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Abstract

We study the Epstein zeta-function formulated on the d-dimensional hyper-
cubic lattice ζ (d)(s) = 1

2

∑′
n1,...,nd

(n2
1 + · · · + n2

d)
−s/2 where the real part

ℜ(s) > d and the summation runs over all integers except of the origin
(0, 0, . . . , 0). An analytical continuation of the Epstein zeta-function to the
whole complex s-plane is constructed for the spatial dimension d being a
continuous variable ranging from 0 to ∞. Zeros of the Epstein zeta-function
ρ = ρx + iρy are defined by ζ (d)(ρ) = 0. The nontrivial zeros split into the
“critical” zeros (on the critical line) with ρx = d

2
and the “off-critical” zeros

(off the critical line) with ρx 6= d
2
. Numerical calculations reveal that the

critical zeros form closed or semi-open curves ρy(d) which enclose disjunctive
regions of the plane

(

ρx = d
2
, ρy
)

. Each curve involves a number of left/right

edge points ρ∗ =
(

d∗

2
, ρ∗y
)

, defined by a divergent tangent dρy/dd|ρ∗. Every
edge point gives rise to two conjugate tails of off-critical zeros with contin-
uously varying dimension d which exhibit a singular expansion around the
edge point, in analogy with critical phenomena for second-order phase tran-
sitions. For each dimension d > 9.24555 . . . there exists a conjugate pair of
real off-critical zeros which tend to the boundaries 0 and d of the critical
strip in the limit d → ∞. As a by-product of the formalism, we derive an
exact formula for limd→0 ζ

(d)(s)/d. An equidistant distribution of critical ze-
ros along the imaginary axis is obtained for large d, with spacing between
the nearest-neighbour zeros vanishing as 2π/ ln d in the limit d → ∞.
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1. Introduction

Let two particles at distance r interact via the Riesz potential 1/rs with
real s [1]. If the particles are placed equidistantly (with unit lattice spacing)
on an infinite line and interact pairwisely by the Riesz potential, the energy
per particle is given by the Riemann zeta-function [2]

ζ(s) =
1

2

∞
∑′

n=−∞

1

|n|s =

∞
∑

n=1

1

ns
s > 1, (1)

where the prefactor 1
2
comes from the fact that each interaction energy is

shared by a pair of particles and the prime in the first sum means omission
of the self-energy n = 0 term from the set of integers n. The function ζ(s) can
be analytically continued to the punctured plane C\{1}. It has a simple pole
at s = 1. The Riemann zeta-function plays a fundamental role in the alge-
braic and analytic number theories [3, 4, 5, 6, 7, 8], see monographs [9, 10, 11].
The Riemann hypothesis about the location of its nontrivial zeros exclusively
on the critical line ℜ(s) = 1

2
(the symbol ℜ means the real part) is one of the

Hilbert and Clay Millennium Prize problems. Throughout the present paper
we assume that the Riemann hypothesis holds. The zeros of the Riemann
zeta-function are tabulated in the symbolic language Mathematica under the
symbol ZetaZero[n] where the positive integer n = 1, . . . , 107 denotes the
nth zero in the first quadrant and the negative integer n = −1, . . . ,−107

corresponds to its complex conjugate. The zeta-function and its Hurwitz,
Barnes [12], Epstein [13, 14], etc. generalisations have numerous applica-
tions in mathematics (prime numbers, applied statistics [15, 16, 17]) and
physics (dynamical systems [18], regularization in Quantum Field Theory
[19], Casimir effect [20, 21], Bose-Einstein condensation [22], see also books
[23, 24]).

If the particles sit on the vertices of the d-dimensional hypercubic lattice
with unit spacing, the energy per particle is given by the hypercubic Epstein
zeta-function [13, 14, 25]

ζ (d)(s) =
1

2

∑′

n1,n2,...,nd

1

(n2
1 + n2

2 + . . .+ n2
d)

s/2
ℜ(s) > d, (2)
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where the self-energy term (0, . . . , 0) is excluded from the summation over
all integers and the spatial dimension d is a positive integer. This function
can be analytically continued (regularized) to the critical strip 0 < ℜ(s) < d
by various methods [13, 14, 26, 27, 28]. One of the methods is based on the
fact that if the particles charges change signs periodically so that the system
is electrically neutral, the appropriate lattice sums converge for all ℜ(s) > 0
except for s = d [17]. The critical line is defined by ℜ(s) = d

2
. Since the

hypercubic lattice is self-dual, one can use a functional relation that connects
the lattice sums for s ↔ d − s and thus get an analytic continuation from
ℜ(s) > d to ℜ(s) < 0 [17], although the region ℜ(s) < 0 is problematic from
the point of view of physical applications.

We are interested in zeros of the Epstein zeta-function ρ = ρx+iρy defined
by ζ (d)(ρ) = 0. Besides the trivial zeros at ρ = −2,−4, . . ., there exist non-
trivial zeros which split into two sets: the “critical” zeros (on the critical line)
with ρx = d

2
and the “off-critical” zeros (off the critical line) with ρx 6= d

2
.

For dimensions d = 2, 4, 6 and 8, the hypercubic Epstein zeta-functions
can be expressed in terms of certain one-dimensional sums [29, 30, 31, 32].
In the general analysis of these dimensions the Riemann hypothesis will be
assumed to be valid.

For the square lattice (d = 2), it holds that [33, 34]

ζ (2)(s) = 2 ζ
(s

2

)

β
(s

2

)

, (3)

where

β
(s

2

)

=
∞
∑

k=0

(−1)k

(2k + 1)s/2
=

1

2s

[

ζ

(

s

2
,
1

4

)

− ζ

(

s

2
,
3

4

)]

(4)

is the Dirichlet beta-function which is a special case of Dirichlet L-series
[17]; here, ζ(s/2, a) =

∑∞

n=0(n + a)−s/2 denotes the Hurwitz zeta-function.
Provided that the Riemann hypothesis holds for the zeta function, zeros of
β(s/2) are localized on the critical line ℜ(s/2) = 1

2
[35], so that all nontrivial

zeros of ζ (2)(s) are constrained to the critical line ℜ(s) = 1. The statistics of
gaps between zeros was studied numerically [36] as well as analytically [37].
The anisotropic (rectangular) lattice sums are of special interest due to the
presence of zeros off the critical line [38, 39, 40, 41, 42]. The distribution of
critical zeros for general two-dimensional periodic structures was studied in
[43, 44].
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For d = 4, the Epstein zeta-function is expressible as [31, 32]

ζ (4)(s) = 4
(

1− 22−s
)

ζ
(s

2

)

ζ
(s

2
− 1
)

. (5)

The critical zeros are given by 22−ρ = 1, i.e. ρ = 2 + 2πik/ ln 2 (k =
0,±1,±2, . . .). There are also off-critical zeros lying on the lines ρx = 1
and ρx = 3.

For d = 6, it holds that [31, 32]

ζ (6)(s) = 8 β
(s

2

)

ζ
(s

2
− 2
)

− 2 β
(s

2
− 2
)

ζ
(s

2

)

. (6)

Besides the critical zeros on the axis ℜ(s) = 3, there exist also off-critical
zeros dispersed in the complex plane.

For d = 8 [31, 32],

ζ (8)(s) = 8
(

1− 21−s/2 + 42−s/2
)

ζ
(s

2

)

ζ
(s

2
− 3
)

. (7)

Critical zeros are given by 21−ρ/2−42−ρ/2 = 1, the off-critical ones are localized
on the axes ρx = 1 and ρx = 7.

For small odd dimensions only approximate formulas with controlled re-
mainders were found [21]. Explicit formulas for the Epstein zeta-function in
terms of the Riemann and Hurwitz zeta-functions were derived in [45, 46].
The Laurent series expansion about the singular point s = d was the subject
of the work [47]. The minima and convexity of the Epstein zeta-function were
investigated in [48, 49, 50, 51, 52]. General results about the distribution of
the Epstein zeros were derived in [36, 38, 53, 54, 55]. A fast numerical al-
gorithm for the evaluation of the d-dimensional Epstein zeta-function in the
entire s-plane was developed in [56].

