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Abstract

Let G = (V,E) be a graph and P ⊆ V a set of points. Two points
are mutually visible if there is a shortest path between them without
further points. P is a mutual-visibility set if its points are pairwise
mutually visible. The mutual-visibility number of G is the size of any
largest mutual-visibility set. In this paper we start the study about
this new invariant and the mutual-visibility sets in undirected graphs.
We introduce the Mutual-Visibility problem which asks to find a
mutual-visibility set with a size larger than a given number. We show
that this problem is NP-complete, whereas, to check whether a given
set of points is a mutual-visibility set is solvable in polynomial time.
Then we study mutual-visibility sets and mutual-visibility numbers
on special classes of graphs, such as block graphs, trees, grids, tori,
complete bipartite graphs, cographs. We also provide some relations
of the mutual-visibility number of a graph with other invariants.

1 Introduction

Given a set of points in Euclidean space, they are mutually visible if and
only if no three of them are collinear. Then two points p and q are mutually
visible when no further point is on the line segment pq. A line segment
in Euclidean space represents the shortest path between two points, but
in more general topologies, this type of path (called geodesic) may not be
unique. Then, in general, two points are mutually visible when there exists
at least a shortest path between them without further points.

In this paper, we investigate the mutual visibility of a set of points
in topologies represented by graphs (e.g., see Figure 8b). In particular, a
fundamental problem is finding the maximum number of points in mutual
visibility that a given graph can have. To this aim, consider the following
new invariant: the mutual-visibility number of a graph is the size of any
largest mutual-visibility set, that is, a subset of the vertices (points) that
are in mutual visibility. To study this invariant from a computational point
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of view, we introduce the Mutual-Visibility problem: find a mutual-
visibility set with a size larger than a given number. We prove that this
problem is NP-complete, whereas, to check whether the points of a given set
are in mutual visibility is a problem solvable in O(n3) time for graphs with
n vertices. Then, given this situation, our work proceeds by investigating
the mutual-visibility number for special classes of graphs, showing how the
Mutual-Visibility problem can be solved in polynomial time. We also
provide some relations of the mutual-visibility number of a graph with other
invariants.

While these new concepts are interesting in themselves, their study is
motivated by the fundamental role that mutual visibility plays in problems
arising in the context of mobile entities, as shown below. Furthermore,
points of a graph in mutual visibility may represent entities on some nodes
of a computer/social network that want to communicate in a efficient and
“confidential” way, that is, in such a way that the exchanged messages do
not pass through other entities.

Related works Questions about sets of points and their mutual visibil-
ity in Euclidean plane have been investigated since the end of XIX century.
Perhaps, the most famous problem was posed by Sylvester [23], who conjec-
tured that it is not possible to arrange a finite set of points “so that a right
line through every two of them shall pass through a third, unless they all
lie in the same right line”. A correct proof was given by Gallai [22] some 40
years later, with a theorem now known as Sylvester–Gallai theorem. In [11]
Dudeney posed the celebrated and still open no-three-in-line problem: find
the maximum number of points that can be placed in an n× n grid so that
no three points lie on a line. In [13], Chapter III, it is shown how to place
a set of points with integer positive coordinates (i, j), j ≤ i, in such a way
that each point is in mutual visibility with the origin (0, 0), by also maxi-
mizing the number of points with the same abscissa. This disposition shows
interesting relations with the Farey series and the Euler’s totient function
φ: the number of points with abscissa n is exactly φ(n).

More recently, mutual visibility has been studied in the context of mobile
entities modeled as points in the Euclidean plane, whose visibility can be ob-
structed by the presence of other mobile entities. The problem investigated
in [9] is perhaps the most basic: starting from arbitrary distinct positions in
the plane, within finite time the mobile entities must reach a configuration
in which they are in distinct locations and they can all see each other. Since
then, many papers have addressed the same subject (e.g., see [3, 6, 18, 21])
and similar visibility problems were considered in different contexts where
the entities are “fat robots” modeled as disks in the plane (e.g., see [19]) or
are points on a grid based terrain and their movements are restricted only
along grid lines (e.g., see [1]).
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Visibility problems were also studied on graphs. Wu and Rosenfeld [20]
considered the mutual visibility in pebbled graphs. They assumed that the
visibility may be obstructed by “pebbles” placed on some vertices of the
graph. Two unpebbled vertices u, v of a pebbled graph G are mutually
visible if and only if there exists a shortest path p in G between u and v
such that no vertex of p is pebbled. In [25] they consider edge pebblings and
vertex pebblings, by showing that the visibility relations defined by edge
and vertex pebblings are incomparable.

