Express the number of spanning trees in term of degrees*

Fengming Dong ${ }^{\dagger}$
National Institute of Education, Nanyang Technological University, Singapore
Jun Ge^{\ddagger}
School of Mathematical Sciences, Sichuan Normal University, Chengdu, P. R. China
Zhangdong Ouyang ${ }^{\S}$
Department of Mathematics, Hunan First Normal University, Changsha, P.R. China

Abstract

It is well-known that the number of spanning trees, denoted by $\tau(G)$, in a connected multi-graph G can be calculated by the Matrix-Tree Theorem and Tutte's deletioncontraction formula. In this short note, we find an alternate method to compute $\tau(G)$ by degrees of vertices.

Keywords: spanning tree; degree; graph polynomial
Mathematics Subject Classification (2010): 05C30, 05C05

1 Introduction

In this article, we consider loopless and undirected multi-graphs. For a graph G, let $V(G), E(G)$ and $\mathcal{T}(G)$ be the set of vertices, the set of edges and the set of spanning trees in G respectively, and let $\tau(G)=|\mathcal{T}(G)|$. For any $u \in V(G)$, let $E_{G}(u)$ (or simply $E(u)$) denote the set of edges in G that are incident with u, and let $d_{G}(u)$ (or simply $d(u)$) be the degree of u in G, i.e., $d_{G}(u)=\left|E_{G}(u)\right|$. For any $S \subseteq V(G)$, if $S \neq \emptyset$, let $G[S]$ be the subgraph of G induced by S, and if $S \neq V$, let $G-S=G[V \backslash S]$.

The study of spanning trees plays an important role in graph theory. The number of spanning trees $\tau(G)$ is a key parameter in Tutte polynomials, and it has a close relation with some other parameters. Given a multi-graph $G, \tau(G)=0$ if and only if G is

[^0]disconnected. When G is connected, $\tau(G)$ can be computed by some different methods, such as Kirchhoff's Matrix-Tree Theorem [8, 9, Tutte's deletion-contraction formula [13, etc. In some special cases, $\tau(G)$ can be computed directly by explicit formulas. The most famous one is Cayley's formula, i.e., $\tau\left(K_{n}\right)=n^{n-2}$ for complete graphs [2]. This formula has been extended to $\tau\left(K_{n_{1}, n_{2}, \cdots, n_{k}}\right)=n^{k-2} \prod_{i=1}^{k}\left(n-n_{i}\right)^{n_{i}-1}$ for any complete k-particle graph $K_{n_{1}, n_{2}, \cdots, n_{k}}$, where $n=n_{1}+n_{2}+\cdots+n_{k}$ [1]. It is also known that $\tau\left(Q_{n}\right)=2^{2^{n}-n-1} \prod_{k=2}^{n} k^{\binom{n}{k}}$ for the n-dimensional hypercube graph Q_{n} [7]. For the line graph $G=L(H)$ of an arbitrary connected graph H, a relation between $\tau(G)$ and spanning trees in H was also established [3]. More works on $\tau(G)$ can be found in [5, 6, 10, 11, 15].

In the following is an upper bounds for $\tau(G)$ due to Thomassen [12].
Theorem 1 ([12]). Let $G=(V, E)$ be a multi-graph and u be any vertex in G. Then

$$
\tau(G) \leq \prod_{v \in V-\{u\}} d(v) .
$$

For any multi-graph G and any vertex u in G, let $\mathcal{N S T}_{u}(G)$ be the set of non-spanning subtrees T of G such that $u \in V(T)$ and $G-V(T)$ has no isolated vertices. In this article, we find the following formula expressing $\tau(G)$ in terms of degrees. It shows how far is Thomassen's upper bound from $\tau(G)$ exactly.