Critical zeros of the hypercubic Epstein zeta-function are confined to the
critical line ℜ(s) = d

2
and it is relatively simple to solve numerically one

nonlinear equation for their imaginary components. On the other hand,
to find blindly the positions of all off-critical zeros is a hopeless task for
dimensions d 6= 4, 6, 8. It is the aim of this paper to establish a generation
mechanism of off-critical zeros. In particular, we apply the critical theory
of continuous second-order phase transitions in many-body systems, which
is developed within the condensed-matter and equilibrium statistical physics
[57, 58], to the mathematical problem of generation of Epstein’s off-critical
zeros as bifurcations from specific critical zeros.
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To accomplish our aim, we first perform an analytical continuation of the
Epstein zeta-function to the whole complex s-plane, with the spatial dimen-
sion d being a continuous variable ranging from 0 to ∞. The consequent
numerical results for critical zeros reveal that the latter form closed or semi-
open curves which enclose disjunctive regions of the plane

(

ρx = d
2
, ρy
)

. Each

curve involves a number of left/right “edge” points ρ∗ =
(

d∗

2
, ρ∗y
)

, defined by
a divergent tangent dρy/dd|ρ∗. Every edge point gives rise to two conjugate
tails of off-critical zeros with continuously varying dimension: d < d∗ for left
and d > d∗ for right edge points. The curves of critical and off-critical zeros
exhibit a singular expansion around the critical edge points whose derivation
resembles the one around a critical point of second-order phase transitions.
The order parameter is identified with the deviation from the critical line: it
is zero along the curve of critical zeros and becomes non-zero along the two
tails of off-critical zeros. The singular behavior of the order parameter close
to the edge point is characterized by the mean-field exponent 1

2
. Various

versions of the generation mechanism are discussed.
It turns out that for each d > 9.24555 . . . there exists a conjugate pair of

real off-critical zeros which tend to 0 and d in the limit d → ∞. As a by-
product of the formalism, we derive an exact result for limd→0 ζ

(d)(s)/d. An
equidistant distribution of critical zeros along the imaginary axis is obtained
for large d, spacing between the nearest-neighbour zeros vanishes as 2π/ ln d
in the limit d → ∞.

The paper is organized as follows. An analytical continuation of the Ep-
stein zeta-function to the whole complex s-plane and the continuous spatial
dimension d ∈ (0,∞) is constructed in section 2. Basic formulas for zeros of
the Epstein zeta-function, together with specific sum rules, are given in sec-
tion 3. The precise location of off-critical zeros of the Epstein zeta-function
in the limit d → 0 and the equidistant distribution of its critical zeros for
large d are derived in section 4. Section 5 deals with the numerical evaluation
of the curves of critical zeros and a singular expansion of these curves around
the edge points. Section 6 describes the generation mechanism of off-critical
zeros from the critical edge points. Analytical expansion formulas close to
the edge points are tested numerically. The concluding section 7 brings a
short recapitulation and open questions.
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2. Regularization in d dimensions

2.1. ℜ(s) > d

The lattice-sum representation (2) of ζ (d)(s) is defined for ℜ(s) > d. Using
the standard Gamma-identity

1

rs
=

1

(r2)s/2
=

1

Γ(s/2)

∫ ∞

0

dt ts/2−1e−r2t, (8)

the Epstein zeta-function can be reexpressed as

ζ (d)(s) =
1

2Γ(s/2)

∫ ∞

0

dt ts/2−1

[

∞
∑

n1,n2,...,nd=−∞

e−(n2
1+n2

1+...+n2
d
)t − 1

]

=
1

2Γ(s/2)

∫ ∞

0

dt ts/2−1
[

θd3
(

e−t
)

− 1
]

, (9)

where we introduced the Jacobi elliptic function with zero argument ϑ3(0, q) ≡
θ3(q) =

∑∞

n=−∞ qn
2
(see [59]) and −1 subtracts the summand with n1 = n2 =

. . . = nd = 0. The last integral in (9) is known as the Mellin transform of
the function in the square bracket.

The elliptic theta function θ3 (e
−t) exhibits the following small-t and large-

t expansions:

θ3
(

e−t
)

∼
t→0

√

π

t

(

1 + 2e−π2/t + · · ·
)

, θ3
(

e−t
)

∼
t→∞

1 + 2e−t + · · · . (10)

The function under integration in (9) is integrable at large t and it behaves
like t(s−d)/2−1 for t → 0, so the real part of the power must be greater than
−1 which yields the mentioned restriction ℜ(s) > d.

To derive another representation of (9), we first substitute t = πt′ and
then split the integration interval into 0 < t′ < 1 and 1 < t′ < ∞, to obtain

2Γ(s/2)

πs/2
ζ (d)(s) =

∫ 1

0

dt ts/2−1
[

θd3
(

e−πt
)

− 1
]

+

∫ ∞

1

dt ts/2−1
[

θd3
(

e−πt
)

− 1
]

. (11)

The Poisson summation formula

∑

n

e−(n+φ)2t =

√

π

t

∑

n

e2πinφe−(πn)2/t (12)

6



with φ = 0 yields the following relation for the Jacobi theta function

θ3
(

e−πt
)

≡
∞
∑

n=−∞

e−n2πt =
1√
t

∞
∑

n=−∞

e−n2π/t =
1√
t
θ3
(

e−π/t
)

. (13)

Applying this equality in the last integral of Eq. (11) and afterwards using
the substitution t = 1/t′, one finds that

∫ ∞

1

dt

t
ts/2

[

θd3
(

e−πt
)

− 1
]

=

∫ 1

0

dt

t
t(d−s)/2

[

θd3
(

e−πt
)

− t−d/2
]

. (14)

As the next step, one adds −t−d/2 + t−d/2 in the square bracket of the first
integral on the rhs of (11) and integrates explicitly the remaining term −1+
t−d/2, which can be done for ℜ(s) > d. The final formula reads as

π−s/2Γ
(s

2

)

ζ (d)(s) = −1

s
− 1

d− s

+
1

2

∫ 1

0

dt

t

(

ts/2 + t(d−s)/2
) [

θd3
(

e−πt
)

− t−d/2
]

. (15)

By using the first relation in (10), the difference θd3 (e
−πt)−t−d/2 ∼ 2dt−d/2e−π/t

for t → 0 and the integral on the rhs converges for any complex s. The rep-
resentation (15) is therefore an analytic continuation of (9) to the whole
complex plane, except for the simple pole at s = d. The limit s → 0 does not
represent any problem as the singularity −1/s on the rhs has a counterpart
Γ(s/2) ∼s→0 2/s on the lhs, so that ζ (d)(0) = −1/2 for any d.

For d = 1, the derivation of the formula (15) goes back to Riemann’s
1859 paper [2] see also an alternative representation (1.12) on page 12 of the
book [23]. For d > 1, a formula analogous to (15), with the integration range
constrained to t ∈ [1,∞), was derived in [60].

The crucial representation (15) can be used to calculate the Epstein zeta-
function for any complex s and we could stop here our analytical analysis.
However, to show the consistency of the formalism with other approaches
(working for d = 1, 2, 3) and its relation to neutral Coulomb systems in
thermal equilibrium, in what follows we shall propose other analytic contin-
uations of the lattice formula (9) to the regions 0 < ℜ(s) < d and ℜ(s) < 0
and show that they all lead to the same representation (15).
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2.2. 0 < ℜ(s) < d

To ensure the convergence of ζ (d)(s) for 0 < ℜ(s) < d, it is useful to
”neutralise” the “charged” particle systems by a system of opposite charge
in the way it is often made in Coulomb systems [61].