Motivated by the Dudeney’s problem, in [16] the General Position
problem was introduced. Few years before the same problem was posed
in [8]. A subset S of vertices in a graph G is a general position set if no
triple of vertices from S lie in a common geodesic in G. The General
Position problem is to find a largest general position set of G, the order
of such a set is the general position number gp(G). Since its introduction,
the general position number has been studied for several graph classes (e.g.,
grid networks [17], cographs and bipartite graphs [4], graph classes with
large general position number [24], Cartesian products of graphs [15]).

The difference between a general position set S and a mutual-visibility
set P is that two vertices are in P if there is a shortest path between them
with no further vertex in P , whereas two vertices are in S if for every shortest
path between them no further vertex is in S. The two concepts are intrin-
sically different, but closely related, since the vertices of a general position
set are in mutual visibility.

Again in the context of mobile entities, in [2] it is studied the Complete
Visitability problem of repositioning a given number of robots on the
vertices of a graph so that each robot has a path to all others without
visiting an intermediate vertex occupied by any other robot. Here, the
required paths are not shortest paths and the studied graphs are restricted
to the infinite squared grid and the infinite hexagonal grid, both embedded
in the Euclidean plane.

Contribution In Section 2, formal definitions of mutual-visibility set and
mutual-visibility number are provided along with basic notations and some
preliminary results. Algorithmic results about the Mutual-Visibility
problem are shown in Section 3. In Section 4 we study the mutual-visibility
sets and mutual-visibility numbers for special classes of graphs. Compar-
isons between general position numbers and mutual-visibility numbers for
certain graph classes are provided in Sections 2 and 4. Concluding remarks
and notes about further studies on the subject are provided in Section 5.
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2 Notation and preliminaries

In this work we consider finite, simple, loopless, undirected and unweighted
graphs (V,E) with vertex set V and edge set E. We use standard termi-
nologies from [7, 12], some of which are briefly reviewed here.

Basic notation. Let G = (V,E) be a graph. A subgraph of G is a graph
having all its vertices and edges in G. Given a subset S of V , the induced
subgraph G[S] of G is the maximal subgraph of G with vertex set S. The
subgraph of G induced by V \ S is denoted by G− S, and G− x stands for
G− {x}. If v is a vertex of G, by NG(v) we denote the neighbors of v, that
is, the set of vertices that are adjacent to v, and by NG[v] we denote the
closed neighbors of v, that is NG(v) ∪ {v}. The number of edges incident
to a vertex v of a graph G is the degree of that vertex and is denoted
degG(v). Then degG(v) = |NG(v)| and the maximum degree is denoted
∆(G). If |NG(v)| = 1, v is called pendant vertex. Two vertices u, v are
true twins if uv ∈ E and NG[u] = NG[v] and are false twins if uv 6∈ E
and NG(u) = NG(v). The operation of extending a graph by adding a new
vertex which has a twin in the obtained graph, is called splitting [5].

A sequence of pairwise distinct vertices (x0, x1, . . . , xn) is a path in G if
xixi+1 ∈ E for 0 ≤ i < n, and is an induced path if G[{x0, . . . , xn}] has n
edges. The length of an induced path is the number of its edges. A cycle
in G is a path (x0, . . . , xn−1), n ≥ 3, where also x0xn−1 ∈ E. A (x, y)-path
is a path from x to y. A graph G is connected if for each pair of vertices x
and y of G there is a (x, y)-path in G. In a connected graph G, the length
of a shortest (x, y)-path is called distance and is denoted by dG(x, y). The
longest distance in a graph is its diameter. A connected component of G is
a maximal connected subgraph of G. A vertex x is an articulation vertex
if G − x has more connected components than G. A graph G = (V,E) is
biconnected if G− x is connected, for each x ∈ V .

A subgraph H of G = (V,E) is said to be convex if all shortest paths
in G between vertices of H actually belong to H. The convex hull of a
subset V ′ of vertices – denoted hull(V ′) – is defined as the smallest convex
subgraph containing V ′. The hull number h(G) is the minimum cardinality
among the subsets V ′ of V with hull(V ′) = G.

