have the same probability in the same states. The rate

equations of infected node fraction of two epidemics are as

dtρA(t) =− µAρA(t)

+

D
∑

w=1

βAw〈kw〉ρ
w
A(t)[1− ρA(t)− ρB(t)],

(1)

dtρB(t) =− µBρB(t)

+

D
∑

w=1

βBw〈kw〉ρ
w
B(t)[1− ρA(t)− ρB(t)],

(2)

where 〈kw〉 represents the average degree of the w-simplex.

The first term on the right side of Eq. (1) is the reduction of

evolution rate for epidemic A due to the recovery. The second

term as the gain term of evolution rate of epidemic A, repre-

sents the fraction of nodes newly infected by epidemic A in

each w-simplex. Similar to epidemic B, Eq. (2) describes the

evolution rate of epidemic B.

In this paper, we focus on higher-order interactions with

D = 2. Eqs. (1) and (2) can be further expressed as

dtρA(t) =− µAρA(t) + ρA(t)βA〈k〉[1− ρA(t)− ρB(t)]

+ ρA(t)
2β′

A〈k
′〉[1 − ρA(t)− ρB(t)],

(3)

and

dtρB(t) = −µBρB(t) + ρB(t)βB〈k〉[1− ρA(t)− ρB(t)]

+ ρB(t)
2β′

B〈k
′〉[1− ρA(t)− ρB(t)],

(4)

respectively. For simplicity, we use βA, βB and 〈k〉 represent

the 1-simplex (i.e., pairwise interaction), and use β′
A, β′

B and

〈k′〉 represent the 2-simplex.

For the epidemic spreading dynamics, an important pa-

rameter is the basic reproductive number R0 [59–61], rep-

resenting the average number of new infections triggered by

an infected node. When R0 > 1, a global epidemic may

break out; otherwise, no epidemic exists in the system. For

the case of homogeneous population or networks, we know

R0 = β〈k〉/µ, where β is the infection rate, µ denotes the

recovery rate, and 〈k〉 is the average degree of the homoge-

neous population. With the denotation of R0, we integrate

three parameters into R0. Denoting λA = βA〈k〉/µA and

λ′
A = β′

A〈k
′〉/µA represent the basic reproductive number

when only 1-simplex and 2-simplex include for epidemic A,

respectively. Similarly, we denote λB = βB〈k〉/µB and

λ′
B = β′

B〈k
′〉/µB respectively stand for the basic reproduc-

tive number (i.e., the infection strength) when only 1-simplex

and 2-simplex include for epidemic B. We know the larger

value of λ′
A, the stronger of the 2-simplex infectivity. Other

parameters have the similar meanings. Eqs. (3) and (4) can be

further simplified as

dtρA(t) =− µAρA(λ
′
Aρ

2
A + (λA − λ′

A + λ′
AρB)ρA

+ (1− λA + λAρB)),
(5)
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and

dtρB(t) =− µBρB(λ
′
Bρ

2
B + (λB − λ′

B + λ′
BρA)ρB

+ (1− λB + λBρA)),
(6)

respectively.

B. Stability analyses

When t → ∞, i.e., dtρA(t) = 0 and dtρB(t) = 0, the sys-

tem reaches a dynamical steady state. By setting the left hand

of Eqs. (5) and (6) equal to zero, we can solving the fixed

points of the competing spreading dynamics. With the knowl-

edge of nonlinear dynamics, the procedures for stability of the

fixed points are illustrated in Fig. 2. We find 7 possible fixed

Fig 2. Illustration of the procedures for stability of the fixed points.

points (ρ∗A, ρ
∗
B) for the given values of dynamical parameters.

The seven fixed points are as follows.

• Fixed point 1: (ρ∗A, ρ
∗
B) = (0, 0), which means that two

epidemic die-out.

