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Abstract

In this paper we construct a new set of basis functions for the numerical solution of nonhomo-

geneous heat conduction problems with Dirichlet boundary conditions and null initial data. These

functions can be seen as Newtonian potentials of plane waves for the heat equation and satisfy a null

initial condition. Density results for adapted waves will be established and several numerical simula-

tions will be presented in order to discuss the accuracy and feasibility of the proposed method. An

application of the method for heat problems with non null initial temperature will also be discussed.

Key words Heat equation, Meshfree methods, Method of particular solutions, Plane waves method.
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1 Introduction

The heat equation is one of the most studied partial di�erential equation and have many applications in
engineering problems and in some areas of applied mathematics such as mathematical �nance. For the
latter, one of the most well known example is the modelling of pricing problems for a derivative product.
For instance, in the context of European options for the Black-Scholes equation this leads to Cauchy
problems for the heat equation (eg. [26]) and more generally to partial integro-di�erential equation for
the heat equation (eg. [10]) when the underlying dynamics are driven by Lévy processes.

Classical numerical methods for the heat equation include mesh based methods such as the �nite
di�erence method, �nite element method and boundary integral methods like the boundary element
method (BEM). BEM is usually a very e�cient method for homogeneous problems but require domain
integrations for nonhomogeneous problems. This can be circumvent for instance by decomposing the
solution as a sum of a particular solution and a solution of an homogenenous problem (eg. [19]) or by
using the so called radial integration method (eg. [1] and [27]).

Meshfree methods, on the other hand, don't require the construction of a mesh nor integration tech-
niques for improper integrals. Approximations with radial basis functions for the strong formulation of
the problem were implemented in [8] while weak formulations with reproducing kernel methods and local
methods can be found in [9] and [11], respectively. A comparison between meshless methods for both
strong and weak formulations can be found in [22].

Other popular meshfree methods are based on superpositions of fundamental solutions of the di�er-
ential equation governing the BVP (eg. [5]). Since fundamental solutions centred at source points placed

1



in the exterior of the domain satisfy the homogeneous di�erential equation, this method is well suited for
homogeneous BVP problems. For instance in [7], [13], [14], [15] and [16] the authors study such funda-
mental solutions techniques for homogeneous heat BVPs. Finally we mention some hybrid mesh-meshfree
techniques for heat problems. Here we cite the works [6], [17] and [24] where iterative methods combining
�nite di�erences in time with meshfree methods for the spatial variable were analysed and implemented.

In this paper we construct new basis functions for the approximation of nonhomogeneous heat prob-
lems with null initial condition and Dirichlet boundary conditions. These basis functions are globally
de�ned and have the property of satisfy null initial condition. BVPs with null initial condition appear
in inverse source problems but applications of the proposed method go beyond numerics for the heat
equation. In fact, since the heat kernel is the density function of a multivariate normal distribution,
the adapted waves method can also be applied to devise a control variate for the Monte Carlo integra-
tion method with respect to the Gaussian measure (see [25] for variance reduction techniques via basis
functions).

An extension to problems with non null initial conditions is also discussed. Here, we propose a
decomposition of the solution as a sum of a function, up, satisfying both the homogeneous heat equation
and the initial condition and a function, v, solution to a nonhomogeneous problem with null initial
condition. By applying classical separation of variables we show that we can consider an approximation
for up using superposition of basis functions satisfying Helmholtz equations for many frequencies. Here,
well known methods such as the plane waves method (see [2] for such method on manifolds) or the
fundamental solutions for Helmholtz problems depicted in [3] can be applied.

The solution to the second problem, v, is approximated using the adapted waves functions. We justify
this procedure by establishing boundary density results for these functions and present several numerical
simulations to show the e�ectiveness of the method.

The paper is organized as follows: In section 2 we establish some notation and introduce the studied
BVP for the heat equation. Then, in section 3 we discuss the decomposition of the solution that splits the
problem in the computation of up and v. In section 3.1 we introduce the adapted plane waves method and
in 4 we establish the corresponding density results. These results justify both boundary approximation
methods using adapted waves and also approximation for the solution v. In section 5 we present these
two numerical algorithms and in section 6 we show several numerical simulations.