Operations on graphs If G is a graph, G denotes its complement, that
is the graph on the same vertices such that two distinct vertices of G are
adjacent if and only if they are not adjacent in G. Given two graphs G1 =
(V1, E1) and G2 = (V2, E2), such that V1∩V2 = ∅, the disjoint union G1∪G2

denotes the graph (V1 ∪ V2, E1 ∪ E2); the join G1 + G2 denotes the graph
consisting inG1∪G2 and all edges joining V1 with V2, that is (V1∪V2, E1∪E2∪
{xy | x ∈ V1, y ∈ V2}). To define the Cartesian product G1 �G2 = (V,E),
consider any two vertices u = (u1, u2) and v = (v1, v2) in V = V1×V2. Then
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(u0, v0) (u2, v0) (u4, v0) (u6, v0)

Figure 1: A grid graph Γ2,7 with µ(Γ2,7) = 4 and an induced subgraph H
of Γ2,7 that is a tree with five leaves. For each graph, vertices in red are
points of a maximum mutual-visibility set, then µ(H) = 5 > µ(Γ2,7).

uv ∈ E whenever either u1 = v1 and u2v2 ∈ E2 or u2 = v2 and u1v1 ∈ E1.
We call G1 and G2 isomorphic, and write G1 ∼ G2 if there exists a bijection
ϕ : V1 → V2 with xy ∈ E1 ⇐⇒ ϕ(x)ϕ(y) ∈ E2 for all x, y ∈ V1.

Special graphs In this paper we use some special graphs. Kn denotes the
complete graph (or clique) with n vertices and n(n− 1)/2 edges. The clique
number ω(G) of a graph G is the number of vertices in a maximum clique in
G. Pn denotes the path graph with n vertices and n− 1 edges. Cn denotes
the cycle graph with n vertices and n edges. Finally, Km,n = Km + Kn

denotes the complete bipartite graph. A tree is a connected graph without
cycles and its pendant vertices are called leaves. The tree K1,n is called
star and can be obtained by adding n pendant vertices to a single vertex,
called the center of the star. The graph C3 is also called triangle. A grid
graph Γm,n = Pm �Pn is the Cartesian product of two paths Pm and Pn.
For m ≥ 3 and n ≥ 3 a graph Tm,n = Cm �Cn obtained by the Cartesian
product of two cycle graphs is called torus. A connected graph obtained
from K1 by a sequence of splittings is called cograph.

Preliminaries Let G = (V,E) be a graph and P ⊆ V a set of points.
Two points are mutually visible if there is a shortest path between them
with no further point. P is a mutual-visibility set if its points are pairwise
mutually visible. The mutual-visibility number of G is the size of any largest
mutual-visibility set of G and it is denoted µ(G). By M(G) we denote the
set containing all the largest mutual-visibility sets of G. Formally:

M(G) = {P | P ⊆ V is a mutual-visibility set and |P | = µ(G)}

Notice that given a graph G and a set of points P , the mutual visibility
relation between two points in P is reflexive, symmetric, but not transitive.
Then it is different from the visibility relations studied in [25], that are all
transitive.
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Let H = (VH , EH) be an induced subgraph of a graph G. If P is a
mutual-visibility set in G then P ∩ VH is not necessarily a mutual-visibility
set of H. For example, consider a cycle graph Cn, n ≥ 4: it is easy to find
a maximum mutual-visibility set P of size three. Now consider an induced
subgraph Cn − v, where v 6∈ P : it is a path graph. All the points in P are
in Cn − v, but they are not mutually visible, since one of them is between
the other two. However, the following lemma holds for convex subgraphs of
a given graph.

Lemma 2.1 Let H = (VH , EH) be a convex subgraph of G = (V,E). Let
P ⊆ V be a mutual-visibility set of G. Then P ∩ VH is a mutual-visibility
set of H.

Proof. Let u, v be two not necessarily distinct vertices of G in P ′ = P ∩VH ,
then, by definition of convex subgraph, all the shortest (u, v)-paths in G are
in H and one of them is without points in P and then in P ′. Hence u, v are
mutually visible in H. By the generality of u, v, P ′ is a mutual-visibility set
of H. 2

Given a graph G and a positive integer k, the property µ(G) ≤ k is
not a hereditary property for induced subgraphs, i.e., it is possible for an
induced subgraph H of G that µ(H) > k ≥ µ(G). Consider the grid graph
Γ2,7 ∼ P2 �P7 in Figure 1, where P2 = (u0, u1) and P7 = (v0, v1, . . . , v6).
Then, as we will prove in Section 4.3, µ(G) = 4. The induced subgraph H
obtained by removing vertices (u0, v0), (u2, v0), (u4, v0), and (u6, v0) from G
is a tree with five leaves, then, as shown in Figure 1 and proved in Section 4.2,
µ(H) = 5. So µ(H) > 4 = µ(G).