• Fixed point 2: (ρ∗A, ρ
∗
B) = (ρ∗A−, 0), which indicates

that only epidemic A survives, where

ρ∗A− =
λ′
A − λA −

√

λ2
A + 2λAλ′

A + λ′
A
2 − 4λ′

A

2λ′
A

. (7)

• Fixed point 3: (ρ∗A, ρ
∗
B) = (ρ∗A+, 0), represents that

only epidemic A survives, and the steady fraction of

epidemic A is

ρ∗A+ =
λ′
A − λA +

√

λ2
A + 2λAλ′

A + λ′
A
2 − 4λ′

A

2λ′
A

. (8)

• Fixed point 4: (ρ∗A, ρ
∗
B) = (0, ρ∗B−), only when epi-

demic B survives, where

ρ∗B− =
λ′
B − λB −

√

λ2
B + 2λBλ′

B + λ′
B
2 − 4λ′

B

2λ′
B

. (9)

• Fixed point 5: (ρ∗A, ρ
∗
B) = (0, ρ∗B+), which represents

that only epidemic B survives, where the steady fraction

of epidemic B is

ρ∗B+ =
λ′
B − λB +

√

λ2
B + 2λBλ′

B + λ′
B
2 − 4λ′

B

2λ′
B

. (10)

• Fixed point 6: (ρ∗A, ρ
∗
B) = (ρ∗A6

, ρ∗B6
), which indicates

two epidemic coexistence, where







ρ∗A6
=

λBλ′

A−λAλ′

B−2λAλ′

A+λ′

Aλ′

B+
√
φ1

2λ′

A
(λ′

A
+λ′

B
)

ρ∗B6
=

λAλ′

B−λBλ′

A−2λBλ′

B+λ′

Aλ′

B+
√
φ1

2λ′

B
(λ′

A
+λ′

B
)

, (11)

and

φ1 =λ2
Aλ

′2
B + 2λAλBλ

′
Aλ

′
B + 2λAλ

′
Aλ

′2
B + λ2

Bλ
′2
A+

2λBλ
′2
Aλ

′
B + λ′2

Aλ
′2
B − 4λ′2

Aλ
′
B − 4λ′

Aλ
′2
B.

(12)

• Fixed point 7: (ρ∗A, ρ
∗
B) = (ρ∗A7

, ρ∗B7
), which indicates

two epidemic coexistence, where







ρ∗A7
=

λBλ′

A−λAλ′

B−2λAλ′

A+λ′

Aλ′

B−
√
φ2

2λ′

A
(λ′

A
+λ′

B
)

ρ∗B7
=

λAλ′

B−λBλ′

A−2λBλ′

B+λ′

Aλ′

B−
√
φ2

2λ′

B
(λ′

A
+λ′

B
)

, (13)

and,

φ2 =λ2
Aλ

′2
B + 2λAλBλ

′
Aλ

′
B + 2λAλ

′
Aλ

′2
B + λ2

Bλ
′2
A

+ 2λBλ
′2
Aλ

′
B + λ′2

Aλ
′2
B − 4λ′2

Aλ
′
B − 4λ′

Aλ
′2
B .

(14)

For a given fixed point (ρ∗A, ρ
∗
B), we obtain the correspond-

ing Jacobians matrix from Eqs. (5) and (6) as

J =

[

J11 J12
J21 J22

]

, (15)

where

J11 =− µA(3λ
′
Aρ

∗
A
2 + 2(λA − λ′

A)ρ
∗
A

+ (1− λA) + λAρ
∗
B + 2λ′

Aρ
∗
Aρ

∗
B),

(16)

J12 =− µA(λAρ
∗
A + λ′

Aρ
∗
A
2), (17)

J21 =− µB(λBρ
∗
B + λ′

Bρ
∗
B
2), (18)

J22 =− µB(3λ
′
Bρ

∗
B
2 + 2(λB − λ′

B)ρ
∗
B

+ (1− λB) + λBρ
∗
A + 2λ′

Bρ
∗
Aρ

∗
B).

