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Abstract

In this study, first a necessary background is provided to readers. Then a novel approach
to stochastically perturb the disease transmission coefficient was investigated, which is a
key parameter in susceptible-infected-susceptible (SIS) models. Motivated by the papers
[5] and [2], the disease transmission coefficient was perturbed with a Gaussian white
noise, formally modelled as the time derivative of a mean reverting Ornstein-Uhlenbeck
process. It has been remarked that, thanks to a suitable representation of the solution
to the deterministic SIS model, this perturbation is rigorous and supported by a Wong-
Zakai approximation argument that consists in smoothing the singular Gaussian white
noise and then taking limit of the solution from the approximated model. It has been
proven that the stochastic version of the classic SIS model obtained this way preserves a
crucial feature of the deterministic equation: the reproduction number dictating the two
possible asymptotic regimes for the infection, i.e. extinction and persistence, remains
unchanged. Then the class of perturbing noises for which this property holds were
identified and propose simple sufficient conditions for that. All the theoretical discoveries
are illustrated and discussed with the help of several numerical simulations.



Contents

1 Introduction 2
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The Basics Of Probability Theory . . . . . . . . . . . . . . . . . . 2
1.1.2 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Filtrations, Martingales and Conditional Expectation . . . . . . . 5
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Chapter 1

Introduction

1.1 Background

Before the start of the analysis, first the necessary background will be provided for
readers to fully grasp the topic. Later, the the research going on in literature will be
introduced, so that the readers will know what has been done and what improvements
can be done in the field. Lastly the research that has been conducted will be provided.
It should be mentioned that the main parts of this work is already published in [17] and
this document will re-state them.

1.1.1 The Basics Of Probability Theory

Probability Theory is the most crucial tool to build a framework in stochastic pro-
cesses. This is why, in this study the basics of Probability Theory will be stated to make
it easier for the reader.

The σ-algebra

The σ-algebra is a necessary element to construct the probability space that, one is
going to work in. Moreover, when working with stochastic processes, the terms being
adapted or being independent is also linked with the σ-algebras. Hence this section is
dedicated for a brief introduction of the object and a more in depth reading can be done
on the book [18].

The σ-algebra or σ-field (of Ω) is, by the definition on [18], a set that is constructed
by countable addition, intersection and complementation of subsets of Ω. A σ-algebra
F have to satisfy the following:

• Ω ∈ F .

• A ∈ F implies Ac ∈ F .

• Ai ∈ F for i ≥ 1 implies that ∪∞i=1Ai ∈ F .
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As one can see, what a σ-algebra provides is, a closed space under basic set operations
such as union, intersection and complementation. This is useful in probability theory
because, even though one can perform these operations on some events (subsets of sample
space Ω), he/she will never be working outside of the σ-algebra.

limsup - liminf

The lim inf and lim sup are commonly used expressions in mathematics. Their defi-
nitions are as follows for any sequence {xn}n≥0:

lim inf
n→∞

xn := sup
n≥0

inf
m≥n

xm = sup{inf{xm : m ≥ n} : n ≥ 0} (1.1.1)

lim sup
n→∞

xn := inf
n≥0

sup
m≥n

xm = inf{sup{xm : m ≥ n} : n ≥ 0} (1.1.2)

In other words, equation (1.1.1) shows how the infimum of the tail of the sequence
changes and equation (1.1.2) shows how the sup of the sequence changes in the tail. It
should be noted that for any sequence {xn}n≥0, lim supxn and lim inf xn always exists,
however the lim only exists when lim supxn = lim inf xn := limxn. The Figure 1.1
explains the concept better:

Figure 1.1: The figure showing the liminf and limsup of an oscillating function.

As explained above, the function on Figure 1.1 does not have a limit since lim sup
and lim inf are not equal to each other.

1.1.2 Stochastic Processes

A continuous time stochastic process {Xt}t≥0 is a collection of random variables
defined on a common probability space (Ω,F ,P). This family of random variables is
indexed by the non negative real parameter t, which is interpreted as time. Therefore,
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Xt can be thought as the position/value at time t of a system/quantity whose evolution
is random. Observe that:

• for every fixed t ≥ 0, the function ω 7→ Xt(ω) is a random variable, while

• for every fixed ω ∈ Ω, the function t 7→ Xt(ω) describes one possible path/trajectory
of the stochastic process {Xt}t≥0.

The most famous stochastic process is the Brownian Motion, which will be the focus
of the following sections.

1.1.3 Brownian Motion

Because the thesis is about stochastic analysis, it is crucial to become familiarized
with Brownian Motion (Bt) first. It is the core of randomness in stochastic events. It
would be useful to define the Bt object mathematically as in the books [10, 16]:

Definition 1.1.1. Let (Ω, F , P) be a probability space with a filtration {Ft}t≥0 (a
filtration will be explained in the next section). A (standard) one-dimensional Brown-
ian Motion is a real-valued continuous {Ft}-adapted process {Bt}t≥0 with the following
properties:

1. B0 = 0 a.s.;

2. for 0 ≤ s < t <∞, the increment Bt − Bs is normally distributed with mean zero
and variance t− s;

3. for 0 ≤ s < t <∞, the increment Bt −Bs is independent of {Fs}.

The 3’rd property can be re-worded to say that, the increments of Brownian Motion
are independent of each other. Together with 2’nd definition of Brownian Motion, these
properties construct the random object whose value depends on both time and chance.
It is a perfect mix to develop the stochastic differential equations later as present in this
thesis.

There are other important properties of Brownian Motion, which will be pointed out
now. The first property is:

Theorem 1.1.2. Let {Bt}t≥0 be a Brownian Motion and {πn}n≥1 be any sequence of
finite partitions of the interval [0, T ] satisfying

lim
n→+∞

|πn| = 0.

Then,

lim
n→+∞

Nn∑
j=1

(
B
t
(n)
j
−B

t
(n)
j−1

)2
= b− a in L2(Ω). (1.1.3)
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Meaning:

E

( Nn∑
j=1

(
B
t
(n)
j
−B

t
(n)
j−1

)2
− (b− a)

)2
 n→∞−−−→ 0

The next property is:

Theorem 1.1.3. Let {Bt}t≥0 be a Brownian Motion. Then,

lim
t→∞

Bt

t
= 0 a.s. (1.1.4)

This equality is also known as the Law of Large Numbers for Martingales as shown
in [10]. In other words, although the Brownian Motion is a stochastic process with a
linearly increasing variance with respect to time, it’s magnitude will almost surely be
outbounded by t and further reading can be done in [10].

On the other hand, the last property of Brownian Motion that will be addressed in
this study is that:

Theorem 1.1.4. Let {Bt}t≥0 be a Brownian Motion. Then,

P(t 7→ Bt is nowhere differentiable) = 1.

In other words, Brownian Motion Bt is not differentiable in anywhere a.s. as shown
in [10, 16]. This property of Brownian Motion made it very hard to incorporate into
stochastic differential and integral equations until mid 1900s.

1.1.4 Filtrations, Martingales and Conditional Expectation

A filtration {Ft}t≥0 on the probability space (Ω,F ,P) is an increasing family of
σ-algebras contained in F , i.e.

Fs ⊆ Ft ⊆ F for all 0 ≤ s < t.

A continuous time stochastic process {Xt}t≥0 is said to be adapted to the filtration
{Ft}t≥0 if Xt is Ft-measurable, for all t ≥ 0. Measurability in general means that,
{X−1t (S) : S ∈ σ(R)} ∈ Ft, because Xt is a mapping from [0, T ]× Ω to R.