One possibility is to introduce the opposite charges on one half of the
sites by inserting the factor (−1)n1 or (−1)n1+n2, etc. into the sum (2) and
then express ζ (d)(s) by using these finite expressions [17]. To generate such
expressions in a compact form, let us introduce another Jacobi theta function
θ4(q) =

∑∞
n=−∞(−1)nqn

2
. The function θ4 (e

−t) exhibits the following small-t
and large-t expansions:

θ4
(

e−t
)

∼
t→0

√

π

t
e−π2/(4t) + · · · , θ4

(

e−t
)

∼
t→∞

1− 2e−t + · · · . (16)

One of the equalities fulfilled by the Jacobi theta functions reads as [17, 62]

θ3(q) =
1

2

[

θ3
(

q1/4
)

+ θ4
(

q1/4
)]

. (17)

Replacing θd3 (e
−t) in (9) by using this formula, substituting t′ = t/4, using

the binomial expansion formula and finally putting
(

d
0

)

θd3(e
−t)− 1 on the lhs

of the equation, one arrives at

ζ (d)(s) =
1

2Γ(s/2)(2d−s − 1)

∫ ∞

0

dt ts/2−1

×
[

d
∑

n=1

(

d

n

)

θd−n
3

(

e−t
)

θn4
(

e−t
)

− 2d + 1

]

. (18)

For large t, the expression in the square bracket ∼ −2de−t which, when mul-
tiplied by ts/2−1, is an integrable function. The small-t asymptotic formula
(16) for θ4 (e

−t) ensures that the integral on the rhs converges for ℜ(s) > 0.
This approach was formulated for d = 3 in [17].

Another (more direct) way to regularize the Epstein zeta-function is the
introduction of a homogeneous neutralising background which cancels an
infinite constant from the hypercubic summation (2) in the critical strip 0 <
ℜ(s) < d. The regularization procedure is known in Coulomb jellium models;
for a detailed explanation for the three-dimensional Coulomb potential (s =
1) in the spatial dimension d = 2, see [61]. To extend the regularization
procedure to any d and s, let us consider a d-dimensional sphere of radius

8



R around the reference particle at the point (0, . . . , 0) and restrict the sum
(2) to particles at points with coordinates n2

1 + n2
2 + . . . + n2

d ≤ R2. The
neutralising background of unit density (equivalent to the particle density)
and opposite “charge” sign, localized inside the sphere, interacts with the
reference particle by the potential

−1

2

∫ R

0

ddr
1

|r|s = −1

2

∫ R

0

dr sdr
d−1 1

rs
, (19)

where sd = 2πd/2/Γ(d/2) is the surface area of the d-dimensional unit sphere.
The application of the Gamma-identity (8) to 1/rs and the integration over
r results in

− 1

2Γ(s/2)

∫ ∞

0

dt ts/2−1
(π

t

)d/2 1

Γ(d/2)

[

Γ(d/2)− Γ(d/2, R2t)
]

, (20)

where Γ(d/2, R2t) is the incomplete Gamma function. Inserting the corre-
sponding part of this expression into the square bracket of the integrated
function in (9), Γ(d/2, R2t) goes to zero as the radius R of the d-dimensional
sphere with the neutralising background goes to infinity. This leads to the
addition of a background term −(π/t)d/2 in the square bracket, i.e.,

ζ (d)(s) =
1

2Γ(s/2)

∫ ∞

0

dt ts/2−1

[

θd3
(

e−t
)

− 1−
(π

t

)d/2
]

(21)

with 0 < ℜ(s) < d. The addition of the background term exactly cancels the
leading term of the expansion of θd3 (e

−t) at small t, see the first relation in
(10), removing in this way the divergence of the integral. The term −ts/2−1

is integrable at small t for ℜ(s) > 0. The term dominant at large t is
proportional to t−1+(s−d)/2 and it is integrable for ℜ(s) < d as it should be.
The equivalence of the representations (18) and (21) can be proved easily by
applying the equality (17).

Starting from (21), one can apply the procedure analogous to that be-
tween equations (11) and (14). Integrating explicitly the −1 terms in the last
step, we arrive at the same formula (15) as before, confirming its validity also
for the region 0 < ℜ(s) < d.

2.3. ℜ(s) ≤ 0

We keep the term n1 = n2 = . . . = nd = 0 in the sum in (2) for ℜ(s) < 0,
as the summand r−s vanishes automatically for r = 0. Omitting −1 in the

9



square bracket of (21), which corresponds to the cancellation of the term
(0, . . . , 0) from the summation, and maintaining the neutralising background
term, one has

ζ (d)(s) =
1

2Γ(s/2)

∫ ∞

0

dt ts/2−1

[

θd3
(

e−t
)

−
(π

t

)d/2
]

, ℜ(s) < 0. (22)

While the function under integration is always integrable in the region of
small t, its large-t limit ts/2−1 is integrable for ℜ(s) < 0. Starting from
the representation (22) and repeating the steps presented in subsection 2.1,
we recover once more the universal relation (15) valid in the whole complex
s-plane.

2.4. Functional relation and non-integer values of d

Another property of the crucial relation (15) is that its rhs is invariant
under the transformation s → d− s. This symmetry implies the well-known
functional relation for the self-dual hypercubic lattices [28]

π−s/2Γ
(s

2

)

ζ (d)(s) = π−(d−s)/2Γ

(

d− s

2

)

ζ (d)(d− s). (23)

This relation provides an analytical continuation of the lattice sum (2) from
the region ℜ(s) > d to ℜ(s) < 0 and it can serve as another check of the
validity of the representation (22).

While the original lattice-sum representation of the Epstein zeta-function
(2) as well as the representation (18) are defined only for positive integer
values of the dimension d, d can change continuously from 0 to ∞ in the rhs
of (15). In other words, the formula (15) corresponds to an extension of the
definition of the lattice sum (2) to non-integer dimensions. The possibility to
treat (positive) continuous values of d is of fundamental importance in this
work. Although the limit d → 0+ is problematic in the physical sense, it is
well defined algebraically.

3. Definition of zeros, sum rules

The “trivial” zeros are related to the divergence of the Gamma functions
Γ(s/2) at s = −2n (n = 1, 2, . . .). The rhs of Eq. (15) does not exhibit any
zeros at these trivial points.
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The “critical” zeros (on the critical line) have ρx = d
2
. Inserting ρ = d

2
+iρy

into the rhs of (15), the expression becomes real and its nullity determines
the imaginary component ρy as follows

− d

(d/2)2 + ρ2y
+

∫ 1

0

dt td/4−1 cos

(

ρy ln t

2

)

[

θd3
(

e−πt
)

− t−d/2
]

= 0. (24)

This equation is symmetric with respect to the complex conjugation ρy →
−ρy. In d = 1, the critical zeros with ρx = 1/2 are those suggested by
Riemann to be the only nontrivial ones in the complex plane.

The “off-critical” zeros (off the critical line) are those with ρx 6= d
2
. Let

us denote the deviation of ρx from its critical value d
2
as

∆ρx(d) = ρx(d)−
d

2
. (25)

In this case, the rhs of (15) becomes complex and the off-critical zeros are
given by the pair of coupled equations

−
[

d
2
+∆ρx

(

d
2
+∆ρx

)2
+ ρ2y

+
d
2
−∆ρx

(

d
2
−∆ρx

)2
+ ρ2y

]

+

∫ 1

0

dt td/4−1 cos

(

ρy ln t

2

)

cosh

(

∆ρx ln t

2

)

[

θd3
(

e−πt
)

− t−d/2
]

= 0, (26)

ρy

[

1
(

d
2
+∆ρx

)2
+ ρ2y

− 1
(

d
2
−∆ρx

)2
+ ρ2y

]

+

∫ 1

0

dt td/4−1 sin

(

ρy ln t

2

)

sinh

(

∆ρx ln t

2

)

[

θd3
(

e−πt
)

− t−d/2
]

= 0. (27)

These equations are symmetric with respect to the sign reversals ∆ρx →
−∆ρx and ρy → −ρy. This means that when (∆ρx, ρy) with ∆ρx 6= 0 is the
zero solution of equations (26) and (27), also (∆ρx,−ρy), (−∆ρx, ρy) and
(−∆ρx,−ρy) belong to the set of zero points.