Theorem 2. For a multi-graph $G=(V, E)$ and a vertex u in G,

$$
\begin{equation*}
\tau(G)=\prod_{v \in V-\{u\}} d(v)-\sum_{T \in \mathcal{N S} \mathcal{T} \mathcal{T}_{u}(G)} \prod_{v \in V-V(T)} d_{G-V(T)}(v) . \tag{1}
\end{equation*}
$$

Theorem 2 can be proved by some different approaches. In this note, we shall prove Theorem 3 in Section 3 from which Theorem 2 follows directly. In Section 2, we introduce a polynomial $F(G, \omega)$ of a graph G by assigning a variable y_{i} to each edge e_{i} in G. This polynomial will be applied in Section 3 for proving Theorem 3 by a method inspired by Wang algebra [4, 14]. In Section[4, we apply Theorem[2]to compute $\tau(G)$ for some graphs.

2 A polynomial $F(G, \omega)$

For any positive integer n, let $[n]=\{1,2, \cdots, n\}$. Let $G=(V, E)$ be a loopless and connected multi-graph with $V=\left\{v_{i}: i \in[n]\right\}$ and $E=\left\{e_{j}: j \in[m]\right\}$. Assume that ω is a weight function on $E(G)$ defined by $\omega\left(e_{j}\right)=y_{j}$ for each $j \in[m]$, where $y_{1}, y_{2}, \cdots, y_{m}$ are considered as indeterminates. Define a polynomial $F(G, \omega)$ as follows:

$$
\begin{equation*}
F(G, \omega)=\prod_{i \in[n]} \sum_{e_{j} \in E\left(v_{i}\right)} \omega\left(e_{j}\right)=\prod_{i \in[n]} \sum_{e_{j} \in E\left(v_{i}\right)} y_{j}, \quad \text { when } V \neq \emptyset ; \tag{2}
\end{equation*}
$$

[^1]and $F(G, \omega)=1$ when $V=\emptyset$. Clearly, $F(G, \omega)=0$ whenever $d\left(v_{i}\right)=0$ for some $v_{i} \in V$. If $y_{i}=1$ for all $i \in[m]$, then $F(G, \omega)=\prod_{1 \leq i \leq n} d_{G}\left(v_{i}\right)$.

The expansion of $F(G, \omega)$ can be applied to study some structures of G, such as the minimum edge coverings, maximum matchings, perfect matchings, and spanning trees, and hence the edge covering number $\rho(G)$, the matching number $\nu(G)$ and the number of spanning trees $\tau(G)$. Let $\mathscr{F}(G, \omega)$ denote the set of terms in the expansion of $F(G, \omega)$. Note that each term in $\mathscr{F}(G, \omega)$ is in the form $y_{i_{1}}^{2} y_{i_{2}}^{2} \cdots y_{i_{r}}^{2} y_{j_{1}} \cdots y_{j_{k}}$, where $k+2 r=$ n and $i_{1}, i_{2}, \cdots, i_{r}, j_{1}, \cdots, j_{k}$ are pairwise distinct. Each term $y_{i_{1}}^{2} y_{i_{2}}^{2} \cdots y_{i_{r}}^{2} y_{j_{1}} \cdots y_{j_{k}}$ in $\mathscr{F}(G, \omega)$ corresponds to an edge cover $\left\{e_{i_{1}}, e_{i_{2}}, \cdots, e_{i_{r}}\right\} \cup\left\{e_{j_{1}}, e_{j_{2}}, \cdots, e_{j_{k}}\right\}$ of G, where $\left\{e_{i_{1}}, e_{i_{2}}, \cdots, e_{i_{r}}\right\}$ is a matching of G. In particular, if $y_{i_{1}}^{2} y_{i_{2}}^{2} \cdots y_{i_{r}}^{2}$ is a term in $\mathscr{F}(G, \omega)$, then $n=2 r$ and it corresponds to a perfect matching $\left\{e_{i_{1}}, e_{i_{2}}, \cdots, e_{i_{r}}\right\}$ of G. Thus, $\rho(G)$ is the minimum value of $k+r$ among all terms $y_{i_{1}}^{2} y_{i_{2}}^{2} \cdots y_{i_{r}}^{2} y_{j_{1}} \cdots y_{j_{k}}$ in $\mathscr{F}(G, \omega)$, and $\nu(G)$ is the maximum value of r among all terms $y_{i_{1}}^{2} y_{i_{2}}^{2} \cdots y_{i_{r}}^{2} y_{j_{1}} \cdots y_{j_{k}}$ in $\mathscr{F}(G, \omega)$.