(19)
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The Jacobian matrix J of the dynamic system has two eigen-

values and denote as Λ1 and Λ2. The system is stable only

when the eigenvalues of J are all negative. And the maximum

eigenvalue of the Jacobian matrix

max{Λ1,Λ2} = 0 (20)

is the critical point of the system.

1. Fixed point 1

Taking the first fixed point (ρ∗A, ρ
∗
B) → (0, 0) into Jacobian

matrix, we get the two eigenvalues of J as

Λ1 = µA(λA − 1) (21)

and

Λ2 = µB(λB − 1). (22)

When λA = λB and µA = µB , we know Λ1 = Λ2. The

system is stable when Λ1 < 0 and Λ2 < 0, which needs

λA < 1 and λB < 1. When Λ1 > Λ2, the threshold point is

λc
A = 1. (23)

Similarly, when Λ1 < Λ2, the threshold point is

λc
B = 1. (24)

2. Fixed point 2

When we consider the second fixed point (ρ∗A, ρ
∗
B) →

(ρ∗A−, 0), the two eigenvalues of Jacobian matrix are as

Λ1 = −µB(λBρ
∗
A− − λB + 1), (25)

and

Λ2 = −µA(3λ
′
Aρ

∗2
A− + (2λA − 2λ′

A)ρ
∗
A− − λA + 1). (26)

The second fixed point is meaningful when 2
√

λ′
A − λ′

A <
λA < 1. We know Λ1 < 0 when λB < 1/(1 − ρ∗A−). How-

ever, Λ2 is always greater than zero in this valid domain. As a

result, the second fixed point is always unstable.

3. Fixed point 3

The eigenvalues of Jacobian matrix J when considering the

third fixed point (ρ∗A, ρ
∗
B) → (ρ∗A+, 0) are

Λ1 = −µB(λBρ
∗
A+ − λB + 1), (27)

and

Λ2 = −µA(φ3 + 1), (28)

where

φ3 = 3λ′
Aρ

∗2
A+ + (2λA − 2λ′

A)ρ
∗
A+ − λA. (29)

The third fixed point is meaningful, if λA > 2
√

λ′
A − λ′

A.

When λB = φ3/(ρ
∗
A+−1) and µA = µB , we know Λ1 = Λ2.

The system is stable if Λ1 < 0 and Λ2 < 0. When Λ1 > Λ2,

the threshold point is

λc∗
B =

1

(1 − ρ∗A+)
. (30)

When Λ1 < Λ2, the first eigenvalue Λ1 will be greater than 0.

Thus the fixed point is unstable at this time.

4. Fixed point 4

Taking the fourth fixed point (ρ∗A, ρ
∗
B) → (0, ρ∗B−) into

Jacobian matrix, we get the two eigenvalues of J as

Λ1 = −µA(λAρ
∗
B− − λA + 1), (31)

and

Λ2 = −µB(3λ
′
Bρ

∗2
B− + (2λB − 2λ′

B)ρ
∗
B− − λB + 1). (32)

The fourth fixed point is meaningful for 2
√

λ′
B−λ′

B < λB <
1. When λA < 1/(1 − ρ∗B−), we know Λ1 < 0. However,

Λ2 > 0 in this valid domain, which means that the fourth fixed

point is always unstable.

5. Fixed point 5

The fifth fixed point is (ρ∗A, ρ
∗
B) → (ρ∗B+, 0), tack it into

Jacobian matrix, we get the two eigenvalues of J as

Λ1 = −µA(λAρ
∗
B+ − λA + 1), (33)

and

Λ2 = −µB(φ4 + 1), (34)

where

φ4 = 3λ′
Bρ

∗2
B+ + (2λB − 2λ′

B)ρ
∗
B+ − λB . (35)

The fifth fixed point is meaningful, if λB > 2
√

λ′
B − λ′

B .

When λA = φ4/(ρ
∗
B+−1) and µA = µB , we know Λ1 = Λ2.