The critical and off-critical zeros satisfy certain constraints (sum rules)
which follow from the universal representation (15). Let us rewrite that
representation as

h(d)(s) ≡ s(s− d)

d
π−s/2Γ(s/2)ζ (d)(s)

= 1 +
s(s− d)

2d

∫ 1

0

dt

t

(

ts/2 + t(d−s)/2
) [

θd3
(

e−πt
)

− t−d/2
]

. (28)
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h(d)(s) is an entire function of s such that h(d)(0) = 1. It vanishes at the non-
trivial (critical and off-critical) zeros {ρn}∞n=1 of ζ

(d)(s) (to simplify notation,
we omit the upper index (d) in ρn). According to the Weierstrass factoriza-
tion theorem, h(d)(s) can be factored over its nontrivial zeros {ρn}∞n=1. Let
p(d) be the smallest non-negative integer such that the series

∞
∑

n=1

1

|ρn|p(d)+1
(29)

converges. Then h(d)(s) is expressible in terms of the Hadamard’s product

h(d)(s) = e
−

∑
∞

n=1

∑p(d)
k=1

sk

kρkn

∞
∏

n=1

(

1− s

ρn

)

e
∑p(d)

k=1
sk

kρkn , (30)

where the exponential factor inside the product over n ensures the product
convergence. The corresponding sum rules for the inverse powers of zeros
follow from the generating formula [63]

σk ≡
∞
∑

n=1

1

ρk
= − 1

(k − 1)!

dk

dsk
ln h(d)(s)

∣

∣

∣

∣

s=0

. (31)

This result was derived by comparing two expansions, one based on the
Taylor series for ln[h(d)(s)/h(d)(0)] and the other based on the product rep-
resentation (30), see Eqs. (4)-(6) of [63]. As was mentioned in [63], the
same result can be obtained formally by taking the product representation
of h(d)(s) without any convergence factors, i.e.

h(d)(s) =
∞
∏

n=1

(

1− s

ρn

)

, (32)

and performing the Taylor series of its logarithm around s = 0,

ln h(d)(s) =
∞
∑

n=1

ln

(

1− s

ρn

)

=
∞
∑

k=1

sk

k

∞
∑

n=1

1

ρkn
, (33)

which is consistent with the generating formula (31). In other words, the
formula for the zeros moments (31) is independent of the particular form
of the product regularization of h(d)(s). Inserting the representation (28) of

12



h(d)(s) into the generating formula (31), we obtain the following sum rules
for the inverse powers of zeros:

∑

ρ

1

ρ
=

1

2

∫ 1

0

dt

t
(1 + td/2)

[

θd3
(

e−πt
)

− t−d/2
]

, (34)

∑

ρ

1

ρ2
=

(

∑

ρ

1

ρ

)2

− 1

2d

∫ 1

0

dt

t

[

2(1 + td/2)− d(1− td/2) ln t
]

×
[

θd3
(

e−πt
)

− t−d/2
]

, (35)

∑

ρ

1

ρ3
= −1

2

(

∑

ρ

1

ρ

)3

+
3

2

(

∑

ρ

1

ρ

)(

∑

ρ

1

ρ2

)

− 3

16d

∫ 1

0

dt

t
ln t
[

4(1− td/2)− d(1 + td/2) ln t
]

×
[

θd3
(

e−πt
)

− t−d/2
]

, (36)

etc.
In the d = 1 case of the Riemann zeta-function, p(1) = 1 and h(1)(s) can

be factorized as [64]

h(1)(s) = e[ln(4π)−2−γ0]s/2
∞
∏

n=1

(

1− s

ρn

)

es/ρn , (37)

where γ0 = 0.57721 . . . is the Euler-Mascheroni constant. The corresponding
sum rules for the inverse powers of zeros, derived in [65, 66, 67] (see also p.
168 of [68]), read as

∑

ρ

1

ρ
=

1

2
[2 + γ0 − ln(4π)] ,

∑

ρ

1

ρ2
= 1 + γ2

0 −
1

8
π2 + 2γ1,

∑

ρ

1

ρ3
= 1 + γ3

0 + 3γ0γ1 +
3

2
γ2 −

7

8
ζ(3), (38)

etc. Here, {γn}∞n=1 are the Stieltjes constants defined by the Laurent expan-
sion of ζ(s) around the singular point s = 1 [69]:

ζ(s) =
1

s− 1
+

∞
∑

n=0

(−1)n

n!
γn(s− 1)n. (39)

13



The sum rules (38) follow directly from (34)-(36) by taking d = 1 and ex-
pressing integrals over t in terms of special constants. Note that the sum
∑

ρ 1/ρ is not absolutely convergent. However, every zero ρ has its complex
conjugate ρ∗ and the above sum has to be understood in the following sense:
∑

ρ;ρy>0 (1/ρ+ 1/ρ∗); the summands are proportional to 1/ρ2y for large ρy
and therefore this sum is absolutely convergent. We apply this convention in
what follows, whenever the sum

∑

ρ 1/ρ appears.
As concerns dimensions d > 1, to our knowledge there is no general anal-

ysis in the mathematical literature about the dependence of the smallest
non-negative integer p, which ensures the convergence of the series (29), on
the spatial dimension d. Assuming that this integer is finite, one can calcu-
late the σ-moments by using Eqs. (34)-(36). Let us make a comparison of
the relations (34)-(36) with the numerical evaluation of these sum rules by
taking a large number of zeros. It is relatively simple to generate zeros of the
Epstein zeta-function for dimensions d = 2, 4, 6, 8 by using the corresponding
exact formulas (3)-(7). For d = 2, see formula (3), in the numerical calcu-
lation of the inverse powers of zeros with ℜ(ρ) = 1 we took into account all
zeros of ζ(s/2) and the first 200 pairs of complex conjugate zeros of β(s/2).
We got the numerical result σnum

1 = 0.0487637 . . . compared with the exact
result (34) σexact

1 = 0.0504398 . . ., σnum
2 = −0.048525 . . . compared with (35)

σexact
2 = −0.050201 . . . and σnum

3 = −0.000355375 . . . compared with (36)
σexact
3 = −0.000355379 . . .. For d = 4, see formula (5), we took into account

all zeros implied by the factors (1 − 22−s) and ζ(s/2), and the first 10000
pairs of complex conjugate zeros of ζ(s/2− 1). We got σnum

1 = 0.123502 . . .
compared with σexact

1 = 0.123704 . . ., σnum
2 = −0.059365 . . . compared with

σexact
2 = −0.059433 . . . and σnum

3 = −0.001712059732 . . . compared with
σexact
3 = −0.001712059733 . . .. The agreement between the numerical and

exact results is very good and improves itself with increasing the inverse
power of zeros, as it should be.

4. Special limits of dimension d

In this section, we consider two special limits of the spatial dimension:
d → 0 and d → ∞. Although these dimensional limits look artificial from
a practical (physical) point of view, they are well defined algebraically and
can be used to check the accuracy of numerical results.

14



4.1. d → 0+

We study the small-d limit within the representation (15), rewritten by
using the relation between the Jacobi theta functions (13) as follows:

2Γ
(s

2

)

ζ (d)(s) = 2πs/2

(

1

s− d
− 1

s

)

+πs/2

∫ 1

0

dt

t

(

t(s−d)/2 + t−s/2
) [

θd3
(

e−π/t
)

− 1
]

. (40)

Let us apply the limit d → 0+ to both sides of this equation. The integrand
converges uniformly on the interval t ∈ [0, 1] and so the limit d → 0+ can be
moved inside the integral. Moreover, the function θ3(e

−π/t) is finite for any
t ∈ [0, 1] and we can set θd3

(

e−π/t
)

− 1 ∼ d ln θ3
(

e−π/t
)

in the limit d → 0+.
Thus,

2Γ
(s

2

)

lim
d→0+

ζ (d)(s)

d
=

2πs/2

s2
+ πs/2

∫ 1

0

dt

t

(

ts/2 + t−s/2
)

ln
[

θ3
(

e−π/t
)]

. (41)

The integral on the rhs of (41) is the sum of two integrals. The first integral
can be expressed by using the relation (13) as follows

πs/2

∫ 1

0

dt

t
ts/2 ln

[

θ3
(

e−π/t
)]

= −2πs/2

s2
+

∫ π

0

du

u
us/2 ln

[

θ3
(

e−u
)]