2 Preliminaries for the heat equation

Let Ω ⊂ Rn be a open, bounded simply connected domain with regular boundary Γ = ∂Ω and consider
the parabolic cylinder

ΩT := Ω×]0, T [, T > 0

as the domain of heat propagation. Let
Σ = Γ×]0, T [

and consider the initial value problem for the heat equation with Dirichlet boundary condition

 (∂t −∆x)u(x, t) = f(x, t), (x, t) ∈ ΩT
u(x, 0) = u0(x), x ∈ Ω
u(x, t) = g(x, t), (x, t) ∈ Σ

(1)
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together with the compatibility condition

u0(x) = g(x, 0), x ∈ Γ. (2)

Here, ∆x denotes the Laplace operator in the variable x = (x1, . . . , xn), that is

∆xu = (∂x1,x1
+ . . .+ ∂xn,xn)u.

When u0 belongs to H1(Ω), u0|Γ is a element in the trace space H1/2(Γ) and the above compatibility
condition should be understood in the trace sense.

We suppose that the source term f belongs to the space L2(ΩT ) = L2(0, T, L2(Ω)), that is, for almost
every t ∈ [0, T ] �xed, f(x, t) ∈ L2(Ω) and

||f(•, t)||L2(Ω) ∈ L2(0, T ).

Accordingly to [18] when the initial data u0 ∈ H1(Ω) satis�es the compatibility condition (2) and the
Dirichlet data g is a element in H3/2,3/4(Γ) = L2(0, T,H3/2(Γ))∩H3/4(0, T, L2(Γ)) then (1) is well posed
with solution

u ∈ H2,1(ΩT ) = L2(0, T,H2(Ω)) ∩H1(0, T, L2(Ω)).

Higher regularity results can be obtained when the input data (f, u0, g) is more regular and appropriate
compatibility conditions are considered (eg. [18]).

3 Decomposition of the solution

In order to approximate the solution of the linear problem (1) using a collocation method, we consider a
set of basis functions ϕk and write

u ≈ ũ =

N∑
k=1

αkϕk.

We then compute the coe�cients αk by imposing the following conditions
(∂t −∆x)ũ(x(j), tj) = f(x(j), tj), (x(j), tj) ∈ ΩT
ũ(y(j), 0) = u0(y(j)), y(j) ∈ Ω
ũ(z(j), sj) = g(z(j), sj), (z(j), sj) ∈ Σ

,

in some chosen domain and boundary points (x(j), tj), (z(j), sj).
However, this system may become very large even when considering the heat equation in one or two

dimensional spatial variables. One possibility to circumvent this problem is to consider a decomposition
of the solution of (1) as a sum of two functions that can be approximated with less computational e�ort.
Here, we consider the decomposition

u = up + v

where up is a particular solution for the problem
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{
(∂t −∆x)up(x, t) = 0, (x, t) ∈ ΩT
up(x, 0) = u0(x), x ∈ Ω

(3)

and v is the solution of the following problem with null initial data (∂t −∆x)v(x, t) = f(x, t), (x, t) ∈ ΩT
v(x, 0) = 0, x ∈ Ω
v(x, t) = g(x, t)− up(x, t), (x, t) ∈ Σ

. (4)

Regarding the approximation for a particular solution up we can consider a separation of variables
for up,

up(x, t) = ψ(x)e−tκ
2

where κ is some positive real number. Imposing the homogeneous heat equation (∂t −∆x)up = 0 in ΩT
we arrive at the following Helmholtz problem for ψ,

(∆x + κ2)ψ = 0 in Ω.

If the initial data u0 satis�es the Helmholtz equation for a given wavenumber κ2 then we can take
ψ = u0 and the function

up(x, t) = u0(x)e−tκ
2

satis�es (3). Moreover, let

u0(x) ≈ ũ0(x) =
∑
k

αkψξ(k)(x), ξ(k) = (ξ
(k)
1 , . . . , ξ(k)

n ) ∈ Rn (5)

with coe�cients αk ∈ C computed so that

ũ0(x(k)) = u0(x(k))

on some collocation points x(k) ∈ Ω. If the basis functions ψξ(k) satisfy

(∆x + |ξ(k)|2)ψξ(k) = 0 in Ω

then,
ũp(x, t) =

∑
k

αkψξ(k)(x)e−t|ξ
(k)|2

satis�es the homogeneous heat equation in ΩT and

ũp(x, 0) = ũ0(x) ≈ u0(x).