When Λ1 > Λ2, the threshold point is

λc∗
A =

1

1− ρ∗B+

. (36)

Note that when Λ1 < Λ2, we know Λ1 > 0, the system is

unstable.
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6. Fixed point 6

The analytical solutions of the eigenvalues of the fixed point

six (ρ∗A, ρ
∗
B) = (ρ∗A6

, ρ∗B6
) into the Jacobian matrix can not

obtain analytically. Through extensive numerical methods, we

revealed that the system is unstable for any dynamical param-

eters. For instance, set µA = µB = 0.02, λ′
A = λ′

B =
2.5, λA = 0.8 and λB = 1.5 to compute fixed point is

(0.3344, 0.0544). Taking fixed point 6 into Jacobian matrix

to get the two eigenvalues Λ1 = −0.0048 and Λ2 = 0.0040.

Thus, the fixed point is unstable.

7. Fixed point 7

Similar to fixed point six, we use a numerical method

to analyze the stability of fixed-point seven (ρ∗A, ρ
∗
B) =

(ρ∗A7
, ρ∗B7

), and revealed that this fixed point is always un-

stable.

IV. RESULTS ANALYSES

This section investigates the competing information spread-

ing dynamics on simplicial complex detailedly by setting

N = 1000 nodes, the average degrees of 1-simplex and 2-

simplex as 〈k〉 = 20 and 〈k′〉 = 6 respectively, and the recov-

ery rate µA = µB = 0.02.

In Fig. 3, we first show the phase diagram of the system

with different values of 2-simplex infection strength, which

determines the phase diagram of the system. For the case

of relatively strong 2-simplex infection strength, i.e., λ′
A =

λ′
B = 2.5 in Fig. 3(a), the (λA, λB) plane is divided into nine

different regions, and the phenomena are illustrated in Table I.

From Fig. 3(a) we can extract the presence threshold and the

invasion threshold: the presence threshold λ
cp
A of epidemic

A is i2j2k2o given by Eq. (30), the invasion threshold λci
A of

epidemic A is i3j3k3o given by Eq. (23), the absolute domina-

tion threshold λc∗
A of epidemic A is pq obtained from Eq. (36),

the presence threshold λ
cp
B of epidemic B is j1j2j3p given by

Eq. (36), and the invasion threshold λci
B of epidemic B line

k1k2k3p obtained by solving Eq. (24), and the absolute dom-

ination threshold λc∗
B of epidemic B is ol2 given by Eq. (30).

Since interacting parameters of epidemic A and epidemic B

are symmetrical, the phase diagram is also symmetrical.

We conduct a systematic analysis of epidemic A first. Re-

gion I represents the epidemic-free, in which both epidemics

die out, and it is determined by λ
cp
A and λ

cp
B . Taking point

(0.3, 0.3) marked by heart, for instance, the two epidemic de-

creases with time regardless of the values of initial seeds, and

finally die out, as shown in Fig. 4 (a). In region II, epidemic

A absolute dominates, and the hysteresis loop exists. Take

point (0.8, 0.3) in region II marked as inverted-triangle. For

instance, we study the evolution of the two epidemics in Fig. 4

(b). Epidemic B decreases and finally dies out. However, the

survivability of epidemic A depends on the fraction of the ini-

tial node: for tiny initial seeds, epidemic A may die out in the

Table I. Phenomena summary of the nine regions of the phase dia-

gram. The phenomena include dying out (×), absolute domination

(
√
), alternative dominance and existing hysteresis loop (©).

Regions Epidemic A Epidemic B Dominant epidemic

I × × None

II © × A

III
√ × A

IV × © B

V © © A or B

VI © © A

VII × √
B

VIII © © B

IX © © A or B

steady-state; for large initial seeds, epidemic A will globally

break out. That is to say, a hysteresis loop exists in region II.