, (42)

where we used the substitution u = πt. The second integral is expressible as

πs/2

∫ 1

0

dt

t
t−s/2 ln

[

θ3
(

e−π/t
)]

=

∫ ∞

π

dv

v
vs/2 ln

[

θ3
(

e−v
)]

, (43)

with the substitution v = π/t. Finally, taking the integral on the rhs of (41)
as the sum of (42) and (43), one ends up with the result

f(s) ≡ lim
d→0+

ζ (d)(s)

d
=

1

2Γ(s/2)

∫ ∞

0

dt ts/2−1 ln
[

θ3
(

e−t
)]

. (44)

Considering the asymptotic behavior of θ3 (e
−t) in the limits of small and

large t, this representation is valid for ℜ(s) > 0.
To express the integral in (44) in terms of standard functions, the known

product representation of the Jacobi theta function [59]

θ3(q) =

∞
∏

j=1

(1− q2j)(1 + q2j−1)2 (45)
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is not sufficient for our purposes and must be symmetrized. Let us consider
the function

g(q) =

∞
∏

j=1

(1 + qj)(1− q2j−1) = 1 + a1q + a2q
2 + · · · (46)

which is evidently analytic in q around q = 0. Since it holds

g(q2) =

∞
∏

j=1

(1+q2j)(1−q2j−1)(1+q2j−1) =

∞
∏

j=1

(1+qj)(1−q2j−1) = g(q), (47)

we have g(q) = g(q2) = g(q4) = . . . = 1. The division of the representation
(45) of θ3(q) by g(q2) results in

θ3(q) =
∞
∏

j=1

(1− q2j)(1 + q2j−1)

(1 + q2j)(1− q2j−1)
. (48)

Consequently,

ln θ3(q) =

∞
∑

j=1

(−1)j ln

(

1− qj

1 + qj

)

= −2

∞
∑

j=1

(−1)j
∞
∑

k=0

1

2k + 1
qj(2k+1). (49)

Inserting this expansion into (44) yields

f(s) =

∞
∑

j=1

(−1)j+1 1

js/2

∞
∑

k=1

1

(2k + 1)s/2+1
. (50)

For ℜ(s) > 0, it is easy to derive the following relations

∞
∑

j=1

(−1)j+1 1

js/2
= (1− 2−s/2+1)ζ

(s

2

)

,

∞
∑

k=1

1

(2k + 1)s/2+1
= (1− 2−s/2−1)ζ

(s

2
+ 1
)

. (51)

Consequently,

lim
d→0+

ζ (d)(s)

d
= (1− 2−s/2+1)(1− 2−s/2−1)ζ

(s

2

)

ζ
(s

2
+ 1
)

. (52)
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This exact result complements the known formulas (3)-(7) for d = 2, 4, 6, 8.
The zeros of the d → 0+ Epstein zeta-function are of two kinds. One of

the first two brackets on the rhs of (52) vanishes for

s±k = 2

(

±1 +
2πi

ln 2
k

)

, k = ±1,±2, . . . . (53)

Note that s−k = −2 with k = 0 is a trivial zero and s+k = 2 with k = 0
is not a zero because the limit lims→2(1 − 2−s/2+1)ζ(s/2) = ln 2 is finite.
The second set of zeros has the origin in the product of the Riemann zeta-
functions ζ(s/2)ζ(s/2 + 1). Let us denote by ζn = 1

2
+ iρy(n) (n = 1, 2, . . .)

the successive series of (critical) zeros of ζ(s) in the upper half-plane with
ρy(n) > 0 and by ζn = 1

2
+ iρy(n) (n = −1,−2, . . .) the complex conjugate

ones in the lower half-plane with ρy(n) = −ρy(−n) < 0. The zeros of the
product ζ(s/2)ζ(s/2 + 1) are given by

s(1)n = 2ζn, s(2)n = 2(ζn − 1). (54)

According to the Riemann hypothesis, they are constrained to the axes
ℜ(s) = ±1.

Let us check whether the above zeros fulfill the sum rules (34)-(36) taken
in the limit d → 0+. The d → 0+ limit of the sum rule (34) yields

∑

ρ 1/ρ = 0.
This result is confirmed by the explicit calculation

∑

ρ

1

ρ
=

1

2

∑

n

(

1

ζn
+

1

ζn − 1

)

+
1

2

∑

k 6=0

(

1

1− 2πi
ln 2

k
− 1

1 + 2πi
ln 2

k

)

= 0, (55)

where we have used that 1−ζn = ζ−n (provided that the Riemann hypothesis
holds) and summands are coupled as complex-conjugate pairs.

Now let us take the limit d → 0+ of the second sum rule (35). The conver-
gence of the integrand is uniform and therefore the limit-integral interchange
can be done. With respect to the relation (13), the difference θd3(e

−πt)− t−d/2

can be expressed as t−d/2
[

θd3(e
−π/t)− 1

]

. Since the positive function θ3(e
−π/t)

is finite for t ∈ [0, 1], we can expand θd3(e
−π/t)−1 ∼ d ln

[

θ3(e
−π/t)

]

. Switching
back to θ3(e

−πt) by using (13), one obtains

∑

ρ

1

ρ2
= −2

∫ 1

0

dt

t
ln
[√

tθ3
(

e−πt
)

]

. (56)
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With regard to the definition (44) of the function f(s), one can write

2π−s/2Γ
(s

2

)

f(s) =

∫ 1

0

dt

t
ts/2 ln

[

θ3
(

e−πt
)]

+

∫ ∞

1

dt

t
ts/2 ln

[

θ3
(

e−πt
)]

. (57)

As concerns the second integral on the rhs, applying the relation (13) and
subsequently using the substitution t = 1/x results in

∫ 1

0

dx

x
x−s/2 ln

[√
xθ3
(

e−πx
)]

. (58)

Adding the “missing” prefactor
√
t to θ3 in the first integral on the rhs of

(57) and evaluating the integral

−1

2

∫ 1

0

dt

t
ts/2 ln t =

2

s2
, (59)

we end up with

2π−s/2Γ
(s

2

)

f(s) =
2

s2
+

∫ 1

0

dt

t

(

ts/2 + t−s/2
)

ln
[√

tθ3
(

e−πt
)

]

. (60)

Applying to both sides the limit s → 0 and noting the uniform convergence
of the integrand, with regard to (56) it holds that

∑

ρ

1

ρ2
= −2 lim

s→0

[

π−s/2Γ
(s

2

)

f(s)− 1

s2

]

=
γ2
0

2
− π2

16
+ (ln 2)2 + γ1. (61)

Here, the last equality results from the expansion of π−s/2Γ(s/2)f(s), with
f(s) defined by (44) and (52), around s = 0 by using Mathematica. On the
other side, summing

1

4

∑

n

(

1

ζ2n
+

1

(ζn − 1)2

)

=
1

2

∑

n

1

ζ2n
=

γ2
0

2
+

1

2
− π2

16
+ γ1, (62)

see section 2.21 of [68], and

1

4

∑

k 6=0

[

1
(

1− 2πi
ln 2

k
)2 +

1
(

1 + 2πi
ln 2

k
)2

]

= −1

2
+ (ln 2)2, (63)
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the same result holds by substituting directly the spectrum of zeros into the
sum

∑

ρ 1/ρ
2.

Finally, from (36) one gets that
∑

ρ 1/ρ
3 = 0 which is trivially reproduced

by the identified zeros.
The critical zeros with ρx = 0 are absent at zero dimension. We conclude

that all zeros are off-critical in the limit d → 0+ and they are constrained to
the axes ℜ(s) = ±1,±2.