Figure 1: A multi-graph

For example, if G is the multi-graph in Figure [1, then

$$
\begin{equation*}
F(G, \omega)=\left(y_{1}+y_{3}+y_{4}+y_{6}\right)\left(y_{1}+y_{2}\right)\left(y_{2}+y_{3}+y_{4}+y_{5}\right)\left(y_{5}+y_{6}\right), \tag{3}
\end{equation*}
$$

and the expansion of $F(G, \omega)$ contains terms $y_{1}^{2} y_{5}^{2}$ and $y_{2}^{2} y_{6}^{2}$, which correspond to the two perfect matchings in $G: M_{1}=\left\{e_{1}, e_{5}\right\}$ and $M_{2}=\left\{e_{2}, e_{6}\right\}$.

In the next section, we shall apply $F(G, \omega)$ to study $\tau(G)$.

3 An identity associated with spanning trees

In this section, we assume that $G=(V, E)$ is a loopless connected multi-graph, where $V=\left\{v_{i}: i \in[n]\right\}, n \geq 2$, and $E=\left\{e_{j}: j \in[m]\right\}$. Let ω be a weight function on E.

We first establish two lemmas which will be applied to prove the main result in this section.

Let \vec{G} denote the digraph obtained from G by replacing each edge e_{i} in G by two arcs which are incident the same pair of ends of e_{i} and have opposite directions. Assume that the weight function ω is extended to the arc set $A(\vec{G})$ such that $\omega(a)=\omega\left(e_{i}\right)$ for each $a \in A(\vec{G})$ if a is obtained from e_{i} by assigning a direction.

For a digraph D and a vertex v in D, let $i d_{D}(v)$ denote the in-degree of v in D. If $i d_{D}(v)=0$, then v is called a source of D.

Let \mathbb{D}^{*} denote the family of spanning subdigraphs D of \vec{G} with $i d_{D}\left(v_{n}\right)=0$ and $i d_{D}\left(v_{i}\right)=1$ for each $i \in[n-1]$.

For any subdigraph D of \vec{G}, let $\omega(D)=\prod_{a \in A(D)} \omega(a)$ if $A(D) \neq \emptyset$ and $\omega(D)=1$ otherwise.

Lemma 1. Let $G=(V, E)$ be a loopless connected multi-graph, where $V=\left\{v_{i}: i \in[n]\right\}$, $n \geq 2$ and $E=\left\{e_{j}: j \in[m]\right\}$, and let ω be a weight function on E. The following holds:

$$
\begin{equation*}
\prod_{i=1}^{n-1} \sum_{e_{j} \in E\left(v_{i}\right)} \omega\left(e_{j}\right)=\sum_{D \in \mathbb{D}^{*}} \omega(D) . \tag{4}
\end{equation*}
$$

Proof. Let Π be the set of mappings $\pi:[n-1] \rightarrow[m]$ such that $e_{\pi(i)} \in E\left(v_{i}\right)$ for each $i \in[n-1]$. Observe that

$$
\begin{equation*}
\prod_{i=1}^{n-1} \sum_{e_{j} \in E\left(v_{i}\right)} \omega\left(e_{j}\right)=\sum_{\pi \in \Pi} \prod_{1 \leq i \leq n-1} \omega\left(e_{\pi(i)}\right) \tag{5}
\end{equation*}
$$