Definition 1.1.5. The natural filtration {FBt }t≥0 of a Brownian Motion {Bt}t≥0 is the
filtration defined as

FBt := σ (Bs, 0 ≤ s ≤ t) , t ≥ 0;

this means that FBt is generated by events of the form {Bs ∈ A}, for s ∈ [0, t] and A
being an interval of R.
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The filtration and the size of σ-algebras are generally associated with the information
one has about the system. In this case, as time passes since you know more about your
random process and you obtain bigger FBt including the previous ones, hence reveal
more of your F . One can also notice that a value for Bs is measurable for Ft for s ≤ t,
since the event Bs already happened and it’s information is already encapsulated within
Ft.

Definition 1.1.6. Let X be a random variable in L2(Ω,F ,P). If G is a sub-sigma-
algebra of F , we define the conditional expectation of X given G, denoted E[X|G], to be
the unique element of L2(Ω,G,P) such that

E[|X − E[X|G]|2] ≤ E[|X − Y |2], for all Y ∈ L2(Ω,G,P).

It has been observed that L2(Ω,G,P) ⊆ L2(Ω,F ,P); in fact, since G ⊆ F , the con-
dition of being G-measurable is more stringent than the one of being F -measurable.
Therefore, for X ∈ L2(Ω,F ,P), the conditional expectation E[X|G] is the best approxi-
mation of X with an element from L2(Ω,G,P). Here, by best approximation we mean
the element having the minimum quadratic distance from X.
In the sequel the space L2(Ω,F ,P) will be simply denoted as L2(Ω).

Remark 1.1.7. The list some crucial properties of the conditional expectation is below:

• if G is the trivial sigma-algebra {∅,Ω}, then E[X|G] = E[X];

• if α, β, γ ∈ R, then E[αX + βY + γ|G] = αE[X|G] + βE[Y |G] + γ;

• if X is G-measurable, then E[X|G] = X;

• if X is independent of G, then E[X|G] = E[X];

• if H ⊆ G, then E[E[X|G]|H] = E[X|H];

• if X is G-measurable, then E[XY |G] = XE[Y |G].

Definition 1.1.8. A continuous time stochastic process {Xt}t≥0 is an ({Ft}t≥0,P)-
martingale if it is {Ft}t≥0-adapted, Xt ∈ L2(Ω), for all t ≥ 0, and

E[Xt|Fs] = Xs, for all 0 ≤ s ≤ t.

Any Brownian Motion {Bt}t≥0 defined on the probability space (Ω,F ,P) is an
({FBt }t≥0,P)- martingale: in fact, for any 0 ≤ s ≤ t we have

E[Bt|FBs ] =E[Bt −Bs +Bs|FBs ]

=E[Bt −Bs|FBs ] + E[Bs|FBs ]

=E[Bt −Bs] +Bs (due to independence and measurabilty)

=Bs.

This definition of Martingales are presented here just because the the sake of com-
pleteness, however they will not be addressed in this study frequently.
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1.1.5 The Itô Integral

In order to develop differential equations with stochasticity, the Brownian Motion
should be added to either differential or integral equations someway but as stated earlier
the main problem is that dBt does not exist. One solution to this problem came from
Wiener, where he was able to define integrals in type

∫ T
0
f(t)dBt, where f(t) is a deter-

ministic function. However in this study, the Itô integral will be used. The Itô Integral,
on the other hand, is very similar to a Wiener Integral but a more general version of it.
It has a distinction that, instead of f(t), the integral is defined for a stochastic process
f(t, ω) where ω is the chance parameter. To ease the notation, from now on ω may be
omitted, and instead of f(t, ω), ft may be written. However it should be understood that
the chance parameter is a fundamental part of a stochastic process and it exists even
though it is not reported explicitly. As already stated earlier, unlike of regular functions,
a stochastic process’s values change not only depending on time but also according to
chance.

In order to construct such an integral, first Itô started by defining the integral with
the most simplistic type of stochastic processes and built his way up to a much broader
type of processes. Below his methodology are going to be explained briefly. For further
reading, please refer to books [16, 10, 1].

As a start, like in [16], consider fn(t, ω) to be a {Ft}t≥0 measurable stochastic process
defined in interval [0, T ] and fn :=

∑n
i=1 ηi−11[ti−1,ti), where 1 is the indicator function,

ηi−1’s are Fti−1
measurable random variables belonging to L2(Ω), t0 = 0 and tn = T . In

this report L2(Ω) will be used to denote the Hilbert Space of square integrable random
variables. Such a process is called a simple stochastic process and takes discrete random
values according to ηi, for each partition of interval [ti−1, ti). For such processes, define
function

I(fn) :=
n∑
i=1

ηi−1(Bti −Bti−1
) (1.1.5)

There are some remarks to point out here. Firstly, it can be shown that due to the
2’nd,3’rd definitions of Brownian Motion and the Fti−1

measurability the following two
equations (1.1.6) and (1.1.7) hold:

E[I(f)] = 0 (1.1.6)

and
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E[(I(fn)2)] = E

[
n∑

i,j=1

ηi−1ηj−1(Bti −Bti−1
)(Btj −Btj−1

)

]

=
n∑
i=1

η2i−1E[(Bti −Bti−1
)2] (Independence and Fti−1

Measurability)

=
n∑
i=1

η2i−1(ti − ti−1) (Due to known variance)

=

T∫
0

f 2
ndt

(1.1.7)

In this study L2
ad(Ω × [0, T ]) means the Hilbert Space of adapted square integrable

stochastic processes in the interval [0, T ]. Let f be a process such that f ∈ L2(Ω×[0, T ]),

which means
∫ T
0
E[f 2]dt <∞. For such processes there exists a sequence {fn}∞n=1, where

fn
n→∞−−−→ f in L2(Ω× [0, T ]). That means:

lim
n→+∞

E

 T∫
0

|fn − f |2dt

 = 0.

Because fn converges to f in L2(Ω×[0, T ]), it can be shown that the sequence {I(fn)}∞n=1

is Cauchy in L2(Ω). Also due to the completeness of L2(Ω), it is also convergent so it
can be said that:

lim
n→∞

I(fn) = I(f), in L2(Ω)

The limiting function I(f) is defined to be the Itô Integral of f and denoted as:
∫ T
0
fdBt

and it is a continuous ({Ft}t∈[0,T ],P) martingale.
What all this means is that, even though the differential of Bt does not exists, the

Itô Integral, involving dBt and a stochastic process from the set L2
ad(Ω× [0, T ]), can be

defined as a limiting process of a sum. It is worth to mention that the previous results
(1.1.6) and (1.1.7) (hence variance) hold for Itô Integral of elements of L2

ad(Ω× [0, T ]).
Another generalization can be made to define the Itô Integral for a broader class of

functions. Instead of f ∈ L2
ad(Ω × [0, T ]) now functions from Lad(Ω;L2([0, T ])) will be

used as the integrand. The definition of Lad(Ω;L2([0, T ])) is given below:

Definition 1.1.9. We set

Lad(Ω;L2([0, T ])) :=

{
{Xt}t∈[0,T ] is an {Ft}t∈[0,T ]-adapted stochastic process

such that P
(∫ T

0

X2
t dt < +∞

)
= 1

}
8



In words: an adapted stochastic process belongs to Lad(Ω;L2([0, T ])) if the path t ∈
[0, T ] 7→ Xt is square integrable, almost surely.

Any adapted stochastic process with almost surely continuous paths belongs to
Lad(Ω;L2([0, T ])); in fact, continuous functions on the compact interval [0, T ] are bounded
and hence square integrable:∫ T

0

X2
t dt ≤

∫ T

0

sup
t∈[0,T ]

|Xt|2dt = T sup
t∈[0,T ]

|Xt|2 < +∞,

almost surely. In other words, it can be seen that this definition is a more general
definition since if a function is continuous, it is also square integrable in a compact
interval. Briefly, if the process f(t, ω) has continuous sample paths, then one can define
the Itô Integral again similarly, as in [10, 16]. However in this case, the nice properties
(1.1.6) and (1.1.7) are not guaranteed to be satisfied and the convergence strength of the
limiting sum is weakened to in probability instead of L2(Ω). If one wants to use these
properties, then he/she should check if the process ft is in L2

ad(Ω× [0, T ]) directly.