Hence, we can consider ũp as an approximation for a function satisfying (3).
For instance, we can consider the approximation (5) using plane waves basis functions

ψξ(y) = eiy·ξ, y ∈ Rn, ξ ∈ Rn

and take ξ(k) in a ball B(0, R) = {ξ ∈ Rn : |ξ| < R} or we can also consider an approximation for u0 in
terms of fundamental solutions for the Helmholtz equations in non-resonance frequencies. These are well
known methods that can be found in the literature (eg. [3]) and henceforth we shall only address the
numerical solution for the heat equation with null initial data, meaning that we shall consider (4) with
up ≡ 0.
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3.1 Adapted Plane Waves method

In this section we propose a method for the solution of (4) relying on functions with prescribed null initial
condition. The main ideia is to construct basis functions ϕ, that, for some given ψ, satisfy the Cauchy
problem {

(∂t −∆x)ϕ(x, t) = ψ(x, t), (x, t) ∈ Rn × R+

ϕ(x, 0) = 0, x ∈ Rn . (6)

Formally, such function ϕ can be given by

ϕ(x, t) =

∫ t

0

∫
Rn
ψ(y, s)Φ(x− y, t− s)dyds (7)

where

Φ(x, t) =

{
(4πt)−

n
2 e−

|x|2
4t , t > 0

0, t < 0

is a fundamental solution for the heat equation (eg. [12]). For some density functions ψ, this convolution
can be explicitly computed. Let ξ ∈ Rn+1 and de�ne the complex valued function

z(ξ) = ξ2
1 + . . .+ ξ2

n + ξn+1i.

Given plane waves
ψξ(x, t) = ei(x,t)·ξ (8)

with (x, t) ∈ Rn × R de�ne

ϕξ(x, t) =
1

z(ξ)
ψξ(x, t)(1− e−tz(ξ)), ξ 6= 0. (9)

Clearly ϕξ(x, 0) = 0 and we have

∆xϕξ(x, t) = −(ξ2
1 + . . .+ ξ2

n)ϕξ(x, t),

∂tϕξ(x, t) = iξn+1ϕξ(x, t) +
z(ξ)

|z(ξ)|2
ψξ(x, t)z(ξ)e

−tz(ξ)

therefore

(∂t −∆x)ϕξ(x, t) = z(ξ)ϕξ(x, t) + ψξ(x, t)e
−tz(ξ) = ψξ(x, t)

and ϕξ satis�es (6) for the source term ψξ. We call the function ϕξ an adapted wave function. In Figure
1 we plot a two dimensional adapted plane wave function.

Remark 3.1. When ψ0 ≡ 1 the corresponding adapted function is

ϕ0(x, t) = t.

This can be seen by a direct computation or by taking the limit

ϕξ(x, t) = ψξ(x, t)
1− e−tz(ξ)

z(ξ)
→
ξ→0

ψ0(x, t)t = t.
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Figure 1: Left: Real part of the two dimensional adapted wave function ϕ(1,1). Right - Imaginary part
of the same function.

Remark 3.2. When tz(ξ) ≈ 0, the computational evaluation of 1 − e−tz(ξ) is a�ected by subtractive
cancellation. Hence, for computational purposes, we should consider instead a truncation of

ϕξ(x, t) = ψξ(x, t)

∞∑
k=1

z(ξ)k−1

k!
tk. (10)

Remark 3.3. There are several choices for pairs (ϕξ, ψξ). For instance, if we consider Laplace functions,

ψiξ(x, t) = e−(x,t)·ξ

then the pair (ϕiξ, ψiξ) satis�es (6).
Moreover, for fundamental solutions Φ(x − y, t), the corresponding adapted function is tΦ(x − y, t)

since {
(∂t −∆x)tΦ(x− y, t) = Φ(x− y, t)
tΦ(x− y, t)|t=0 = 0

.