For any $\pi \in \Pi$, $\left(e_{\pi(1)}, e_{\pi(2)}, \cdots, e_{\pi(n-1)}\right)$ is a list of $n-1$ edges in G, where each edge $e_{\pi(i)}$ is incident to v_{i}. Let $f(\pi)$ denote the spanning subdigraph D of \vec{G} that can be obtained by converting each edge $e_{\pi(i)}$ into an arc with v_{i} as its head. Observe that $f(\pi)$ is a digraph in \mathbb{D}^{*} and, if $D=f(\pi)$, then

$$
\begin{equation*}
\prod_{1 \leq i \leq n-1} \omega\left(e_{\pi(i)}\right)=\prod_{a \in A(D)} \omega(a)=\omega(D) . \tag{6}
\end{equation*}
$$

It is obvious that f is a bijection from Π to \mathbb{D}^{*}. Thus, (4) follows from (5) and (6) and the lemma holds.

For any $U \subseteq V$ with $U \neq \emptyset$, let $\mathbb{D}[U]$ denote the family of subdigraphs D of \vec{G} with vertex set U and $i d_{D}\left(v_{i}\right)=1$ for each $v_{i} \in U$. Note that $\mathbb{D}[V]$ is different from \mathbb{D}^{*}, although both are spanning subdigraphs of \vec{G}. The following lemma can be proved similarly.

Lemma 2. Let $G=(V, E)$ be a loopless connected multi-graph, where $V=\left\{v_{i}: i \in[n]\right\}$, $n \geq 2$ and $E=\left\{e_{j}: j \in[m]\right\}$, and let ω be a weight function on E. For any $U \subseteq V(G)$ with $U \neq \emptyset$,

$$
\begin{equation*}
F(G[U], \omega)=\sum_{D \in \mathbb{D}[U]} \omega(D) . \tag{7}
\end{equation*}
$$

Recall that $\mathcal{T}(G)$ is the set of spanning trees in G. For any $T \in \mathcal{T}(G)$, let $\tau(T, \omega)=1$ when $|V(G)|=1$, and let

$$
\begin{equation*}
\tau(T, \omega)=\prod_{e_{i} \in E(T)} \omega\left(e_{i}\right), \quad \text { when }|V(G)| \geq 2 . \tag{8}
\end{equation*}
$$

Now we define another function $\tau(G, \omega)$:

$$
\begin{equation*}
\tau(G, \omega)=\sum_{T \in \mathcal{T}(G)} \tau(T, \omega) . \tag{9}
\end{equation*}
$$

Thus $\tau(G, \omega)=0$ whenever $\mathcal{T}(G)=\emptyset$ (i.e., G is disconnected). Clearly, when G is connected, every term in the expansion of $\tau(G, \omega)$ corresponds to a spanning tree in G, and $\tau(G, \omega)=\tau(G)$ whenever $\omega\left(e_{j}\right)=1$ for all $j \in[m]$.

Recall that for any $u \in V(G), \mathcal{N S T}_{u}(G)$ denotes the set of non-spanning subtrees T of G such that $u \in V(T)$ and $G-V(T)$ has no isolated vertices. We are now going to prove the following identity on $\tau(G, \omega)$ from which Theorem 2 follows directly.

Theorem 3. Let $G=(V, E)$ be a loopless connected multi-graph, where $V=\left\{v_{i}: i \in[n]\right\}$, $n \geq 2$ and $E=\left\{e_{j}: j \in[m]\right\}$. Assume that ω is a weight function on E. Then,

$$
\begin{equation*}
\prod_{i=1}^{n-1} \sum_{e_{j} \in E_{G}\left(v_{i}\right)} \omega\left(e_{j}\right)=\tau(G, \omega)+\sum_{T_{0} \in \mathcal{N S} \mathcal{S}_{v_{n}}(G)} \tau\left(T_{0}, \omega\right) F\left(G-V\left(T_{0}\right), \omega\right) \tag{10}
\end{equation*}
$$

Proof. A digraph is called a directed tree if its underlying graph is a tree. A directed tree with a unique source is called a rooted directed tree and the unique source is its root. We are now going to establish the following claims.
Claim 1: For any weakly connected diraph Q with vertices $u_{0}, u_{1}, \cdots, u_{k}$, if $i d_{Q}\left(u_{0}\right)=0$ and $i d_{Q}\left(u_{i}\right)=1$ for all $i \in[k]$, then Q is a directed rooted tree with root u_{0}.
Q is a directed tree as its underlying graph is connected and has exactly k edges and $k+1$ vertices. Then the claim holds as u_{0} is the only source in Q.