1.1.6 Stochastic Differential Equations (SDEs)

Because generating stochastic integrals involving, stochastic processes as their inte-
grands and dBt as the integrating measures, are already possible. In this section, the
applications of this new calculus type will be investigated.

Definition 1.1.10. A stochastic differential equation of Itô-type is an identity of the
form

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs, t ∈ [0, T ], (1.1.8)

where the stochastic process {Xt}t∈[0,T ] is the unknown, x is a real number, Brownian
Motion {Bt}t∈[0,T ] are given and the functions b(t,Xt) and σ(t,Xt) satisfy that:

P
(∫ T

0

|b(t,Xt)|dt < +∞
)

= 1,

and {σ(t,Xt)}t∈[0,T ] belongs to Lad(Ω;L2([0, T ])).
Equation (1.1.8) is usually rewritten as{

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t ∈]0, T ];

X0 = x,

symbolically.
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The differential expression is symbolic because the differential of Brownian Motion
does not exists. In other words such differential expressions are short hand notations
for the related integral equaitons. The functions b and σ are called drift and diffusion
coefficients, respectively; x is the initial condition. The integral

∫ t
0
σ(s,Xs)dBs is an Itô

integral.

Definition 1.1.11. A stochastic process {Xt}t∈[0,T ] is a strong solution of equation
(1.1.8) if the following conditions are satisfied:

• {Xt}t∈[0,T ] is {FBt }t∈[0,T ]-adapted;

• P
(∫ T

0
|b(t,Xt)|dt < +∞

)
= 1;

• P
(∫ T

0
|σ(t,Xt)|2dt < +∞

)
= 1;

• equation (1.1.8) is verified almost surely, for all t ∈ [0, T ].

The existence of a unique strong solution is usually guaranteed by imposing some
regularity assumptions on the coefficients of the stochastic differential equation.

Definition 1.1.12. A function f : [0, T ]×R→ R is said to be Lipschitz-continuous in
the second variable if there exist a positive constant L such that

|f(t, x)− f(t, y)| ≤ L|x− y|, for all t ∈ [0, T ] and x, y ∈ R.

A function f : [0, T ] × R → R is said to be locally Lipschitz-continuous in the second
variable if for every n ∈ N there exist a positive constant Ln such that

|f(t, x)− f(t, y)| ≤ Ln|x− y|, for all t ∈ [0, T ], |x| ≤ n and |y| ≤ n.

Observe that (locally) Lipschitz-continuous are necessarily continuous,; in fact,

0 ≤ lim
y→x
|f(t, x)− f(t, y)| ≤ lim

y→x
L|x− y| = 0.

Remark 1.1.13. Examples of Lipschitz continuous functions are ax + b, |x|, sin(x),
cos(x), arctan(x), e−|x|. In general, a continuously differentiable function f : R → R
with bounded derivative, i.e. |f ′(x)| ≤ L, for all x ∈ R and some L > 0, is Lipschitz
continuous. In fact, by the mean value theorem, for all x, y ∈ R, there exists η ∈ [x, y]
such that

|f(x)− f(y)| = |f ′(η)||x− y| ≤ L|x− y|.

The function
√
x is not Lipschitz continuous at x = 0 but is Lipschitz continuous on the

interval ]0 +∞[.
A continuously differentiable function f : R→ R is locally Lipschitz continuous; in fact,
by the mean value theorem, for all n ∈ N and x, y ∈ R with |x|, |y| ≤ n, there exists
ηn ∈ [x, y] such that

|f(x)− f(y)| = |f ′(ηn)||x− y| ≤ max
|z|≤n
|f ′(z)||x− y| = Ln|x− y|.
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Definition 1.1.14. A function f : [0, T ] × R → R is said to satisfy the linear growth
condition in the second variable if there exist a positive constant M such that

|f(t, x)| ≤M(1 + |x|), for all t ∈ [0, T ] and x ∈ R.

Example 1.1.15. The Lipschitz continuous functions ax+b, |x|, sin(x), cos(x), arctan(x),
e−|x| from Example 1.1.13 satisfy also the linear growth condition. The functions x2 and
ex are locally Lipschitz continuous but do not satisfy the linear growth condition. The
bounded function f(x) = 2 ·1[0,1](x) + 3 ·1[2,4](x) satisfies the linear growth condition but
it is not Lipschitz continuous (since it is discontinuous).

Theorem 1.1.16 (Existence and uniqueness). Assume that the functions b, σ : [0, T ]×
R → R are Lipschitz continuous and satisfy the linear growth condition in the second
variable. Then, the stochastic differential equation{

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t ∈]0, T ];

X0 = x.

admits a unique continuous strong solution {Xt}t∈[0,T ].

However it is woth to note that, having coefficients Lipschitz continuous and satisfy-
ing the linear growth condition is only sufficient for having a unique strong solution, and
not necessary. That means there are SDEs not satisfying these conditions, nevertheless
they admit a unique strong solution.

Moreover, the most crucial thing to know about SDE’s is the Itô’s Formula. It is the
basis of this calculus type and it will be used very frequently to solve SDEs.

Itô’s Formula: For a continuous function θ(t, x) with continuous partial derivatives
∂θ
∂t

, ∂θ
∂x

and ∂2θ
∂x2

and an Itô process Xt as in the definition 1.1.10, with the general equation
dXt = f(t,Xt)dBt + g(t,Xt)dt, the following expression holds:

dθ(t,Xt) =
∂θ(t, x)

∂t

∣∣∣∣
x=Xt

dt+
∂θ(t, x)

∂x

∣∣∣∣
x=Xt

dXt +
1

2

∂2θ(t, x)

∂x2

∣∣∣∣
x=Xt

dX2
t (1.1.9)

in differential form. Or

θ(T,XT ) = θ(0, X0) +

T∫
0

∂θ

∂x
(t,Xt)f(t,Xt)dBt

+

T∫
0

[
∂θ

∂t
(t,Xt) +

∂θ

∂x
(t,Xt)g(t,Xt) +

1

2

∂2θ

∂x2
(t,Xt)f(t,Xt)

]
dt (1.1.10)

in integral form.
When the expression (1.1.9) is used in a smart way, it can be very useful to solve

SDEs. One particular example will be used in the next section called ”The Ornstein-
Uhlenbeck (O-U) Process”.
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The Ornstein-Uhlenbeck (O-U) Process

The O-U process is a well studied type of SDE in literature. It is the solution of the
following Langevin equaiton:

dXt = αXtdt+ σdBt, X0 = 0 (1.1.11)

where α and σ are real coefficients, hence they are Lipschitz Continuous and they satisfy
the linear growth condition, so that by Theorem 1.1.16 leads to having a unique strong
solution to the equation (1.1.11) by [10], and the choice of initial value was arbitrary.
Now through Itô’s Formula it will be shown that the solution is:

σeαt
t∫

0

e−αsdBs. (1.1.12)

Firstly, let Yt :=
∫ t
0
e−αsdBs, so that

dYt = e−αtdBt and Xt = σeαtYt. (1.1.13)

In order to use Itô’s Formula (1.1.9), one should define a function θ(t, x) that is con-
tinuous and has continuous partial derivatives ∂θ

∂t
, ∂θ
∂x

and ∂2θ
∂x2

. Let θ(t, x) := σeαtx, so

that ∂θ
∂t

= σαeαtx, ∂θ
∂x

= σeαt and ∂2θ
∂x2

= 0. Hence according to expression (1.1.9), the
differential becomes:

dθ(t, Yt) = σαeαtYtdt+ σeαtdYt. (1.1.14)

One can notice using identities 1.1.13 on 1.1.14 it is found that:

dθ(t, Yt) = dXt = αXtdt+ σdBt.