4.2. d → ∞
By using the relation (13), the difference θd3 (e

−πt)−t−d/2 can be expanded
as

θd3
(

e−πt
)

− t−d/2 =
2d

td/2

[

e−π/t + (d− 1)e−2π/t

+
2

3
(d− 1)(d− 2)e−3π/t + · · ·

]

. (64)

Let us look for the critical zeros in the limit d → ∞. Inserting this expansion
into (24) and taking the limit d → ∞, one gets the condition

∫ 1

0

dt

t
t−d/4 cos

(

ρy ln t

2

)

[

e−π/t + (d− 1)e−2π/t

+
2

3
(d− 1)(d− 2)e−3π/t + · · ·

]

= 0. (65)

The leading term (in the limit d → ∞) inside the square bracket is the first
one with e−π/t. Like for instance, the second term with e−2π/t gives, after the
substitution t = 2t′, a vanishing contribution of order 2−d/4d in comparison
with the first one. The consequent equation

∫ 1

0

dt eS(t) cos

(

ρy ln t

2

)

= 0, S(t) = −
(

1 +
d

4

)

ln t− π

t
(66)

can be treated within the Laplace integral method. The maximum point of
the “action” S(t), given by the condition ∂S(t)/∂t|t0 = 0, is t0 = 4π/d in the
large-d limit. This point lies in the interval [0, 1] as is needed. The action
can be expanded around t0 into a Taylor series as follows

S(t) = S(t0)−
π

2

(

d

4π

)3

(t− t0)
2 + · · · . (67)
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Considering this expansion in (66), in the limit d → ∞ the exponential eS(t)

becomes proportional to the Dirac delta function δ(t−t0), so that the possible
values of ρy are determined by

cos

[

ρy
2
ln

(

4π

d

)]

= 0, ρy =
(2n + 1)π

ln[d/(4π)]
(n = 0,±1, . . .). (68)

The critical zeros are therefore distributed equidistantly along the imaginary
axis in the large-d limit. Of course, there are next (subleading) terms in
the expansion of ρy which vanish in comparison with the leading term (68)
for sufficiently large d. The threshold dimension d beyond which (68) de-
scribes adequately the distribution of first (say 3, 4, . . .) zeros can be found
by comparing with numerical data. Since the distance between the nearest-
neighbour zeros along the imaginary axis is proportional to 1/ ln d for large
values of d, the critical zeros collapse into one point on the real axis (with
coordinate ρx = d/2) in the limit d → ∞.

5. Singular expansion around critical edge zeros

In Figs. 1 and 2, we present by open symbols interconnected via solid lines
the numerical results for the critical zeros of the Epstein zeta-function ζ (d)(s),
with the imaginary components ρy smaller than 45 to keep high numerical
accuracy (6-25 decimal digits) of their determination. For a fixed dimension
d, or ρx = d/2, the numerical evaluation of one zero using Mathematica takes
approximately 5 seconds of CPU time on a standard PC.

Fig. 1 concerns small values of dimension d ≤ 4. It is seen that the solid
lines form closed or semi-open curves which enclose disjunctive regions of the
complex plane. There are no critical zeros as ρx = d

2
→ 0, in agreement with

the analysis of the previous section. In the studied interval of ρy-values, there
is always a finite gap between the axis ρx = 0 and the smallest ρx-component
of the critical zeros; an open question is whether the non-zero gap is present
for all critical zeros (with larger values of ρy).

Fig. 2 concerns large values of d, up to d = 50, where the asymptotic
features of the critical zeros begin to occur. The solid curve connecting the
first zeros (with the smallest ρy-coordinate) ends up at d = 9.2455524667456,
but the curve continues reflection-symmetrically across the ρx-axis into the
lower quadrant. This is why the critical zero 1b with the zero ρy-component
is a right edge point. The solid lines of the second and third zeros (as they
appear in the region of small d) proceed up to an infinite dimension. For
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large values of d, the critical zeros are distributed equidistantly along the
imaginary axis, as is predicted by the asymptotic relation (68) (the dashed
lines). The spacing between the nearest-neighbour zeros vanishes as d → ∞.
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Figure 1: Numerical results for the critical Epstein zeros at small dimensions d ≤ 4. The
critical zeros are connected by solid curves, closed or semi-open, which enclose disjunctive
regions of the complex plane. The left and right edge points of the curves are indicated
as 1a, 2a, 3a, 3c, 3e, 4a and 2b, 3b, 3d, 4b, respectively.

From all critical zeros lying on a given curve, the “edge” points, denoted
as ρ∗ = (d∗/2, ρ∗y) with ρ∗y ≡ ρy(d

∗), are the most relevant. They are defined
by the tangent dρy/dd|ρ∗ = ±∞ or, equivalently, dd/dρy|ρ∗ = 0. They satisfy
Eq. (24) for the critical zeros, i.e.,

− d∗
(

d∗

2

)2
+ ρ∗y

2
+

∫ 1

0

dt td
∗/4−1 cos

(

ρ∗y ln t

2

)

[

θd
∗

3

(

e−πt
)

− t−d∗/2
]

= 0, (69)

and simultaneously the derivative of Eq. (24) with respect to ρy, taken with
dd/dρy|ρ∗ = 0,

2ρ∗yd
∗

[

(

d∗

2

)2
+ ρ∗y

2
]2 − 1

2

∫ 1

0

dt td
∗/4−1 sin

(

ρ∗y ln t

2

)

ln t

×
[

θd
∗

3

(

e−πt
)

− t−d∗/2
]

= 0. (70)
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Figure 2: Numerical results for critical Epstein zeros at large dimensions (up to d = 50).
The lowest curve ending up at the edge point 1b corresponds to the prolongation of the
lowest curve in Fig. 1. The solid lines of the second (open circles) and third (open
triangles) zeros (as they appear in the region of small d) go up to d → ∞. The prediction
of zeros following from the asymptotic relation (68) is represented by the dashed lines.

The set of equations (69) and (70) has an infinite number of solutions for
ρ∗ with dimension d∗ being in general non-integer. We have to distinguish
between the “left” edge points, for which d2d/dρ2y|ρ∗ > 0, and the “right” edge
points, for which d2d/dρ2y|ρ∗ < 0. The coordinates and left/right orientation
of edge points in figures 1 and 2 are summarized in Tab. 1.

ρy as the function of d is singular (non-analytic) at the edge points. Let us
consider, say, a left edge point with coordinates (d∗/2, ρy(d

∗)) and study an
infinitesimal deviation from it along the curve of critical zeros ρy(d). Setting

d = d∗ +∆d (0 < ∆d ≪ 1), ρy(d) = ρy(d
∗) + ∆ρy (∆ρy ≪ 1) (71)

in (24) and expanding systematically in powers of small deviations ∆d and
∆ρy, one gets

α∆d+γ(∆ρy)
2−β∆d∆ρy−δ(∆ρy)

3+O
[

(∆d)2
]

+O
[

∆d(∆ρy)
2
]

= 0, (72)
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Table 1: The coordinates and the orientation of the edge points in Figs. 1 and 2.

edge point orientation ρ∗x = d∗/2 ρ∗y
1a left 0.10846187908294 18.06404476224324
1b right 4.62277623337280 0
2a left 0.029260757098957 28.25989865119296
2b right 1.13615655471973 27.06485479190591
3a left 0.076684964492103 36.29956597219118
3b right 0.17608667918405 38.97086173076263
3c left 0.023788974966443 42.00296457563092
3d right 0.69958436750509 42.29187347594789
3e left 0.28286847694364 39.08036320922192
4a left 0.94484709689530 42.43883096807280
4b right 1.87159485174678 42.20920217767993

where the expansion coefficients are given by

α =

(

d∗

2

)2 − ρ∗y
2

[

(

d∗

2

)2
+ ρ∗y

2
]2 +

∫ 1

0

dt t
d∗

4
−1 cos

(

ρ∗y ln t

2

)

×
{

ln t

4

[

θd
∗

3

(

e−πt
)

+ t−d∗/2
]

+ θd
∗

3

(

e−πt
)

ln
[

θ3
(

e−πt
)]

}

, (73)

β = 2ρ∗y
3
(

d∗

2

)2 − ρ∗y
2

[

(

d∗

2

)2
+ ρ∗y

2
]3 +

1

2

∫ 1

0

dt t
d∗

4
−1 sin

(

ρ∗y ln t

2

)

ln t

×
{

ln t

4

[

θd
∗

3

(

e−πt
)

+ t−d∗/2
]

+ θd
∗

3

(

e−πt
)

ln
[

θ3
(

e−πt
)]