In region III, epidemic A absolutely dominates. In Fig. 4 (c),

we illustrate the evolutions of the two epidemics for the point

(2.0, 0.3) marked as the square and find that epidemic A glob-

ally breaks out regardless of the initial seeds, while epidemic

B dies out. Region VIII is between the presence threshold λ
cp
A

and the invasion threshold λci
A of epidemic A, in which both

epidemics have a hysteresis loop. Take point (0.8,1.6) in re-

gion VIII marked as a spade, for instance, the evolution of the

two epidemics as shown in Fig. 4 (h). Epidemics A and B are

alternative dominance, i.e., the two epidemics may survive,

and which epidemic survive is determined by the initial seeds.

Note that epidemic B is easier to survive generally than epi-

demic A since epidemic B can break out with a small fraction

of initial seeds.

Due to the symmetry of the two epidemics, the phase tran-

sition of epidemic B is similar to epidemic A. Some regions

IV, VI, and VII have similar phenomena with regions II, VIII,

and III, respectively. There are two areas left in the system, re-

gions V and IX. Similar to region VI and VIII, two epidemics

hold dominance alternatively and have a hysteresis loop. Tack

two points (0.8, 0.8) in region V and (3, 3) in region IX, for

instance, marked as dot and star as an instance, respectively,

to observe their time evolution, as shown in Figs. 4 (e) and

(i). The survivability between the two epidemics is similar.

However, in general, the survivability of the epidemics in re-

gion IX is stronger than that in region X. What is more, region

V is between the presence threshold (λ
cp
A , λ

cp
B ) and the inva-

sion threshold (λci
A , λci

B ), the epidemics are relatively fair in

this region. In region IX, the epidemics are relatively fair, too.

However, this region is beyond the presence threshold and the

invasion threshold. Regions VI and VIII are between the two

thresholds, but for regions VI, epidemic A is relatively easier

to survive, and epidemic B is easier to survive in region VIII.

When the 2-simplex infection strength is extreme low, i.e.,

λ′
A = λ′

B = 0.01 as shown in Fig. 3(b), the (λA, λB) plane is

divided into three regions, which is similar to the classic SIS

competition model in 1-dimension networks (i.e., networks

only have pairwise interactions). Region I (in white) repre-

sents the epidemic-free, region II (in dark red) represents the

area of epidemic A absolute dominance, and Region VII (in

dark green) represents epidemic B absolute dominance. There
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Fig 3. (Color online) Phase diagram of the competing epidemic spreading on simplicial complex with symmetrical interacting with λ′
A =

λ′
B = 2.5 (a), and λ′

A = λ′
B = 0.01 (b). In (a), the (λA, λB) plane is divided into nine regions. In each region, we take a representative point

to study the time evolution of the two epidemics (see Fig. 4). We set the points (0.3, 0.3) as heart in region I, (0.8, 0.3) as inverted-triangle in

region II, (2, 0.3) as square in region III, (0.3, 0.8) as regular-triangle in region IV, (0.8, 0.8) as dot in region V, (1.6, 0.8) as club in region

VI, (0.3, 2) as diamond in region VII, (0.8, 1.6) as spade in region VIII, and (3.0, 3.0) as star in region IX.

are no regions II, IV, V, VI, VII, and IX in this situation.

We further investigate the phase transition of epidemic B in

Fig. 5 as the function of 1-simplex infection strength λB for

different values of λA. The theoretical results (i.e., lines) well

agree with the simulation results (i.e., symbols). For small

values of λA (e.g., λA = 0.3) as shown in Fig. 5 (a), epidemic

A can not break out, and epidemic B exhibits a discontinuous

growth versus λB . There exists a hysteresis loop in the sys-

tem between the presence threshold λ
cp
B and invasion thresh-

old λci
B = 1: for the tiny seed of epidemic B, the epidemic

B can not break out (i.e., ρB = 0); for the large seed of epi-

demic B, it globally breaks out (i.e., ρB ∝ o(N)). With the

increase of λA, epidemic A outbreak becomes possible. When

λA = 0.8 as shown in Fig. 5 (b), we find the similar phenom-

ena with Fig. 5 (a) when λB < λci
B . Note that we reveal a new

phenomenon when λci
B < λB < λc∗

B . In this region, two epi-

demic alternative dominance and existing hysteresis loop. The

dashed curve between λci
B and λc∗

B is the unstable fixed point

six (ρ∗A6
, ρ∗B6

) given by Eq. (11). When λB > λci
B the hys-

teresis loop disappears, and epidemic B absolutely dominant.