Which is the Langevin equation provided in (1.1.11). Because the Itô Formula is
used on the expression (1.1.12) and it produced the SDE of interest, it must be the
unique strong solution. The important remarks about this solution is, the expectation
and variance of expression (1.1.12). They can be calculated as explained in (1.1.6) and
(1.1.7).

E

σeαt t∫
0

e−αsdBs

 = 0 and

V

σeαt t∫
0

e−αsdBs

 = σ2e2αt
t∫

0

e−2αsds =
σ2

2α

(
1− e−2αt

) (1.1.15)

These properties of make O-U processes a very handy option for deterministic mod-
els to perturb into. Because the expectation is 0, it means on average you don’t
deviate from the deterministic model. Moreover if you want to add a finite amount
of variance, it is a better choice than Bt since limt→∞V[Bt] = limt→∞ t = ∞ but
limt→∞V [σ2/(2α) (1− e−2αt)] = σ2/(2α), hence one can play with parameters σ and α
to adjust the amount of variability he/she wants to add to the deterministic model.

12



1.1.7 Wong-Zakai Theorem

The parameter perturbation method, it will be explained later in this study deeper,
is a common method to make a deterministic ordinary differential equation (ODE) to a
stochastic one by adding a stochastic process to the ODE. The Wong-Zakai Theorem,
is one of the techniques to carry-on this transition, without directly modifying the
equation with delicate objects like the differential of Brownian Motion or the differential
of other stochastic processes.

Instead, as shown [13], the ”smoother” approximations of such processes, which are
differentiable can be used to modify the ODE. One example that will be used in this
study is the polygonal approximation of Brownian Motion {Bn

t }t≥0, where n denotes the
number of sample points in the partition of the interval [0, T ]. This is a random function
where ”n” sample points of Brownian Motion are joined linearly, forming a piecewise
continuous and piecewise differentiable approximation of Brownian Motion. It should
be also noted that Bn

t converges to Bt uniformly as n→∞, as also stated in [2].
This approximation can be used to modify the original deterministic ODE without

any problem because, although the Brownian Motion is nowhere differentiable, Bn
t is.

Later when the limit of the approximated differential equation is taken, by Wong-Zakai
Theorem, the result converges to the Stratonovich Stochastic Integral [13].

Converting Stratonovich SDEs to Itô

Because converting Stratonovich Integrals to Itô is no problem, one can also obtain
SDE’s in Itô sense by using Wong-Zakai approach on ODEs. In other words:

dfn(t)

dt
= g(t, f(t)) + σ(f(t))

dBn
t

dt

n→∞−−−−−→
W−Z Th

df(t) = g(t, f(t))dt+ σ(f(t)) ◦ dBt, (1.1.16)

where the symbol ”◦” represents the type of SDE as Stratonovich. In order to convert
(1.1.16), a Stratonovich SDE, to an Itô one, the following substitution should be used:

σ(f(t)) ◦ dBt = σ(f(t))
1

2

dσ

df
(f(t))dt+ σ(f(t))dBt

which makes equation (1.1.16) to be:

df(t) = g(t, f(t))dt+ σ(f(t)) ◦ dBt =

[
g(t, f(t)) + σ(f(t))

1

2

dσ

df
(f(t))

]
dt+ σ(f(t))dBt.

One immediate remark is that, if σ is independent of f(t), then Stratonovich and Itô
type of SDEs result in the same expression. This type of conversion will be used in the
thesis in the following chapters.

1.2 The SIS Model

There are key biological parameters to analyse in epidemiology. The pathogen’s
type, infection target, pathogen’s vulnerability to immune system, contagiousness and
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its life time outside of the host are certainly some of these key parameters. However,
they are not enough to fully describe how an epidemic evolves. A key element, which
makes epidemiology a very complex area, is the interaction inside the population and
its unpredictability.

To address this feature several mathematical models have been proposed and anal-
ysed in the literature: see e.g. [6, 5, 15, 7] and the references quoted there. In the classic
susceptible-infected-susceptible (SIS) model there is no long term immunity for the in-
fection. One example of such case is Gonorrhea, as described in [6], where individuals
who are recovered from the infection become infected again and again. This means that
long term immunity is not effective in prevention from re-infection.

From a mathematical point of view, the SIS model (see e.g. [3]) is a very handy tool
that describes the average evolution of an infection with no immunity. It consists of the
system of ordinary differential equations{

dS(t)
dt

= µN − βS(t)I(t) + γI(t)− µS(t), S(0) = s0 ∈]0, N [;
dI(t)
dt

= βS(t)I(t)− (µ+ γ)I(t), I(0) = i0 ∈]0, N [,
(1.2.1)

where S(t) and I(t) denote the number of susceptibles and infecteds at time t, respec-
tively. Here, N := s0 + i0 is the initial size of the population amongst whom the disease
is spreading, µ denotes the per capita death rate, γ is the rate at which infected indi-
viduals become cured and β stands for the disease transmission coefficient. If we sum
the equations in (1.2.1), we get that

d

dt
(S(t) + I(t)) = µ(N − (S(t) + I(t))), S(0) + I(0) = N,

which yields

S(t) + I(t) = S(0) + I(0) = N, for all t ≥ 0.

Therefore, system (1.2.1) can be reduced to the differential equation

dI(t)

dt
= βI(t)(N − I(t))− (µ+ γ)I(t), I(0) = i0 ∈]0, N [, (1.2.2)

with S(t) := N − I(t). Furthermore, equation (1.2.2) can be solved explicitly as

I(t) =
i0e

[βN−(µ+γ)]t

1 + β
∫ t
0
i0e[βN−(µ+γ)]sds

, t ≥ 0. (1.2.3)

This explicit representation easily identifies two different asymptotic regimes for the
solution I(t), namely

lim
t→+∞

I(t) =

{
0, if RD

0 ≤ 1;

N
(

1− 1
RD0

)
, if RD

0 > 1,
(1.2.4)
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where

RD
0 :=

βN

µ+ γ
.

This ratio is known as basic reproduction number of the infection and determines whether
the disease will become extinct, i.e. I(t) will tend to zero as t goes to infinity, or will be
persistent, i.e. I(t) will tend to a positive limit as t increases.

1.3 Perturbing The SIS Model In Literature

As seen from (1.2.3) and identity S(t) = N − I(t), the infected and susceptible pop-
ulations will have smooth flows to each other with rates specified by the model. This
description is very good at yielding overall results for a population but it fails to capture
its heterogeneity, hence realism. In reality, individuals have different recovering rates or
get infected at different rates, thus creating a distortion in the smooth flow between the
two populations. To describe this randomness, several approaches have been proposed
in the literature.
One example is the approach of Allen [1]: here one starts with a discrete Markov chain
whose transition probabilities reflect the dynamical behaviour of the deterministic model;
then, via a suitable scaling on the one-step transition probability, one obtains a forward
Fokker-Planck equation which is canonically associated with a stochastic differential
equation.
Another common method for introducing stochasticity is the so-called parameter pertur-
bation approach [5, 14, 4]: it amounts at perturbing one of the parameters of the model
equation with a suitable source of randomness, usually a Gaussian white noise. One of
the most representative papers in this direction is [5]: here the authors formally perturb
equation (1.2.2), rewritten in the form

dI(t) = βI(t)(N − I(t))dt− (µ+ γ)I(t)dt, I(0) = i0 ∈]0, N [,

through the replacement

βdt 7→ βdt+ σdBt (1.3.1)

with {Bt}t≥0 being a standard one dimensional Brownian Motion and σ an additional
parameter of the model. Since β is a parameter for disease transmission rate, the term
βdt can be interpreted as number of transmissions in time interval [t, t + dt], as stated
in [5]. This way, the authors propose the model

dI(t) = [βI(t)(N − I(t))− (µ+ γ)I(t)]dt+ σI(t)(N − I(t))dB(t), (1.3.2)

interpreted as an Itô-type stochastic differential equation, which will encapsulate the
randomness in the disease transmission; moreover, they identify a stochastic reproduction
number