}

, (74)

γ = d∗
(

d∗

2

)2 − 3ρ∗y
2

[

(

d∗

2

)2
+ ρ∗y

2
]3 − 1

8

∫ 1

0

dt t
d∗

4
−1 cos

(

ρ∗y ln t

2

)

(ln t)2

×
[

θd
∗

3

(

e−πt
)

− t−d∗/2
]

, (75)

δ = 4d∗ρ∗y

(

d∗

2

)2 − ρ∗y
2

[

(

d∗

2

)2
+ ρ∗y

2
]4 − 1

48

∫ 1

0

dt t
d∗

4
−1 sin

(

ρ∗y ln t

2

)

(ln t)3

×
[

θd
∗

3

(

e−πt
)

− t−d∗/2
]

. (76)

Note that the linear term of order ∆ρy is missing in (72) due to the validity
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of Eq. (70) for the critical edge zeros.
For d > d∗ (∆d > 0), Eq. (72) tells us that the leading order of the

expansion of ∆ρy with respect to ∆d is given by the relation α∆d+γ(∆ρy)
2 =

0, i.e.,

∆ρy ∼ ±
√

−α

γ

√
∆d, (77)

where the prefactor sign ± specifies the up and down branches of the plot
ρy(d). Notice that −α/γ must be a positive number to get a real solution
for ρy(d) and our numerical calculations confirm that for all studied left edge
points it really is so. Singular relations of type (77) with exponent 1

2
occur

also for the order parameter in critical phenomena of statistical systems at
the second-order phase transition within the so-called mean-field approach
[57, 58]. The next order of the expansion of ∆ρy in ∆d follows from Eq. (72)
by considering two additional terms of the order (∆d)3/2. Adding a term
c∆d to the formula for ∆ρy in (77) and expanding all functions up to the
order (∆d)3/2 fixes c as follows 2γc = β − αδ/γ. We conclude that

ρy(d) = ρy(d
∗)±

√

−α

γ

√
d− d∗ +

1

2γ

(

β − αδ

γ

)

(d− d∗)

+O
[

(d− d∗)3/2
]

. (78)

A similar analysis can be made for right edge zeros.

6. Generation of off-critical zeros from critical edge zeros

This section is about a continuous generation of off-critical zeros from the
critical edge zeros.

In the case of the left edge zero, Eq. (72) with −α/γ > 0 has no real
solution for ∆ρy if ∆d = d − d∗ < 0. Let us assume that for ∆d < 0 there
is also a continuous deviation of the ρx-component from its critical value d

2
,

see Eq. (25). Considering then the relations (71) in equations (26) and (27)
and expanding in powers of small variables ∆d, ∆ρx and ∆ρy, one obtains

α∆d− γ(∆ρx)
2 + γ(∆ρy)

2 − β∆d∆ρy + 3δ(∆ρx)
2∆ρy

−δ(∆ρy)
3 + · · · = 0, (79)

∆ρx
[

β∆d− 2γ∆ρy − δ(∆ρx)
2 + 3δ(∆ρy)

2 + · · ·
]

= 0. (80)

As is evident from the first relation (79), setting ∆ρx = 0, ∆ρy, which is
real for ∆d > 0, becomes pure imaginary for ∆d < 0 (in the leading order of
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its expansion in ∆d) which is in contradiction with the definition of ρy as a
real number. However, the term γ(∆ρy)

2 containing the variable ∆ρy has a
counterpart with the opposite sign −γ(∆ρx)

2 containing the variable ∆ρx as
the actual candidate for the leading-order symmetry breaking ∆ρx 6= 0. In
the leading order, the equation α∆d− γ(∆ρx)

2 = 0 implies that

∆ρx ∼ ±
√

−α

γ

√
−∆d, (81)

where the ± sign reflects the split of ∆ρx onto two different branches (see
discussion below). Since ∆ρx 6= 0, the second relation (80) implies that the
leading order is determined for ∆ρy by β∆d− 2γ∆ρy − δ(∆ρx)

2 = 0, i.e.,

∆ρy = − 1

2γ

(

β − αδ

γ

)

(d∗ − d) +O
[

(d∗ − d)3/2
]

, d < d∗. (82)

The next order of the expansion of ∆ρx in −∆d follows from Eq. (79) by
adding a term c(−∆d) to the formula for ∆ρx in (81). The term arising from
(∆ρx)

2, which is proportional to c(−∆d)3/2, has no counterparts since all
additional terms in (79) are of the order (−∆d)2. Consequently, c = 0 and
one gets

∆ρx = ±
√

−α

γ

√
d∗ − d+O

[

(d∗ − d)3/2
]

, d < d∗. (83)

We conclude that the expansion of up and down branches of ρy(d) (78),
valid for d > d∗, splits into the expansion for the left and right branches
(tails) (83) and (82), valid for d < d∗, with similar expansion coefficients.
While the previous two up and down branches of ρy(d) for d > d∗ were
not bound by a symmetry, the positive and negative branches of off-critical
zeros [ρx(d), ρy(d)] for d < d∗ are bound by the symmetry [ρx(d), ρy(d)] →
[d−ρx(d), ρy(d)] which takes place for every deviation from the edge point. A
similar analysis can be made for right edge zeros, to keep the parameter ∆d
negative from the side of off-critical zeros it must be defined as ∆d = d∗− d.

The numerical evaluation of off-critical zeros using Mathematica is rel-
atively simple due to the continuity of tails as d starts to deviate from d∗.
As the function to deal with, one takes the sum of two squares of the lhs of
equations (26) and (27) which should vanish at zeros. The command Find-
Minimum is applied to the function and the zero is taken as guaranteed if
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the function value is of order at most 10−23. To prevent escape from the local
minimum, one starts from (say right) edge point by shifting the dimension
by a tiny amount 0.0001, after few steps the shift can be increased to 0.001
and finally to 0.01. To find a minimum takes approximately 60 seconds of
CPU time on a standard PC.

In what follows, various scenarios are presented how the two conjugate
tails of off-critical zeros behave during their d-evolution.
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Figure 3: The left and right tails of off-critical zeros (full circles) starting from the critical
edge point 1a (d∗ ≈ 0.217). The dimension of off-critical zeros is indicated at a few points.
The tails go down to d = 0 at the points (±2, 4π/ ln 2).

The simplest scenario, presented in Fig. 3, is associated with the left
edge point denoted as 1a in Fig. 1. The critical zeros are represented by
open circles, the left and right tails of off-critical zeros by full circles. The
dimension of off-critical zeros is indicated at a few points. The left and right
tails of off-critical zeros start from d∗ ≈ 0.217 at the edge point 1a and
go down monotonously to d = 0 at points (−2, 4π/ ln 2) and (2, 4π/ ln 2),
respectively. The latter points coincide with the k = 1 zeros (53) found in
d = 0. As is seen in the figure, the end-point of the right tail (2, 4π/ ln 2)
coincides with a critical zero at d = 4.

The test of the expansion formulas (82) and (83) for the right tail gener-
ated from the left edge point 1a is presented in Fig. 4. Our numerical data
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∆ρy (full squares) on the small dimension deviation d∗ − d for the right tail going from
the left edge point 1a. Data fit perfectly with the analytic predictions (84) represented in
logarithmic scale by the dashed straight lines.

for the dependence of ∆ρx and ∆ρy on d∗ − d are represented in logarithmic
scale by full circles and squares, respectively. For small deviations from the
edge point d∗ − d → 0+, the expansion formulas (82) and (83), with the
constants α, β, γ, δ evaluated by using the formulas (73)-(76), lead to

∆ρx ∼ ±4.24563
√
d∗ − d, ∆ρy ∼ 0.344516(d∗ − d). (84)

The log-log plots of these analytic predictions, represented in Fig. 4 by the
dashed straight lines, fit perfectly the corresponding numerical data for the
small deviation d∗ − d ranging from 10−9 to 10−2.