Recall that \mathbb{D}^{*} is the family of spanning subdigraphs D of \vec{G} such that $i d_{D}\left(v_{n}\right)=0$ and $i d_{D}\left(v_{i}\right)=1$ for each $i \in[n-1]$. For any $D \in \mathbb{D}^{*}$, let $D_{v_{n}}$ denote the component (i.e., a weakly connected component) of D that contains vertex v_{n}.
Claim 2: For any $D \in \mathbb{D}^{*}, D_{v_{n}}$ is a rooted directed tree with root v_{n}.
If $V\left(D_{v_{n}}\right)=\left\{v_{n}\right\}$, the claim is trivial. Now, without loss of generality, assume that $V\left(D_{v_{n}}\right)=\left\{v_{i}: i \in[k]\right\} \cup\left\{v_{n}\right\}$, where $1 \leq k \leq n-1$. As $D_{v_{n}}$ is weakly connected and $\left|V\left(D_{v_{n}}\right)\right|=k+1$, we have $\left|A\left(D_{v_{n}}\right)\right| \geq k$.

It is known that D has exactly $n-1$ arcs and $i d_{D}\left(v_{i}\right)=1$ for all $i \in[n-1]$. Assume that a_{i} is the arc in D with head v_{i} for each $i \in[n-1]$. Thus, $A(D)=\left\{a_{i}: i \in[n-1]\right\}$. As $V\left(D_{v_{n}}\right)=\left\{v_{i}: i \in[k]\right\} \cup\left\{v_{n}\right\}$, we have $A\left(D_{v_{n}}\right) \subseteq\left\{a_{i}: i \in[k]\right\}$. Since $\left|A\left(D_{v_{n}}\right)\right| \geq k$, $A\left(D_{v_{n}}\right)=\left\{a_{i}: i \in[k]\right\}$ holds.

Thus, $D_{v_{n}}$ is weakly connected with a source v_{n} and a_{i} is the only arc in $D_{v_{n}}$ with head v_{i} for all $i \in[k]$. Claim 2 then follows from Claim 1 .

Claim 3: For each subtree T of G with $v_{n} \in V(T)$, there is exactly one rooted directed tree, denoted by \vec{T}, with the following properties:
(i) T is the underlying graph of \vec{T}; and
(ii) $i d_{\vec{T}}\left(v_{n}\right)=0$ and $i d_{\vec{T}}\left(v_{i}\right)=1$ for each $v_{i} \in V(T) \backslash\left\{v_{n}\right\}$.

Claim 3 is obvious, as such a directed tree \vec{T} can only be obtained by assigning directions to edges in T so that each $v_{n}-v_{i}$ path in T becomes a directed $v_{n}-v_{i}$ path (i.e., a path from v_{n} to v_{i}) in \vec{T}. Observe that $\omega(T)=\omega(\vec{T})$ for each subtree T of G.

Recall that $\mathcal{N S}_{v_{n}}(G)$ is the set of non-spanning subtrees T of G such that $v_{n} \in V(T)$ and $G-V(T)$ has no isolated vertices. Let $\mathcal{N S T}_{v_{n}}(\vec{G})=\left\{\vec{T}: T \in \mathcal{N S} \mathcal{T}_{v_{n}}(G)\right\}$.

By Claim 2, for each $D \in \mathbb{D}^{*}$, if D is not weakly connected, then, the unlderlying graph T of $D_{v_{n}}$ is a non-spanning tree. Furthermore, by the definition of \mathbb{D}^{*}, each vertex v_{i}, where $i \in[n-1]$, is the head of some arc in \mathbb{D}^{*} and thus is not isolated in $G-V(T)$, implying that $D_{v_{n}}=\vec{T} \in \mathcal{N S} \mathcal{T}_{v_{n}}(\vec{G})$.