RS
0 := RD

0 −
σ2N2

2(µ+ γ)
,
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which, in contrast to (1.2.4), characterizes the following asymptotic behaviours:

• if RS
0 < 1 and σ2 < β

N
or if σ2 > max{ β

N
, β2

2(µ+γ)
}, then the disease will become

extinct, i.e.

lim
t→+∞

I(t) = 0;

• if RS
0 > 1, then the disease will be persistent, i.e.

lim inf
t→+∞

I(t) ≤ ξ ≤ lim sup
t→+∞

I(t),

where ξ := 1
σ2

(√
β2 − 2σ2(µ+ γ)− (β − σ2N)

)
.

(see also [14]). It is worth mentioning that going from (1.2.2) to (1.3.2), as described in
[5], one has to accept some reasonable but heuristic manipulations of the infinitesimal
quantities dt and dBt.
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Chapter 2

The Analysis Performed In The
Thesis

The aim of this paper is to propose a different method for perturbing the disease
transmission rate in the SIS model (1.2.2). Our idea stems from the following simple
observation: if we let β in (1.2.2) to be a function of time, then the solution formula
(1.2.3) takes the form

I(t) =
i0e

N
∫ t
0 β(s)ds−(µ+γ)t

1 + i0
∫ t
0
β(s)eN

∫ s
0 β(r)dr−(µ+γ)sds

=
i0e

N
∫ t
0 β(s)ds−(µ+γ)t

1 + i0
N

(
eN

∫ t
0 β(r)dr−(µ+γ)t − 1 +

∫ t
0
e
N

s∫
0

β(r)dr−(γ+µ)s
(γ + µ)ds

) , (2.0.1)

where in the second equality we performed an integration by parts in the denominator.
Equation (2.0.1) now depends on the function β(t) only through its integral

∫ t
0
β(s)ds.

In [2] the authors utilized this approach to mimic the perturbation proposed in [5]; in
this case, the singular perturbation

β(t) 7→ β(t) + σ
dBt

dt
,

formally employed on the differential equation (1.2.2) by the authors in [5], becomes the
well defined transformation ∫ t

0

β(s)ds 7→
∫ t

0

β(s)ds+ σBt,

if directly applied on the explicit solution (2.0.1). As shown in [2], this different procedure
of parameter perturbation results in an alternative stochastic SIS model which surpris-
ingly exhibits the same asymptotic regimes of its deterministic counterpart (1.2.2). It
is important to remark that this new parameter perturbation approach, which directly
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acts on the explicit solution (2.0.1), is also justified via Wong-Zakai theorem at the level
of differential equations, thus ruling out the necessity of having a closed form expression
for the solution.

In the current paper we employ the just mentioned approach to the case where
the perturbation is modelled as a mean reverting Ornstein -Uhlenbeck process. This
choice is suggested, but not investigated, both in [1] and [5]. From a modelling point
of view it is motivated by the fact that the variance of a mean reverting Ornstein -
Uhlenbeck process is bounded in time, while the one of a Brownian Motion, utilized
in [5], is not. This feature seems to be more realistic and hence desirable. However,
from a mathematical point of view, the perturbation with a mean reverting Ornstein
-Uhlenbeck process makes the analysis of the model more demanding since in this case
equation (1.3.2) becomes a stochastic differential equation with random coefficients.

This problem is discussed in [4] with an approach that follows [5]. Here, we intro-
duce the model working directly on the explicit representation (2.0.1) and cross-validate
the proposal from a differential equations’ perspective passing through the Wong-Zakai
theorem. We prove that our model fulfils some basic biological constraints, i.e. the
solution is global and lives in the interval ]0, N [ with probability one. Then, we anal-
yse the asymptotic behaviour and discover that the threshold for the different regimes
coincides with the one for the deterministic SIS model; in other words, the parameters
describing the mean reverting Ornstein -Uhlenbeck process do not play any role in the
limiting behaviour of the solution. We also identify a class of perturbations for which
this invariance is preserved thus offering a complete analysis of our approach.

The paper is organized as follows: in Section 2.1 the model and its cross-validation
via the Wong-Zakai theorem are introduced; Section 2.2 is devoted to the analysis of
our model: support of the solution, extinction, persistence and discussion of several
numerical simulations. Lastly, in Chapter 3 we address the problem of finding a general
class of perturbations for which the results from Section 2.2 remain the same; numerical
simulations are also presented for this enlarged framework.

2.1 Stochastic parameter perturbation with a mean

reverting Ornstein-Uhlenbeck process

Let {Yt}t≥0 be a mean reverting Ornstein-Uhlenbeck process driven by a standard
one dimensional Brownian Motion {Bt}t≥0; this means that {Yt}t≥0 is the unique strong
solution of the stochastic differential equation

dYt = −αYtdt+ σdBt, Y0 = 0 (2.1.1)

where the parameters α and σ are positive real number. the process {Yt}t≥0 can be
explicitly represented as

Yt = σ

t∫
0

e−α(t−s)dBs, t ≥ 0, (2.1.2)
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entailing that Yt is a Gaussian random variable with mean zero and variance 1−e−2αt

2α
σ2.

The ergodic property of {Yt}t≥0 is also recalled:

lim
t→+∞

1

t

∫ t

0

Ysds = 0 almost surely. (2.1.3)

We now perturb (2.0.1) via the substitution

β(t) 7→ β +
dYt
dt

(2.1.4)

or more rigorously ∫ t

0

β(s)ds 7→
∫ t

0

(
β +

dYs
ds

)
ds = βt+ Yt. (2.1.5)

This gives

It :=
i0e

νt+NYt

1 + i0
N

(
eνt+NYt − 1 +

∫ t
0
eνs+NYs(γ + µ)ds

) , t ≥ 0, (2.1.6)

where to ease the notation we set ν := Nβ − (γ + µ) and It instead of I(t, Yt); note
that RD

0 ≤ 1 is equivalent to ν ≤ 0. The stochastic process (2.1.6) is the object of our
investigation. Observe that an application of the Itô formula gives

dIt =

[
It(N − It)

(
ν

N
− αYt +

N − 2It
2

σ2

)
− γ + µ

N
I2t

]
dt+ σIt(N − It)dBt. (2.1.7)

This equation can be considered either as a one dimensional stochastic differential equa-
tion with random coefficients (for the presence of {Yt}t≥0) or, if coupled with (2.1.1),
as a two dimensional system of stochastic differential equations. The local Lipschitz
continuity of the coefficients of such system entails path-wise uniqueness and hence that
the couple {(It, Yt)}t≥0, with It defined in (2.1.6) and Yt defined in (2.1.2), is its unique
solution (see e.g. Theorem 2.5, Chapter 5 in [8]).

2.1.1 Cross-validation of the model via Wong-Zakai theorem

We obtained the stochastic process (2.1.6) perturbing the explicit solution (2.0.1)
with the transformation (2.1.5). One can however derive the stochastic differential
equation (2.1.7), which is uniquely solved by (2.1.6), through a parameter perturbation
procedure acting on the deterministic equation (1.2.2), which resembles the approach
employed in [5].