However, if we consider convex subgraphs of G the property holds, as
stated by the following lemma.

Lemma 2.2 Let H be a convex subgraph of a graph G. Then µ(H) ≤ µ(G).

Proof. Any mutual-visibility set P of H is also a mutual-visibility set of
G, since all the shortest paths between points in P are both in G and in H.
Then the statement follows. 2

The next two lemmas sets upper bounds to the mutual-visibility number
of a graph: The following one is based on the mutual-visibility numbers of
certain convex subgraphs.

Lemma 2.3 Let G = (V,E) be a graph and let V1, V2, . . . Vk be subsets of
V such that

⋃k
i=1 Vi = V . Then µ(G) ≤

∑k
i=1 µ(hull(Vi)).

Proof. Assume µ(G) >
∑k

i=1 µ(hull(Vi)) and let P ⊆ V be a mutual-

visibility set such that |P | = µ(G). Since
⋃k

i=1 Vi = V any point of P is in at
least one hull(Vi). Let Pi be the set of vertices that are in P and in hull(Vi),
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for each i = 1, 2, . . . , k. Then
∑k

i=1 |Pi| ≥ |P | = µ(G) >
∑k

i=1 µ(hull(Vi)).
Hence there exists at least a set Pj such that |Pj | > µ(hull(Vj)), for some j
in {1, 2, . . . , k}. This is a contradiction since, by Lemma 2.1, Pj is a mutual-
visibility set of hull(Vj) and its size cannot be larger than µ(hull(Vj)). 2

Lemma 2.4 Let G = (V,E) be a graph with n vertices and diameter d. Let
c the number of vertices of a smallest cycle in G, if any. Then

µ(G) ≤ min{n− d+ 1, n− c+ 3}.

Proof. Assume µ(G) > n−d+1 and let (x0, x1, . . . , xd) be a diameteral
path in G. Then this path contains at least three points of any maximum
mutual-visibility set P of G. Let i ≥ 0 be the minimum index such that
xi ∈ P and let k ≤ d the maximum index such that xk ∈ P . Since xi
and xk must be in mutual visibility there must exist a shortest path (xi =
v0, v1, . . . , vk−i = xk) such that vertices v1, v2, . . . , vk−i−1 are not in P . Then
the path (x0, x1, . . . , xi, v1, . . . , vk−i−1, xk, xk+1, . . . , xd) is a diameteral path
in G with only two points in P . Hence µ(G) ≤ n− d+ 1.

Similarly, assume µ(G) > n − c + 3, and let Cc = (x0, x1, . . . , xc−1) be
a smallest cycle in G with c vertices. Then Cc has at least four points
xi1 , xi2 , xi3 , xi4 , i1 < i2 < i3 < i4, of any maximum mutual-visibility set
P of G. Since xi1 and xi3 must be in mutual visibility, there must exist
a shortest (xi1 ,xi3)-path without further points in P . The cycle given by
this path and one of the (xi1 ,xi3)-paths in Cc has c vertices and at least one
point in P less than Cc. By repeating the argument, a cycle with c vertices
and only three points in P can be found and then µ(G) ≤ n− c+ 3. 2

It is worth to notice that for each graph G there exists a mutual-visibility
set P such that |P | = µ(G) and no articulation vertex is in P , as shown
below.

Lemma 2.5 Let G = (V,E) be a graph and let X be the set of its articula-
tion vertices. There exists a maximum mutual-visibility set P ∈M(G) such
that X ∩ P = ∅.