For any $\vec{T} \in \mathcal{N S T}_{v_{n}}(\vec{G})$, let $\mathbb{D}^{*}(\vec{T})$ denote the set of $D \in \mathbb{D}^{*}$ such that $D_{v_{n}}$ is the directed tree \vec{T}. Thus, by the definition of $\mathbb{D}[U]$ for $U \subseteq V$, for any $T \in \mathcal{N S} \mathcal{T}_{v_{n}}(G)$,

$$
\begin{equation*}
\mathbb{D}^{*}(\vec{T})=\{\vec{T} \cup Q: Q \in \mathbb{D}[V(G) \backslash V(T)]\}, \tag{11}
\end{equation*}
$$

where $\vec{T} \cup Q$ denotes the spanning digraph of \vec{G} with arc set $A(\vec{T}) \cup A(Q)$.
Let \mathbb{D}_{0}^{*} denote the family of $D \in \mathbb{D}^{*}$ such that D is weakly connected. By Claim 2, D is a rooted directed tree for each $D \in \mathbb{D}_{0}^{*}$. Actually, $\mathbb{D}_{0}^{*}=\{\vec{T}: T \in \mathcal{T}(G)\}$. As $D_{v_{n}}$ belongs to $\mathcal{N S T}_{v_{n}}(\vec{G})$ for each $D \in \mathbb{D}^{*} \backslash \mathbb{D}_{0}^{*}$, by (11),

$$
\begin{equation*}
\mathbb{D}^{*} \backslash \mathbb{D}_{0}^{*}=\bigcup_{T \in \mathcal{N S} \mathcal{T}_{v_{n}}(G)} \mathbb{D}^{*}(\vec{T})=\bigcup_{T \in \mathcal{N S} \mathcal{T}_{v_{n}}(G)}\{\vec{T} \cup Q: Q \in \mathbb{D}[V(G) \backslash V(T)]\} \tag{12}
\end{equation*}
$$

By Lemmas 1 and 2 and (12),

$$
\begin{align*}
\prod_{i=1}^{n-1} \sum_{e_{j} \in E_{G}\left(v_{i}\right)} \omega\left(e_{j}\right) & =\sum_{D \in \mathbb{D}_{0}^{*}} \omega(D)+\sum_{D \in \mathbb{D}^{*} \backslash \mathbb{D}_{0}^{*}} \omega(D) \\
& =\sum_{T \in \mathcal{T}(G)} \omega(\vec{T})+\sum_{T \in \mathcal{N S} \mathcal{T}_{v_{n}}(G)} \sum_{Q \in \mathbb{D}[V(G) \backslash V(T)]} \omega(\vec{T}) \omega(Q) \\
& =\sum_{T \in \mathcal{T}(G)} \omega(T)+\sum_{T \in \mathcal{N S \mathcal { S }} v_{v_{n}}(G)} \omega(T) \sum_{Q \in \mathbb{D}[V(G) \backslash V(T)]} \omega(Q) \\
& =\sum_{T \in \mathcal{T}(G)} \omega(T)+\sum_{T \in \mathcal{N S \mathcal { S }} v_{v_{n}}(G)} \omega(T) F(G-V(T), \omega) \tag{13}
\end{align*}
$$

Thus Theorem 3 is proved.

Observe that Theorem 2 follows directly from Theorem 3 by taking $u=v_{n}$ and $y_{j}=1$ for all $j \in[m]$.

4 Application

In the last section, we give some examples of applying Theorem 2 to determine spanning numbers of graphs.