Let {Bπ
t }t∈[0,T ] be the polygonal approximation of the Brownian Motion {Bt}t∈[0,T ],

relative to the partition π. This means that {Bπ
t }t∈[0,T ] is a continuous piecewise linear
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random function converging to {Bt}t∈[0,T ] almost surely and uniformly on [0, T ], as the
mesh of the partition tends to zero. Now, replace (2.1.1) with

dY π
t

dt
= −αY π

t + σ
dBπ

t

dt
, Y π

0 = 0, (2.1.8)

which gives a smooth approximation of {Yt}t≥0. Using {Y π
t }t≥0 instead of {Yt}t≥0 allows

for a rigorous implementation of the transformation (2.1.4) in (1.2.2), that means

dIπt
dt

=βIπt (N − Iπt )− (µ+ γ)Iπt + Iπt (N − Iπt )
dY π

t

dt
=βIπt (N − Iπt )− (µ+ γ)Iπt − αIπt (N − Iπt )Y π

t

+ σIπt (N − Iπt )
dBπ

t

dt
. (2.1.9)

According to the Wong-Zakai Theorem [13],[11] the unique solution {Iπt }t∈[0,T ] of the
random ordinary differential equation (2.1.9) converges, as the mesh of the partition π
tends to zero, to the solution of the Stratonovich stochastic differential equation

dIt = [βIt(N − It)− (µ+ γ)It − αIt(N − It)Yt] dt+ σIt(N − It) ◦ dBt,

which in turn is equivalent to the Itô SDE

dIt =

[
βIt(N − It)− (µ+ γ)It − αIt(N − It)Yt +

σ2

2
I(t)(N − I(t))(N − 2I(t))

]
dt

+ σIt(N − It)dBt.

The stochastic differential equation above coincides with (2.1.7) thus validating our
parameter perturbation approach also from a model equation pont of view.

2.2 Analysis of the stochastically perturbed SIS Model

In this section we analyse the stochastic process (2.1.6) which we recall to be the
unique strong solution of the SDE (2.1.7). we will in particular show that such process
lives in the interval ]0, N [, for all t ≥ 0, almost surely and we will provide sufficient
conditions for extinction and persistence.

2.2.1 Support of the solution

We start with the following.

Proposition 2.2.1. For the stochastic process {It}t≥0 defined in (2.1.6) we have

P(It ∈]0, N [) = 1, for all t ≥ 0.
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Proof. First of all, we observe that It can be rewritten as

It =
Ni0e

νt+NYt

N − i0 + i0eνt+NYt + i0
∫ t
0
eνs+NYs(γ + µ)ds

.

Since by assumption 0 < i0 < N , it can be seen that It is a ratio of almost sure positive
quantities; this yields It > 0 for all t ≥ 0 almost surely. On the other hand, the last
identity also gives

It <
Ni0e

νt+NYt

i0eνt+NYt + i0
∫ t
0
eνs+NYs(γ + µ)ds

=
N

1 + (γ + µ)
t∫
0

eν(s−t)+N(Ys−Yt)ds

< N.

The proof is complete.

2.2.2 Extinction of the infection

We now provide a sufficient condition for extinction; remarkably, the parameters
describing the stochastic perturbation, i.e. α and σ, do not play role in that.

Theorem 2.2.2. If RD
0 = βN

γ+µ
≤ 1, or equivalently ν = βN − (γ + ν) ≤ 0, then

lim
t→∞

It = 0 almost surely.

Proof. We take G(x) := ln
(

x
N−x

)
for x ∈]0, N [ and observe that G is a strictly increasing

function that maps the interval ]0, N [ into ]−∞,+∞[. An application of the Itô formula
gives

dG(It) =

[
ν −NαYt − (γ + µ)

It

N − It

]
dt+ σNdBt,

which corresponds to the integral equation

G(It) = ln

(
i0

N − i0

)
− αN

t∫
0

Ysds+

t∫
0

f(Is)ds+ σNBt, (2.2.1)

where

f(x) := ν − (γ + µ)
x

N − x
, for x ∈]0, N [. (2.2.2)
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It is useful to note that f is monotone decreasing on the interval ]0, N [ and that f(x) < ν,
for x ∈]0, N [. Therefore, from equation (2.2.1) we get

lim sup
t→∞

1

t
G(It) ≤ lim sup

t→∞

1

t
ln

(
i0

N − i0

)
− lim

t→∞

αN

t

t∫
0

Ysds

+ lim sup
t→∞

1

t

t∫
0

f(Is)ds+ σN lim sup
t→∞

Bt

t
. (2.2.3)

By recalling (2.1.3), it is easy to notice that the first two terms in right hand side above
are equal to zero. Moreover, by the strong law of large numbers for martingales, Theorem
1.1.3 in this document, (see for instance [10]) we also have

lim
t→∞

Bt

t
= 0, almost surely.

Therefore, inequality (2.2.3) now reads

lim sup
t→∞

1

t
G(It) ≤ lim sup

t→∞

1

t

t∫
0

f(Is)ds < ν,

that means

lim sup
t→∞

1

t
ln

(
It

N − It

)
< 0, almost surely.

Since the last statement implies our thesis, the proof is complete.

In the stochastic SIS model obtained by this parameter perturbation method from
the deterministic one, the limiting behaviour of both models are the same for RD

0 ≤ 1.

2.2.3 Persistence of the Infection

We now turn to the problem of finding sufficient condition for persistence of the
disease. Again, the parameters describing the stochastic perturbation, i.e. α and σ, do
not influence the threshold.

Theorem 2.2.3. If RD
0 > 1, or equivalently ν > 0, then we have with probability one

lim sup
t→∞

It ≥ x∗ and lim inf
t→∞

It ≤ x∗, (2.2.4)

where x∗ = N
(

1− 1
RD0

)
.
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Figure 2.1: The plot of f(x) from (2.2.2) with ν = 20, γ + µ = 0.2 and N = 10

Proof. The assumption of the theorem implies that the function in (2.2.2) has a unique
root in ]0, N [ given by x∗ = N(1− 1/RD

0 ), as shown in figure 2.1.
We follow the proof of Theorem 5.1 in [5]. Assume the first inequality in (2.2.4) to

be false. Then, there exists ε > 0 such that

P(Ω1) > ε where Ω1 :=

{
lim sup
t→∞

It ≤ x∗ − ε
}
. (2.2.5)

Therefore, for all ω ∈ Ω1 there exists T (ω) ≥ 0 such that

It ≤ x∗ − ε, for all t ≥ T (ω),

and the monotonicity of f yields

f(It) ≥ f(x∗ − ε) > 0, for all t ≥ T (ω). (2.2.6)

Therefore, using identities (2.2.1), (2.1.3) and the strong law of large numbers for mar-
tingales (Theorem 1.1.3), we can write for all ω ∈ Ω1 that

lim inf
t→∞

1

t
G(It) ≥ lim inf

t→∞

1

t
ln

(
i0

N − i0

)
− lim

t→∞

αN

t

t∫
0

Ysds

+ lim inf
t→∞

1

t

t∫
0

f(Is)ds+Nσ lim
t→∞

Bt

t

= lim inf
t→∞

1

t

t∫
0

f(Is)ds
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≥ lim inf
t→∞

1

t

T∫
0

f(Is)ds+ f(x∗ − ε) lim inf
t→∞

t− T
t

and hence

lim inf
t→∞

1

t
ln

(
It

N − It

)
≥ f(x∗ − ε) > 0.

This gives lim
t→∞

It = N which contradicts (2.2.5).

To prove the second inequality in (2.2.4) we proceed as before and assume that there
exists ε > 0 such that

P(Ω2) > ε where Ω2 =
{

lim inf
t→∞

It ≥ x∗ + ε
}
. (2.2.7)

Therefore, for all ω ∈ Ω2, there exists T (ω) ≥ 0 such that

It ≥ x∗ − ε, for all t ≥ T (ω).