Remark 3.4. For the heat equation with di�usion coe�cient α > 0, the adapted wave function is

ϕαξ (x, t) =
1

zα(ξ)
ψξ(x, t)(1− e−tzα(ξ))

with
zα(ξ) = α(ξ2

1 + . . .+ ξ2
n) + ξn+1i,

meaning that the pair (ϕαξ , ψξ) satis�es{
(∂t − α∆x)ϕαξ (x, t) = ψξ(x, t)

ϕαξ (x, 0) = 0

with ψξ a plane wave de�ned by (8).
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4 Main results for the adapted waves method

In this section we establish some density results. We start with the following density result on the whole
domain of propagation ΩT .

Lemma 4.1. The set of functions de�ned by (8),

{ψξ|ΩT : ξ ∈ O} ,

where O ⊂ Rn+1 is open, spans a dense subspace in L2(ΩT ).

Proof. Let f ∈ L2(ΩT ) such that∫ T

0

∫
Ω

f(x, t)ψξ(x, t)dxdt = 0, ∀ξ ∈ O.

Denote by f̃ ∈ L2(Rn+1) the extension of f by zero to the whole space Rn+1. Then

0 =

∫ T

0

∫
Ω

f(x, t)ψξ(x, t)dxdt = F(f̃)((−2π)−1ξ) = 0, ∀ξ ∈ O. (11)

On the other hand, since f̃ has compact support, the Fourier transform of f̃ , F(f̃), is analytic. Hence,
by uniqueness of analytic continuation, condition (11) implies F(f̃)(ξ) = 0 in the whole Cn+1 (eg. [4])
hence f̃ = 0 and f = 0 follows.

Remark 4.2. For a compactly supported function f̃ ∈ L2(Rn+1), the two-sided Laplace transform
L(f̃)(ξ) = F(f̃)(iξ) is also analytic. Hence, when

L(f̃)(ξ) = 0, ξ ∈ O

then F(f̃) = 0 in the whole complex space Cn+1. In particular, from above lemma, f = 0 and we also
have a density result for Laplace basis functions

ψiξ(y) = e−y·ξ, y = (x, t) ∈ ΩT , ξ ∈ O.

We now establish boundary density results for the adapted waves.
Let Õ be some open bounded domain such that Õ ⊂ Rn \ {0}, ξ̃ = (ξ̃1, . . . , ξ̃n) ∈ Õ and de�ne the

linear bounded operator

A : L2(Õ)→ L2(0, T, L2(Γ)), f 7→ A(f)(x, t) =

∫
Õ

ϕξ(x, t)f(ξ̃)dξ̃, (x, t) ∈ Σ, ξ = (ξ̃1, . . . , ξ̃n, 0) ∈ Rn+1.

with kernel ϕξ de�ned by (9). We start by computing the adjoint of A.

Lemma 4.3. The adjoint of A is the operator A∗ : L2(0, T, L2(Γ))→ L2(Õ),

g 7→ A∗(g)(ξ̃) =

∫ T

0

∫
Γ

ϕξ(x, t)g(x, t)dSxdt =

∫ T

0

∫
Γ

ϕ−ξ(x, t)g(x, t)dSxdt.

7



Proof. We have, by Fubini's theorem,

〈A(f), g〉L2(0,T,L2(Γ))×L2(0,T,L2(Γ)) =

∫ T

0

∫
Γ

(∫
Õ

ϕξ(x, t)f(ξ̃)dξ̃

)
g(x, t)dSxdt

=

∫
Õ

f(ξ̃)

(∫ T

0

∫
Γ

ϕξ(x, t)g(x, t)dSxdt

)
dξ̃

=

∫
Õ

f(ξ̃)

(∫ T

0

∫
Γ

ϕξ(x, t)g(x, t)dSxdt

)
dξ̃

=

〈
f,

∫ T

0

∫
Γ

ϕ•(x, t)g(x, t)dSxdt

〉
L2(Õ)

.