Let G be a connected multi-graph with $u \in V(G)$. For $1 \leq i \leq|V(G)|-2$, let $\mathscr{C}_{i}(G, u)$ (or simply $\mathscr{C}_{i}(u)$) be the set of connected induced subgraphs $G[S]$, where $u \in S \subset V(G)$, such that $|S|=i$ and $G-S$ has no isolated vertices. Clearly, $\left|\mathscr{C}_{1}(u)\right| \leq 1$ and $\left|\mathscr{C}_{2}(u)\right| \leq$ $\left|N_{G}(u)\right|$, where $N_{G}(u)$ is the set of neighbors of u in G.

Observe that expression (11) in Theorem 2 is equivalent to the following one:

$$
\begin{equation*}
\tau(G)=\prod_{v \in V(G)-\{u\}} d_{G}(v)-\sum_{i=1}^{|V(G)|-2} \sum_{H \in \mathscr{C}_{i}(u)}\left(\tau(H) \prod_{v \in V(G)-V(H)} d_{G-V(H)}(v)\right) \tag{14}
\end{equation*}
$$

Now we apply (14) to determine $\tau\left(W_{4}\right), \tau\left(W_{4}^{\prime}\right)$ and $\tau\left(W_{5}^{\prime}\right)$, where W_{4} is the wheel of order 5 and W_{4}^{\prime} and W_{5}^{\prime} are multi-graphs which can be obtained from W_{4} and W_{5} respectively by adding new edges parallel to edges incident with the central vertex, as shown in Figure 2 (b) and (c).

(a) W_{4}

(b) W_{4}^{\prime}

(c) W_{5}^{\prime}

Figure 2: Graphs W_{4}, W_{4}^{\prime} and W_{5}^{\prime}

Let u be the central vertex in W_{4} as shown in Figure 2 (a). By (14), we have

$$
\begin{equation*}
\tau\left(W_{4}\right)=3^{4}-2^{4}-4 \times 1 \times\left(2 \times 1^{2}\right)-4 \times 3 \times 1^{2}=45 \tag{15}
\end{equation*}
$$

The above equality follows from the fact that $\left|\mathscr{C}_{1}(u)\right|=1,\left|\mathscr{C}_{2}(u)\right|=\left|\mathscr{C}_{3}(u)\right|=4, \tau(H)=1$ and $G-V(H) \cong C_{4}$ for $H \in \mathscr{C}_{1}, \tau(H)=i^{i-2}$ and $G-V(H)$ is a path of length $5-i$ for each $H \in \mathscr{C}_{i}(u)$ and $i=2,3$. Again, taking u to be the central vertex in W_{4}^{\prime}, we have

$$
\begin{equation*}
\tau\left(W_{4}^{\prime}\right)=4^{4}-2^{4}-4 \times 2 \times\left(2 \times 1^{2}\right)-4 \times 8 \times 1^{2}=192 \tag{16}
\end{equation*}
$$

The above equality follows from the fact that $\left|\mathscr{C}_{1}(u)\right|=1,\left|\mathscr{C}_{2}(u)\right|=\left|\mathscr{C}_{3}(u)\right|=4, \tau(H)=1$ and $G-V(H) \cong C_{4}$ for $H \in \mathscr{C}_{1}, \tau(H)=2$ for each $H \in \mathscr{C}_{2}(u), \tau(H)=8$ for each $H \in \mathscr{C}_{3}(u)$, and $G-V(H)$ is a path of length $5-i$ for each $H \in \mathscr{C}_{i}(u)$ and $i=2,3$.

Similarly, taking u to be the central vertex in W_{5}^{\prime}, we have

$$
\begin{equation*}
\tau\left(W_{5}^{\prime}\right)=4^{5}-2^{5}-5 \times 2 \times\left(2 \times 2 \times 1^{2}\right)-5 \times 8 \times 2-5\left(4 \times 3^{2}-2-2 \times 2\right)=722 \tag{17}
\end{equation*}
$$

The above equality follows from the fact that $\left|\mathscr{C}_{1}(u)\right|=1,\left|\mathscr{C}_{i}(u)\right|=5$ for $i=2,3,4$, $\tau(H)=1$ and $G-V(H) \cong C_{5}$ for $H \in \mathscr{C}_{1}, \tau(H)=2$ for each $H \in \mathscr{C}_{2}(u), \tau(H)=8$ for each $H \in \mathscr{C}_{3}(u), \tau(H)=4 \times 3^{2}-2-2=32$ for each $H \in \mathscr{C}_{4}(u)$, and $G-V(H)$ is a path of length $6-i$ for each $H \in \mathscr{C}_{i}(u)$ and $i=2,3,4$.