The monotonicity of f gives

f(It) ≤ f(x∗ − ε) < 0, for all t ≥ T (ω), (2.2.8)

and

lim sup
t→∞

1

t
ln

(
It

N − It

)
≤ lim sup

t→∞

1

t

t∫
0

f(Is)ds ≤ f(x∗ + ε) < 0.

This implies lim
t→∞

It = 0, contradicting (2.2.7).

2.2.4 Trajectory simulations

In this section we present various simulations; We consider two different values of
σ to emphasize that, according to our theoretical results, the limiting behaviour of the
solution doesn’t depend on them. We also illustrate that the perturbation of β proposed
here, i.e. via a mean-reverting Ornstein-Uhlenbeck process (whose variance is bounded),
differs significantly at level of trajectories of It from the case with Brownian perturbation
investigated in [2].

For the first example, set N = 200, i0 = 100, β = 0.06, γ + µ = 14, α = 0.4, so that
RD

0 = 0.8 and ν = −2. According to Theorem 2.2.2 the infection should extinct almost
surely. See Figure 2.2.

Next, the same simulation is performed with a different set of parameters. Take
N = 200, i0 = 100, β = 0.06, γ + µ = 12, α = 0.4 which gives RD

0 = 1 and ν = 0.
According to Theorem 2.2.2 the infection should extinct almost surely. See Figure 2.3.
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(a) σ = 0.005 (b) σ = 0.05

Figure 2.2: The plot with parameters N = 200, i0 = 100, α = 0.4, RD
0 = 0.857 and

hence ν = −2. The label for y-axis I(t, Yt) stands for It.

(a) σ = 0.005 (b) σ = 0.05

Figure 2.3: The plot with parameters N = 200, i0 = 100, α = 0.4, RD
0 = 1 and hence

ν = 0. The label for y-axis I(t, Yt) stands for It.

(a) σ = 0.005 (b) σ = 0.05

Figure 2.4: The plot with parameters N = 200, i0 = 100, α = 0.4 and RD
0 = 1.2 so

ν = 2. The deterministic limit is 33. The label for y-axis I(t, Yt) stands for It.
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(a) Bt Perturbation, RD0 = 1.00 (b) O-U Perturbation, RD0 = 1.00

(c) Bt Perturbation, RD0 = 1.09 (d) O-U Perturbation, RD0 = 1.09

Figure 2.5: The plot with parameters N = 200, i0 = 100, α = 10 and σ = 0.005. The
labels for y-axis are I(t, Bt), standing for β parameter perturbed with Bt , and I(t, Yt),
standing for It.

Lastly, consider N = 200, i0 = 100, β = 0.06, γ + µ = 10, α = 0.4 so RD
0 = 1.2

and ν = 2. According to Theorem 2.2.2 the infection should persist a.s., or more
precisely it should oscillate above and below the deterministic limit. See Figure 2.4
where fluctuations above and below the deterministic limit x∗ is visible as well.

Lastly, Fig. 2.5 shows a comparison between the trajectories of It in the presence of
Brownian and mean reverting Orstein- Uhlenbeck perturbations of β: the boundedness
in time of the variance of Yt is clearly observed in the size of the fluctuations of It.
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Chapter 3

Generalization of The Parameter
Perturbation Process

3.1 Stochastic parameter perturbation with a gen-

eral process

In this section we try to understand to which extent the results of the previous
sections are determined by the choice of the particular perturbation {Yt}t≥0 in (2.1.1).
To this aim we consider {Zt}t≥0, solution of the stochastic differential equation

dZt = b(t, Zt)dt+ σdBt, Z0 = 0, (3.1.1)

where σ is positive real number and the function b : [0, T ]×R is assumed to be globally
Lipschitz continuous in z, uniformly in t; We also introduce the corresponding pertur-
bation of the parameter β, namely∫ t

0

β(s)ds 7→
∫ t

0

(
β +

dZs
ds

)
ds = βt+ Zt. (3.1.2)

If we employ such transformation in (2.0.1), which is the solution of the deterministic SIS
model with a time dependent transmission coefficient β, we get the stochastic process

It :=
i0e

νt+NZt

1 + i0
N

(
eνt+NZt − 1 +

∫ t
0
eνs+NZs(γ + µ)ds

) , t ≥ 0. (3.1.3)

where to ease the notation set It instead of I(t, Zt). Moreover, an application of the Itô
formula yields

dIt =

[
It(N − It)

(
ν

N
+ b(t, Zt) +

σ2N

2
− σ2It

)
− γ + µ

N
I2t
]
dt

+ σIt(N − It)dBt (3.1.4)
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Remark 3.1.1. The restriction to constant diffusion coefficients imposed in (3.1.1) is
due the necessity of cross validating the model (3.1.3) also from a differential equations’
point of view. In fact, if one smooths the process {Zt}t≥0 as

dZπ
t

dt
= b(t, Zπ

t ) + σ
dBπ

t

dt
, Zπ

0 = 0,

and perturb correspondingly the parameter β in equation (1.2.2), we obtain

dIπt
dt

=βIπt (N − Iπt )− (µ+ γ)Iπt + b(t, Zπ
t )Iπt (N − Iπt )

+ σIπt (N − Iπt )
dBπ

t

dt
.

According to the Wong-Zakai Theorem the unique solution {Iπt }t∈[0,T ] of the random
ordinary differential equation above converges, as the mesh of the partition π tends to
zero, to the solution of the Stratonovich stochastic differential equation

dIt = [βIt(N − It)− (µ+ γ)It + b(t, Zt)It(N − It)] dt+ σIt(N − It) ◦ dBt,

which in turn is equivalent to the Itô SDE

dIt =

[
βIt(N − It)− (µ+ γ)It + b(t, Zt)It(N − It) +

σ2

2
I(t)(N − I(t))(N − 2I(t))

]
dt

+ σIt(N − It)dBt.

This SDE coincides with (3.1.4) thus validating that model. If we allow σ in (3.1.1) to
depend also on Z, then this match wouldn’t take place for the presence of an additional
drift term in the equation for {Zt}t≥0.

We now start to analyse the properties of {It}t≥0 by stating the analogue of Propo-
sition 2.2.1.

Proposition 3.1.2. For the stochastic process {It}t≥0 defined in (3.1.3) we have

P(It ∈]0, N [) = 1, for all t ≥ 0.

Proof. Looking through the proof of Proposition 2.2.1 one easily see that the same
conclusion holds for {It}t≥0.

The next theorem provides a sufficient condition on the stochastic process {Zt}t≥0
which guarantees extinction for {It}t≥0.

Theorem 3.1.3. Assume that RD
0 = βN

γ+µ
≤ 1, or equivalently ν = βN − (γ + ν) ≤ 0. If

lim sup
t→∞

Zt
t
≤ 0, almost surely, (3.1.5)

then

lim
t→∞
It = 0 almost surely.
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Proof. Take G(y) := ln
(

y
N−y

)
, for y ∈]0, N [; an application of the Itô formula gives

dG(It) =

[
ν − (γ + µ)

It
N − It

]
dt+NdZt.

this yields

G(It) = ln

(
i0

N − i0

)
+

t∫
0

f(Is)ds+NZt,

where f is defined as (2.2.2) again. By utilizing the monotonicity of f , we get

lim sup
t→∞

1

t
G(It) < ν +N lim sup

t→∞

Zt
t
.

Now, if

lim sup
t→∞

Zt
t
≤ 0, almost surely,

then ν ≤ 0 implies immediately that

lim sup
t→∞

1

t
ln

(
It

N − It

)
< 0.

The last inequality entails the statement of our theorem and competes the proof.