Different from λA = 0.8, there is no epidemic B absolutely

dominance region when λA = 1.6 as shown in Fig. 5 (c),

while other phenomena are still observed. For extreme strong

infection strength of epidemic A (e.g., λA = 3), epidemic A

has firmly contained epidemic B, as shown in Fig. 5 (d), two

epidemic alternative dominant and exist hysteresis loop.

We further explore the influence of the symmetry 2-simplex

infection strength λ′
A and λ′

B on the phase diagram in Fig. 6.

We can see that, the area of region IX increased with the 2-

simplex infection strength. However, when λ′
A = λ′

B ≤ 1
as shown in Figs. 6 (a) and (b), there are no hysteresis loop

regions, i.e., regions II, IV, V, VI and VIII with the light colors

are not exist in the system. Until λ′
A = λ′

B > 1 as shown in

Figs. 6 (c)-(f) the hysteresis loop becomes more significant

with the increase of λ′
A = λ′

B .

When the 2-simplex infection strength is asymmetry, the

phase diagrams are shown in Fig. 7, λ′
B increases from left to

right, and λ′
A increases from top to bottom. We find that when

λ′
A > 1 the hysteresis loop regions II and VIII for epidemic

A exist as shown in Figs. 7 (g), (h) and (i). The hysteresis

loop regions IV and VI for epidemic B exist when λ′
B > 1 as

shown in Figs. 7 (c), (f), and (i). In addition, the area of region

IX is beneficial to the epidemic with higher 2-simplex infec-

tion strength. When the infection strength of epidemic A is

stronger, illustrated in Figs. 7 (d), (g), and (h), the distribution

of region IX is beneficial to epidemic A. Similar phenomena

for B epidemic are illustrated in Figs. 7 (b), (c) and (f).

V. CONCLUSIONS

In conclusion, we have proposed a competing spreading

model of two SIS-like epidemics in a simplicial complex, fo-

cusing on the influence of higher-order interactions on the crit-

ical behavior of the system. Based on the assumption that the

individuals in the system are homogeneously mixed, we use

the MF theory to derive the rate equations and obtain seven

fixed points. Next, by analyzing the critical conditions of the

fixed points, we obtain a complex phase diagram with nine re-

gions when the 2-simplex infection strength is significant. Re-

gion I represents the epidemic-free, in which both epidemics

die out. In region II, epidemic A absolute dominates and hys-

teresis loop exists, the survivability of epidemic A dependents

on the fraction of initial node. In region III, epidemic A abso-

lutely dominates. In addition, both epidemics have a hystere-

sis loop in region VIII. They are alternative dominance, but
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Fig 4. (Color online)The time evolution of the two competing information spreading on simplicial complex when λ′
A = λ′

B = 2.5. Each

subfigure distributes the evolution of infected nodes fraction with time for epidemic A (left side of the subfigure) and epidemic B (right side

of the subfigure) with a different fraction of initial epidemic nodes ρA0 and ρB0, in order to strengthen the influence of the initial seeds on

time evolution, we set ρA0 + ρB0 = 0.6. The parameters for detail of each subfigure are indicated in Fig. 3 (a). Subfigure (a) corresponds

to the heart sign of region I in Fig. 3 (a). (b) corresponds to the inverted triangle of region II. (c) corresponds to the square of region III. (d)

corresponds to the positive triangle of region IV. (e) corresponds to the dot of region V. (f) corresponds to the club of region VI. (g) corresponds

to the diamond of region VII. (h) corresponds to the spade of region VIII. (i) corresponds to the star of region IX.

epidemic B is easier to survive than epidemic A. Regions IV,

VI, and VII have similar phenomena with regions II, VIII, and

III, respectively, due to the symmetry of the two epidemics.