Theorem 4.4. Let Õ be the annulus Õ = Br2(0) \ Br1(0) ⊂ Rn, with 0 < r1 < r2 and suppose that for
any ξ̃ ∈ Õ, |ξ̃| is not an eigenfrequency for the Laplace�Dirichlet problem in Ω. Then, the operator A∗ is
injective and in particular A has dense range in L2(0, T, L2(Γ)).

Proof. The condition that |ξ̃| is not an eigenfrequency for the Laplace-Dirichlet problem in Ω means that
if u solves {

(∆ + |ξ̃|)u = 0 in Ω
u = 0 on Γ = ∂Ω

then u = 0.
We claim that for g ∈ L2(0, T, L2(Γ)) such that

A∗(g)(ξ̃) =

∫ T

0

∫
Γ

ϕξ(x, t)g(x, t)dSxdt = 0, ∀ξ̃ ∈ Õ (12)

we must have g = 0. Applying Fubini's theorem to the integral in (12) gives

0 =

∫ T

0

∫
Γ

ϕξ(x, t)g(x, t)dSxdt =

∫
Γ

∫ T

0

ϕξ(x, t)g(x, t)dtdSx

=

∫
Γ

(
ψξ(x, 0)

∫ T

0

(1− e−t|ξ̃|
2

)g(x, t)dt

)
dSx.

On the other hand, for any ξ̃ in ∂Br(0), r ∈]r1, r2[ the above equation can be written as∫
Γ

(
eirx·d

∫ T

0

(1− e−tr
2

)g(x, t)dt

)
dSx = 0, ∀d ∈ Rn : |d| = 1. (13)

Since the set of plane waves {
erix·d|x∈Γ : |d| = 1

}

8



spans a dense subspace in L2(Γ) when r is not an eigenfrequency for the Laplace�Dirichlet problem in Ω
(eg. [23]) then, from (13), follows ∣∣∣∣∣

∣∣∣∣∣
∫ T

0

(1− e−tr
2

)g(•, t)dt

∣∣∣∣∣
∣∣∣∣∣
L2(Γ)

= 0.

Hence ∫ T

0

e−tr
2

g(x, t)dt =

∫ T

0

g(x, t)dt

for almost every x ∈ Γ and this equation can be written as

L(g̃(x, •))(r2) =

∫ T

0

g(x, t)dt, (14)

where g̃(x, t) is the extension of g(x, t) by zero, to the whole R. Since r belongs to an open interval and
the right hand side of (14) is (for �xed x) a constant then by analytic continuation the above identity
holds in C and in particular, taking the inverse Fourier transform,

g̃(x, t) =

∫ T

0

g(x, s)dsδ(t), (15)

where δ is the Dirac delta distribution centered at the origin. However, g̃(x, •) ∈ L2(R) hence (15) implies∫ T
0
g(x, s)ds = 0. We now conclude from (14) that

L(g̃(x, •))(s) = 0, ∀s ∈ C

and the claim follows from remark 4.2.

Remark 4.5. We emphasize that for this boundary density result we are considering source points in a n
dimensional space contained in the plane xn+1 = 0. Note also that the heat source term is approximated
using source points in Rn+1. This is important when dealing only with the approximation for boundary
data because in such situation we obtain a dimensional reduction for the source space.

5 Numerical Algorithms

Our density results lead to two algorithms. One for the approximation of boundary functions using
adapted waves (Algorithm 1) and the second for nonhomogeneous heat problem with null initial condition
(4) (Algorithm 2).

Algorithm 1 (Boundary data approximation with adapted waves)

1. Consider collocation points (x(j), tj) = (x
(j)
1 , . . . , x

(j)
n , tj), j = 1, . . . , N on Γ× [0, T ]

2. Consider source points ξ(k) = (ξ̃
(k)
1 , . . . , ξ̃

(k)
n , 0), k = 1, . . . , M

3. De�ne the approximation g̃(x, t) =
∑M
k=1 αkϕξ(k)(x, t) to the Dirichlet data g ∈ L2(0, T, L2(Γ))

4. Compute the coe�cients αk by solving the linear system g̃(x(j), tj) = g(x(j), tj).
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Algorithm 2 (approximation with adapted waves for problem (4))

1. Consider boundary collocation points (x
(j)
Γ , tj) = (x

(j)
1Γ , . . . , x

(j)
nΓ, tj), j = 1, . . . , N1 on Γ × [0, T ]

and vonsider domain collocation points (x
(j)
Ω , tj) = (x

(j)
1Ω, . . . , x

(j)
nΩ, tj), j = 1, . . . , N2 in the domain

Ω×]0, T [

2. Consider source points ξ(k) = (ξ
(k)
1 , . . . , ξ

(k)
n , ξ

(k)
n+1), k = 1, . . . , M in some open set O ⊂ Rn+1.