Now the analogue of Theorem 2.2.3 will be stated.

Theorem 3.1.4. Assume that RD
0 > 1, or equivalently ν > 0. If

0 ≤ lim inf
t→∞

Zt
t
≤ lim sup

t→∞

Zt
t
< +∞, (3.1.6)

then the infection is persistent. More precisely, for all x ∈]0, N [ we have

lim inf
t→∞

It ≤ x ≤ lim sup
t→∞

It, almost surely. (3.1.7)

Proof. We now proceed by contradiction as in the proof of Theorem 2.2.3. Similarly,

take G(y) := ln
(

y
N−y

)
, for y ∈]0, N [; an application of the Itô formula gives

dG(It) =

[
ν − (γ + µ)

It
N − It

]
dt+NdZt.

Now fix 0 < x < N and first prove that

lim sup
t→∞

It ≥ x, almost surely.
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Assume to the contrary that the event {lim supt→∞ It < x} has positive probability.
This means that there exists T (ω) ≥ 0 such that It < x, for all t ≥ T (ω); this, together
with the monotonicity of (2.2.2), gives

lim inf
t→∞

1

t
ln

(
It

N − It

)
≥ lim inf

t→∞

1

t

∫ t

0

f(Is)ds+N lim inf
t→∞

Zt
t

>f(x) +N lim inf
t→∞

Zt
t
.

Now, the core of Theorem 2.2.3 is the left hand side above being positive and this is
guaranteed if

N lim inf
t→∞

Zt
t
≥ −f(x). (3.1.8)

In this case lim inft→∞
1
t

ln
(
It

N−It

)
> 0 and hence limt→∞ It = N , contradicting our

initial assumption. Since the range of f is ]−∞, ν], condition (3.1.8) is implied by the
first inequality in (3.1.6) and positivity of ν.

We now prove that

lim inf
t→∞

It ≤ x, almost surely.

Assume to the contrary that the event {lim inft→∞ It > x} has positive probability; this
implies the existence of T (ω) > 0 such that It > x, for all t ≥ T (ω). Then,

lim sup
t→∞

1

t
ln

(
It

N − It

)
≤ lim sup

t→∞

∫ t

0

f(Is)ds+N lim sup
t→∞

Zt
t

< f(x) +N lim sup
t→∞

Zt
t
.

Now, the core of Theorem 2.2.3 is the left hand side above being negative and this is
guaranteed if

N lim sup
t→∞

Zt
t
≤ −f(x) (3.1.9)

In this case lim supt→∞
1
t

ln
(
It

N−It

)
< 0 and hence limt→∞ It = 0 which contradicts our

initial assumption. Since the range of f is ]−∞, ν], condition (3.1.9) is implied by the
last inequality in (3.1.6).

Remark 3.1.5. If the process {Zt}t≥0 satisfies both (3.1.5) and (3.1.6), then for ν ≤ 0
one has extinction and for ν > 0 one has persistence for the associated model. It is
useful to note this is the case only when

lim
t→∞

Zt
t

= 0. (3.1.10)
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3.2 Trajectory simulations

In this section a simple example will be given to support the theoretical results of
Theorems 3.1.3 and 3.1.4. We choose

Zt := αt+ σBt (3.2.1)

and note that

lim sup
t→∞

Zt
t

= lim inf
t→∞

Zt
t

= α, almost surely.

If α < 0, then the assumption of Theorem 3.1.3 is fulfilled while those of Theorem
3.1.4 are not. This means that for RD

0 ≤ 1, or equivalently ν ≤ 0, the extinction is
guaranteed; however, for RD

0 > 1, or equivalently ν > 0, the persistence of infection is
not guaranteed.

(a) RD0 = 0.857 (b) RD0 = 1.000

(c) RD0 = 1.200 (d) RD0 = 1.333

Figure 3.1: The plot with parameters N = 200, i0 = 100, α = −0.011 and σ = 0.005.
The label for y-axis I(t, Zt) stands for It.
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Figure 3.1 supports this claim. As one can see the panels 3.1a and 3.1b shows the
extinction of the infection since Theorem 3.1.3 is satisfied. However, panels 3.1c and 3.1d
shows both the examples of extinction and persistence even though the ν > 0 (RD

0 > 1).
Thus one looses the properties of the deterministic model.

A complementary analysis can be made for α > 0. In this case the assumption of
Theorem 3.1.4 will be satisfied while those of Theorem 3.1.3 are not. This indicates that
the infection will be persistent as long as RD

0 > 1; however, the extinction of infection
is not guaranteed for RD

0 ≤ 1. The results of Figure 3.2 support this claim.

(a) RD0 = 0.800 (b) RD0 = 0.857

(c) RD0 = 1.000 (d) RD0 = 1.200

Figure 3.2: The plot with parameters N = 200, i0 = 100, α = −0.011 and σ = 0.005.
The label for y-axis I(t, Zt) stands for It.

In the panel 3.2d, the infection is persistent as expected. However, the extinction
is not seen in panels 3.2c and 3.2b since the sufficient condition in Theorem 3.1.3 is
not satisfied. Because the condition was sufficient and not necessary, although it is not
satisfied, the extinction can still happen for RD

0 ≤ 1, as shown in panel 3.2a.
One last important comment is that, when α = 0, then one has the same kind of
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perturbation of the β parameter utilized in [5], so now Zt = σBt. If the β parameter
is perturbed in the same way as this study and not in [5], since lim

t→∞
Zt/t = 0, by the

remark 3.1.5 it can be said that, for RD
0 ≤ 1 (ν ≤ 0) cases there will be extinction and

for cases RD
0 > 1 (ν > 0) there will be persistence of infection. We would like to stress

that conditions are not the same as published in [5] because the perturbation method is
different in this study.
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Chapter 4

Conclusion and Discussion

In this thesis, the basic background necessary to follow the analysis is provided in
Chapter 1. Later in Chapter 2 we propose a new perturbation method for the disease
transmission coefficient in SIS model. Our approach consists in acting directly on the
explicit solution of the deterministic problem, thus avoiding delicate manipulations of
differential quantities such as dBt. Nevertheless, our model is cross validated at the
level of differential equations once we smooth the perturbation and use the Wong-Zakai
theorem. We first use this method with a perturbation of mean reverting type and
properties of the corresponding model are analysed. Then, generalization to different
sources of randomness are investigated.

When the deterministic SIS model (1.2.1) is perturbed with a mean reverting Ornstein-
Uhlenbeck process {Yt}t≥0, the solution {It}t≥0 is shown to preserve the deterministic
model’s regimes for extinction and persistence similar to expression (1.2.4). Namely:

• if RD
0 ≤ 1, then we have extinction of infection;

• if RD
0 > 1, then we have persistence of infection.

Then, in Chapter 3 some simple sufficient conditions on the class of possible pertur-
bations which entail the same key feature for the corresponding models were identified.
It turns out that if a general stochastic process Zt, solving the general SDE (3.1.1), satis-
fies both Theorems 3.1.3 and 3.1.4, then the perturbed SIS Model with Zt perturbation
in the β parameter, behaves similar to its deterministic version. That is:

• if RD
0 ≤ 1, then we have extinction of infection;

• if RD
0 > 1, then we have persistence of infection.

That is a very useful result for other researchers to use. This way, if anyone wants to
perturb a SIS model like system of ODEs, they can use the same perturbation method
and a Zt process so that it is known that the solution exists, it is strong and unique, lies
between ]0, N [ and the limiting behaviour is similar to the original model.

This study emphasizes that the methodology of perturbation of deterministic models
is crucial in generating different stochastic versions. For further studies one can apply

34



the same rationale to other parameters in the deterministic SIS model, i.e. γ + µ, or to
other models, such as Lotka-Volterra type of equations ([9],[12]).
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