Our examples above show that as an alternative method of computing spanning trees in small graphs by hand, applying Theorem 2 is sometimes not less efficient than other methods.

Another potential usefulness of this formula is, maybe for some graph classes, we can use Theorem 2 to obtain a better upper bound for the number of spanning trees than Theorem 1. Corollary 1 below is an example.

Corollary 1. Let G be a graph with degree sequence $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. Then

$$
\tau(G) \leq \prod_{i=1}^{n-1} d_{i}-\prod_{i=1}^{n-1}\left(d_{i}-1\right)
$$

Acknowledgements

The authors would like to thank the referees for their constructive comments.

References

[1] T. Austin, The enumeration of point labelled chromatic graphs and tress, Canad. J. Math. 12 (1960), 535-545.
[2] A. Cayley, A theorem on trees, Quart. J. Pure Appl. Math. 23 (1889), 376-378.
[3] Fengming Dong and Yan Weigen, Expression for the Number of Spanning Trees of Line Graphs of Arbitrary Connected Graphs, J. Graph Theory 85(1) (2017), 74-93.
[4] R. J. Duffin, An analysis of the Wang algebra of networks, Trans. Amer. Math. Soc. 93 (1959), 114-131.
[5] Jun Ge and Fengming Dong, Spanning trees in complete bipartite graphs and resistance distance in nearly complete bipartite graphs, Discrete Appl. Math. 283 (2020), 542-554.
[6] Helin Gong and Xi'an Jin, A simple formula for the number of spanning trees of line graphs, J. Graph Theory 88 (2018), 294-301.
[7] F. Harary, J.P. Hayes and H.J. Wu, A survey of the theory of hypercube graphs, Computers and Mathematics with Applications 15 (4) (1988), 277-289.
[8] G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer Ströme geführt wird, Ann. Phys. Chem. 72 (1847), 497-508. (English transl. IRE Trans. Circuit Theory CT-5 (1958), 4-7.)
[9] W. Kocay and D.L. Kreher, "The matrix-tree theorem", Graphs, Algorithms and Optimization, Discrete Mathematics and Its Applications, CRC Press, pp. 111-116, 2004.
[10] L. Lovász, Combinatorial problems and exercises, second edition, North-Holland Publishing Co., Amsterdam, 1993.
[11] J. W. Moon, The second moment of the complexity of a graph, Mathematika 11 (1964), 95-98.
[12] C. Thomassen, Spanning trees and orientations of graphs, J. Comb. 1(2) (2010), 101-111.
[13] W.T. Tutte, Graph-polynomials, Advances in Appl. Math. 32 (1-2) (2004), 5-9.
[14] K. T. Wang, On a new method of analysis of electrical networks, Academia Sinica: Memoir of the National Research Institute of Engneering Memoirs 2 (1934), 1-11.
[15] Weigen Yan, Enumeration of spanning trees of middle graphs, Appl. Math. Comput. 307 (2017), 239-243.

[^0]: *The work was supported by the National Natural Science Foundation of China (No. 11701401) and the Scientific Research Fund of Hunan Provincial Education Department of China (No. 18A432).
 ${ }^{\dagger}$ Corresponding author. Email: fengming.dong@nie.edu.sg and donggraph@163.com.
 ${ }^{\ddagger}$ Email: mathsgejun@163.com.
 $\S_{\text {oymath@163.com. }}$

[^1]: ${ }^{1}$ Wang algebra assumes that $x+x=0, x \cdot x=0$ and $x y=y x$ for any variables x and y.