Regions V and IX are alternative dominant regions, where

both epidemics have a hysteresis loop. However, when the

2-simplex infection strength is extremely weak that it can be

ignored, the phase diagram of the system is consistent with

the one in the simple graph. Next, combining the theory with

many numerical simulations, we explained the time evolu-

tion and steady-state outbreak size of the two epidemics in

each region. Moreover, the theoretical outbreak size matches

the simulation well. Furthermore, we explored the phase di-

agram when the 2-simplex infection strength is symmetrical

and asymmetrical. The results show that the 2-simplex in-

fection strength has a significant impact on the system phase

diagram. The existence of regions II V and VIII (or regions

IV V and VII) are related to whether the 2-simplex infection

strength of epidemic A (or B) is greater than one, and when

these regions exist, the size of these regions are positively cor-

related with the 2-simplex infection strength. We can see that

the existence and size of region V are related to the 2-simplex

infection strength of both epidemics. Moreover, region IX al-
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Fig 5. (Color online) The spreading size of the two epidemics in steady-state versus 1-simplex infection strength of epidemic B. The left side

of each subfigure is epidemic A, and the right side of each subfigure is epidemic B; the vertical dashed lines indicate the presence threshold for

epidemic B λ
cp

B
, the invasion threshold for epidemic B λ

ci
B

and the threshold λc∗

B
for epidemic B absolute dominate; the solid line represents

for the stable fixed point, and the dashed line represents the unstable fixed point, where the colorful dots is the simulation result of the two

epidemics, orange stands for epidemic A and green stands for epidemic B. The simulation result for λA = 0.3 in (a), λA = 0.8 in (b),

λA = 1.6 in (c), λA = 3.0 in (d).

Fig 6. (Color online)The phase diagram under different symmetric 2-simplex infection strength with λ′
A = λ′

B = 0.5 in (a), λ′
A = λ′

B = 1 in

(b), λ′
A = λ′

B = 1.5 in (c), λ′
A = λ′

B = 2.0 in (d), λ′
A = λ′

B = 2.5 in (e) and λ′
A = λ′

B = 3 in (f). The phenomena of regions I to IX are

same as in the Table I.
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Fig 7. (Color online) The phase diagram under different asymmetry 2-simplex infection strength λ′
A = 0.01 and λ′

B = 0.01 in (a), λ′
A = 0.01

and λ′
B = 1.0 in (b), λ′

A = 0.01 and λ′
B = 2.0 in (c), λ′

A = 1.0 and λ′
B = 0.01 in (d), λ′

A = 1.0 and λ′
B = 1.0 in (e), λ′

A = 1.0 and

λ′
B = 2.0 in (f), λ′

A = 2.0 and λ′
B = 0.01 in (g), λ′

A = 2.0 and λ′
B = 1.0 in (h) and λ′

A = 2.0 and λ′
B = 2.0 in (i). The plots in (d), (g) and

(h) illustrate the situation when λ′
A > λ′

B . (b), (c) and (f) illustrate the situation when λ′
A < λ′

B . The phenomena of regions I to IX are same

as in the Table I.

ways exists in the system, the area of region IX is beneficial

to the epidemic with higher 2-simplex infection strength. We

have worked the simplest model of the competing dynamics

on a higher-order system. The method applied here is based

on the ideal MF theory and has some differences from real-

ity. Therefore, some more accurate theories need to be fur-

ther studied, such as heterogeneous MF, Microscopic Markov

chain approach. Nonetheless, our research provides a specific

theoretical basis for competition models in higher-order inter-

actions and helps explain complex competition phenomena in

the real world.
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