3. De�ne the approximation ṽ(x, t) =
∑M
k=1 βkϕξ(k)(x, t) to the solution (4).

4. Compute the coe�cients βk by solving the linear system{
(∂t −∆x)ṽ(x

(j)
Ω , tj) =

∑M
k=1 βkψξ(k)(x

(j)
Ω , tj) = f(x

(j)
Ω , tj)

ṽ(x
(j)
Γ , tj) = g(x

(j)
Γ , tj)− up(x(j)

Γ , tj)

Note that for long-time simulations (eg. [20] and [21]) both methods will lead to very large systems
of equations because we are considering time direction as an additional space dimension. In this case,
we should perform �rst a time transformation t 7→ τ(t) = t

T : [0, T ] → [0, 1] which will lead to a heat
equation in variables (x, τ) with di�usion coe�cient T > 0 for which the adapted waves discussed in
Remark 3.4 can be applied.

6 Experimental results

In this section we present several numerical examples for the proposed algorithms. We start with algo-
rithm 1 for one dimensional problems.

Example 1

We present a numerical simulation to illustrate algorithm 1 for the boundary data{
u(0, t) = −t2 sin(3π(t− 0.4))
u(1, t) = log(t2 + 1) cos(πt)

, t ∈ [0, 1]

We consider 1500 uniformly distributed sources ξ̃j ∈ O =] − 20, 20[. In order to reduce oscillations
near t = 0 we consider 1000 uniformly distributed collocation points on {0}× [0, 0.5] and 100 collocation
points on {0}×]0.5, 1]. The same strategy was applied for collocation points on {1} × [0, 1]. Figure 2
shows the absolute boundary error. Additionally we computed the RMS error

RMSΓ =

√∑2000
j=1 |g̃(0, tj)− u(0, tj)|2 + |g̃(1, tj)− u(1, tj)|2

4000

on some uniformly distributed points tj ∈ [0, 1]. The computed RMS error for this example was 3.9×10−7.
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Figure 2: On the top: absolute error |g̃(0, t) − u(0, t)| for the boundary approximation. On the bottom
the same but for |g̃(1, t)− u(1, t)|.

Example 2

Here we consider the numerical approximation for the heat conduction problem (1) applying algorithm
2. The domain of propagation is the unit square ΩT =]0, 1[2 and the solution is

u(x, t) = t sech(x3 + t2),

meaning that f = (∂t−∆x)u, g0(t) = u(0, t) = t sech(t2), g1(t) = u(1, t) = t sech(1 + t2) and u(x, 0) = 0.
1500 source points uniformly distributed over ]− 20, 20[2 were considered whilst the domain collocation
points were 1680. In order to avoid instabilities near the boundary, these points were uniformly distributed
in the domain [−0.3, 1.3]2. On the boundary, we choose 240 uniformly distributed collocation point. This
means that the total number of collocation points is 1920. Figure 3 shows the absolute error for the
approximation.

Figure 3: Domain error |ṽ(x, t)− u(x, t)|.

11



We also compute the RMS error

RMSΩ =

√∑10200
j=1 |ṽ(x(j), tj)− u(x(j), tj)|2

10200
.

The computed error for this example was 9.9× 10−11.

Example 3

In this example we present numerical results for algorithm 1 on three dimensional surfaces. The surface
here considered is the cylindrical surface

Σ = ∂B(0, 1)×
]
0,

1

2

[
=
{
x ∈ R2 : |x| = 1

}
×
]
0,

1

2

[
and the function to be approximated is

g(x, t) = sin(t)
√
x2

1 + cos(x2) + t, (x, t) ∈ Σ.