The form of the tails of off-critical zeros is more complicated in the case
of the right edge point 2b (as denoted in Fig. 1), see Fig. 5. Because of the
right orientation of this edge point, dimension d increases along the left (full
circles) and right (full squares) tails from d∗ ≈ 2.272 to ∞. As a check, for
the left tail we recover a special off-critical zero which occurs simultaneously
in dimensions d = 4 and d = 8, see equations (5) and (7), and coincide with
the fourth critical zero of the d = 2 Epstein zeta-function. For the dimension
of special physical interest d = 3, the left tail contains the off-critical zero
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Figure 5: The left (full circles) and right (full squares) tails of off-critical zeros starting
from the critical edge point 2b (d∗ ≈ 2.272). Dimension d increases along the tails up to
∞, only fragments of the tails are shown in the figure.

ρ ≈ 0.111189793551259 + 27.0278811412527548i. It is interesting that the
left tail covers also a tiny interval of negative values of ρx for dimensions
from the interval [4.965, 5.775]. This means that for integer dimension d = 5
there exists a pair of conjugate off-critical zeros with the same imaginary
component, namely ρy ≈ 28.5599914110240345, and the real components
ρx ≈ −0.00717997528701, 5.00717997528701 which lie outside the critical
strip [0, 5]. This phenomenon is usually present in lower dimensions with
critical strips of small width, especially for d between 0 and 1, see Figs. 3
and 6.

Another scenario is presented in Fig. 6 where the two tails of off-critical
zeros (full circles) interpolate between the right edge point 3b (d∗ ≈ 0.352)
and the left edge point 3e (d∗ ≈ 0.566), both points lying on the same curve
of critical zeros (open triangles). Although the interval of dimensions is
relatively narrow, the interval of ρx-values of off-critical zeros is relatively
large and involves also negative values.

In Fig. 7, the two tails of off-critical zeros (full squares) interpolate
between the right edge point 3d (d∗ ≈ 1.399) and the left edge point 4a
(d∗ ≈ 1.890) which lie on different curves of critical zeros (open triangles and
diamonds).

28



-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

38

38.5

39

39.5

40

ρ

ρx

y

0.3530.360.380.44

0.5 0.53 0.545 0.56 0.564 0.565

3b

3e 0.55 0.53

0.4640.40.370.36
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The critical point 1b in Fig. 2 is a right edge point because the curve
continues reflection-symmetrically across the ρx-axis into the lower quadrant.
The position of this point (ρ∗c)x = d∗c/2 can be found by setting ρy = 0 in
(24),

− 4

d∗c
+

∫ 1

0

dt td
∗

c/4−1
[

θ
d∗c
3

(

e−πt
)

− t−d∗c/2
]

= 0. (85)

The numerical solution of this equation is d∗c = 9.24555 . . .. For every d > d∗c ,
there exists a pair of off-critical zeros on the real axis [note that Eq. (27)
holds automatically for ρy = 0] whose conjugate components ρx and d − ρx
satisfy the integral equation

− 1

ρx
− 1

d− ρx
+

∫ 1

0

dt

t

tρx/2 + t(d−ρx)/2

2

[

θd3
(

e−πt
)

− t−d/2
]

= 0. (86)

The two solutions of this equation are lying in the critical strip 0 < ρx <
d, see Fig. 8. This can be explained for integral dimensions d by the
fact that for real ρ > d the Epstein zeta-function is the sum of positive
numbers and therefore cannot vanish. To be more particular, for d = 10
one has the pair of real zeros ρ = 2.17985543147...; 7.82014456853..., for
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(d∗ ≈ 1.399) and the left edge point 4a (d∗ ≈ 1.890), the edge points lying on distinct
curves of critical zeros (open triangles and diamonds).

d = 12 one has ρ = 0.7951625733...; 11.2048374267..., for d = 20 one has
ρ = 0.0127182144...; 19.9872817856..., etc. In the large-d limit, the two solu-
tions tend to the boundaries 0 and d of the critical strip. The quick approach
to 0 of the numerical values of ρx (full circles) is presented in the inset of
Fig. 8.

7. Conclusion

The basic definition of the hypercubic Epstein zeta-function (2) requires
an integer value of the spatial dimension d. The analytic continuation of
the lattice sum to the whole complex s-plane (15) is well defined also for
non-integer values of d. This extension was used to obtain numerically the
closed or semi-open curves ρy(d) of critical zeros (on the critical line), see
figures 1 and 2. Each curve involves a finite number of left/right critical edge
points ρ∗ = (d∗/2, ρy(d

∗)), defined by an infinite tangent dρy/dd|ρ∗ . The
coordinate data in Tab. 1 indicate that the dimension of edge critical points
is in general non-integer. As was shown in section 5, the function ρy(d) is
a singular function of the dimension deviation d − d∗ > 0 (d∗ − d > 0) for
the left (right) edge points. Changing the sign of the dimension deviation
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a few points. The inset describes the quick approach of the numerical values of ρx (full
circles) to zero when increasing dimension d.

to d − d∗ < 0 (d∗ − d < 0) for the left (right) edge points, these edge
points give rise to two conjugate tails of off-critical zeros (off the critical
line) with continuously varying dimension d, in formal analogy with critical
phenomena for many-body statistical systems (section 6). Various versions of
the generation mechanism are presented. Fig. 3 documents the generation
of the left and right tails of off-critical zeros from the left edge point 1a
(d∗ ≈ 0.217), the dimension along the tails goes down to 0 at the off-critical
zeros (±2, 4π/ ln 2). The corresponding log-log plots of numerical data for
∆ρx(d) = ρx(d)− d∗

2
and ∆ρy(d) = ρy(d)−ρy(d

∗) in the case of the right tail,
presented in Fig. 4, are in perfect agreement with the analytic prediction (84)
valid for small dimension deviations d∗−d. The generation of the off-critical
tails from the right edge point 2b, with dimension along tails going up to
infinity, is pictured in Fig. 5. The interpolation of off-critical zeros between
the right edge point 3b and the left edge point 3e, both edge points lying
on the same curve of critical zeros, is presented in Fig. 6. Fig. 7 concerns
an interpolation of off-critical zeros between the right edge point 3d and the
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left edge point 4a, the edge points lying on different curves of critical zeros.
For every d > d∗c ≈ 9.246, there exists a pair of conjugate off-critical zeros
on the real axis, having their origin in the right edge point 1b, see Fig. 8.
As d → ∞, the two zeros tend very quickly to the boundaries 0 and d of the
critical strip.

As a by-product of the formalism, we have derived the exact formula (52)
for limd→0+ ζ (d)(s)/d. This formula tells us that there are no critical zeros in
the limit d → 0+. In the studied interval of ρy-values smaller than 45, there
is always a finite gap between the axis ρx = 0 and the smallest ρx-component
of the critical zeros; a remaining open question is whether a non-zero gap
is present for all critical zeros (with larger values of ρy). The spectrum of
off-critical zeros in the limit d → 0+ was checked to fulfill the obligatory
sum rules. Another check of the spectrum is that off-critical tails generated
from the left edge points end correctly at the d → 0+ off-critical zeros. The
exact treatment of the large-d limit in section 4.2 predicts an equidistant
distribution of the critical zeros along the imaginary axis (68). This result
is confirmed numerically in Fig. 2 where the critical zeros (open circles,
triangles and squares) approach to for sufficiently large d the equidistant
distribution (68) represented by the dashed lines.

Another open question is whether the presented mechanism of generation
of the tails of off-critical zeros from the critical edge points is the only one.
We anticipate that it is so.
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[51] P. Sarnak, A. Strömbergsson, Minima of Epstein’s zeta function and
heights of flat tori, Invent. Math. 165 (2006) 115–151.

[52] S.C. Lim, L.P. Teo, On the minima and convexity of Epstein zeta func-
tion, J. Math. Phys. 49 (2008) 073513.

[53] E. Bombieri, D.A. Hejhal, On the zeros of Epstein zeta-functions, C.R.
Acad. Sci. Paris Sér. I Math. 304 (1987) 213—217.

[54] J. Steuding, On the zero-distribution of Epstein zeta-functions, Math.
Ann. 333 (2005) 689–697.

[55] T. Nakamura, L. Pankowski, On zeros and c-values of Epstein zeta-
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