We considered 2000 collocation points on the surface ∂B(0, 1) × [0, 0.8] and several sets of source
points ξ̃ (see Figure 4, left and right plots, respectively).

Figure 4: Distribution of boundary collocation points (left plot) and source points ξ̃ (right plot).

First, we took 1000 source points uniformly distributed in the square [−10, 10]2. Computational time
for this method was 13 seconds.

However, oscillations near t = 0 due to subtractive cancellation yields poor reconstruction results
as we can see in Figure 5, left plot. Instead, we now consider adapted waves as in (10), with series
truncation at the 7th term. The corresponding results are now much better (see Figure 5, right plot)
with an increase of 2 seconds in computational time.

We now test the variation of the RMS error with respect to the number of sources and frequency
values, |ξ̃|2. The results, using the same truncated waves, are presented in Table 1. As we can see in this
table increasing the number of sources and frequencies does not provide better RMS values.
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Figure 5: Absolute error for |g̃(cos θ, sin θ, t)− g(cos θ, sin θ, t)| using adapted waves (left plot) and series
representation (10), truncated at the 7th term.

number of source points 500 1000 1500 2000
RMS error 2.2× 10−7 1.1× 10−7 1.8× 10−6 3.0× 10−6

Table 1: RMS error for the approximation of g, using adapted waves truncated at the 7th term. Second
and third columns are for sources ξ ∈ [−5, 5]2. Last columns are for ξ ∈ [−10, 10]2.

Finally, we show the evolution of the RMS error as a function of the number of terms in the truncation
of series (10). For this example we obtained decreasing error up to 7 terms (see Figure 6). When
considering 9 terms we obtained a slight error increase. This is due to an increase sensitivity of higher
order terms with respect to perturbations in the coe�cients.

Example 4

In this example we present some simulations for a two dimensional problem in a domain with non smooth
boundary.

The domain of propagation is ΩT = Ω×
]
0, 1

2

[
with

Ω = B1
1(0) =

{
x ∈ R2 : |x1|+ |x2| < 1

}
.

The heat source and initial condition are both null and the Dirichlet boundary data is (see Figure 7)

g(x, t) = 10(1− cos(t)) sin(x3
1x2), x ∈ Γ = ∂Ω, t ∈

[
0,

1

2

]
.

We parametrize the non smooth surface Γ× [0, 1
2 ] by

r(s, t) =

{
(1 + 2s,−1 + |1 + 2s|, t) (s, t) ∈ [−1, 0]× [0, 1

2 ]
(2s− 1, 1− |2s− 1|, t) (s, t) ∈ [0, 1]× [0, 1

2 ]
.

First we to apply algorithm 1 just for the approximation of g. We considered 2000 collocation points
(see Figure 8) and 1000 uniformly distributed sources in [−5, 5]2.

We obtained a maximum absolute error of the order 4 × 10−6 and the corresponding error plot is
presented in Figure 9. The computed RMS error was 10−7.
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Figure 6: RMS error as a function of the number of truncation terms in (10). Here we considered 500
uniformly distributed points in [−5, 5]2.
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Figure 7: Plot of the function g(r(s, t)), (s, t) ∈ [−1, 1]× [0, 1
2 ].

Figure 8: Distribution of collocation points over Σ.
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Figure 9: Absolute error on the surface Γ×
[
0, 1

2

]
.

We now apply algorithm 2 in order to approximate the solution of the heat problem. A total number
of 3500 collocation points on the domain ΩT and surface Σ were considered. The number of source points
were 1000, placed in the cube [−5, 5]3.

In this setting, the RMS boundary error increases to 10−3. For the approximation of the source term
we obtained similar error values. We show the absolute error plot at time t = 1

2 in Figure 10.

7 Conclusions

We presented a collocation method with new basis functions for heat conduction problems. The main
advantage of this method is that the basis functions satisfy null initial condition and can be linearly
combined to obtain an approximation for both source and boundary data. We established density results
regarding these functions and two related methods were proposed and tested: one for the approximation
of the Dirichlet data and the other for the whole heat problem. Overall we obtained good numerical
results.
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Figure 10: Absolute error for the approximation of f at t = 1
2 .
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