Proof. Let P be any mutual-visibility set in M(G) and suppose, by
contradiction, that there exists a point xP ∈ X ∩ P . Let (V1, E1),
(V2, E2), . . . , (Vk, Ek), k ≥ 2 be the new connected components of G − xP ,
created by removing xP . Note that P \ {xp} ⊆

⋃k
`=1 V`. However, there

is only one index i ∈ {1, . . . , k} such that P ∩ Vi 6= ∅, otherwise there
would be two points u, v belonging to two different connected components
in G − xP that are in mutual visibility in G. This is impossible since any
shortest (u, v)-path passes through xP . Then P ′ = (P \ {xP })∪{x′}, where
x′ ∈ Vj , j 6= i, is such that P ′ ∈M(G). 2
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Before calculating mutual-visibility numbers and maximum mutual-
visibility sets for some graph classes, let us show a first result that compares
the mutual-visibility number of a graph G with two invariants of G.

Lemma 2.6 Given a graph G with general position number gp(G) and max-
imum degree ∆(G) then µ(G) ≥ gp(G) and µ(G) ≥ ∆(G).

Proof. All vertices of a largest a largest general postion set S of G form a
mutual-visibility set. Then gp(G) = |S| ≤ µ(G).

Let v be a vertex of G with degree ∆(G), then consider the set P =
NG(v). For any two vertices x, y ∈ NG(v) they are adjacent or at distance
two in the path (x, v, y). Then, since v is not in P , in both cases they are
in mutual visibility and then P is a mutual-visibility set. 2

Remark 2.7 For a graph G, in [8] it has been proved that gp(G) ≥ h(G)
and gp(G) ≥ ω(G). Then h(G) and ω(G) are also lower bounds for µ(G).

The following lemma gives a first taste of the mutual-visibility number
in two basic graph classes, that will be useful to derive further results.

Lemma 2.8 The mutual-visibility number of a path graph Pn, n ≥ 2, is
µ(Pn) = 2 and the mutual-visibility number of a cycle graph Cn, n ≥ 3, is
µ(Cn) = 3.

Proof. Since n ≥ 2 there is an edge e in Pn and the two endpoints of e
are mutually visible, so µ(Pn) ≥ 2. By Lemma 2.4 µ(Pn) ≤ 2, since the
diameter of Pn is equal to n− 1. Then µ(Pn) = 2

Regarding the cycle graph Cn = (x0, x1 . . . , xn−1), µ(Cn) ≥ 3 since it
is always possible to choice x0, xdn

2
e−1 and xdn

2
e as three points in mutual

visibility. By Lemma 2.4 µ(Cn) ≤ 3, Then µ(Cn) = 3 2

It is interesting to note that gp(Pn) = µ(Pn) = 2 for n ≥ 2, and gp(Cn) =
µ(Cn) = 3 for n = 3 and n ≥ 5 (see [16]). For n = 4 we have gp(C4) 6= µ(C4)
since gp(C4) = 2 and µ(C4) = 3. Indeed, C4 is the smallest connected graph
for which the general position number and the mutual-visibility number are
different. As we will see in Subsection 4.3, this difference can be arbitrarily
large.

3 Computational complexity

To study the computational complexity of finding a maximum mutual-
visibility set in a graph, we introduce the following decision problem.

Definition 3.1 Mutual-Visibility problem:
Instance: A graph G = (V,E), a positive integer K ≤ |V |.
Question: Is there a mutual-visibility set P of G such that |P | ≥ K?
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ui ūi ui ūi

si

ti

si

ti

u1 ū1 u2 ū2 up ūp

v1 v2 vq

w

y z

y′ z′

Figure 2: The graph used in Theorem 3.1. Red vertices are points. Most
visible vertices and edges represent the main part of the graphs. The rest
is added to ensure the mutual visibility among points. Top left: The true-
setting gadget used to represent a variable xi with two maximum mutual-
visibility sets representing the two possible truth assignments: xi is false if
and only if ui is a point.

The problem is hard to solve as shown by the next theorem.

Theorem 3.1 Mutual-Visibility is NP-complete.

Proof. Given a set of points P ⊆ V of G, we can test in polynomial
time whether P is a mutual-visibility set or not (see also Algorithm MV).
Consequently, the problem is in NP.

We will now prove that the 3SAT problem, shown as NP-complete
in [14], polynomially reduces to Mutual-Visibility.

A 3SAT instance Φ is defined as a set X = {x1, x2, . . . , xp}
of p boolean variables and a set C of q clauses, each defined
as a set of three literals: every variable xi corresponds to two
literals xi (the positive form) and x̄i (the negative form). To
simplify the notations we will denote by {`1, `2, `3} the clause
with literals `i, i = 1, 2, 3, without distinction between the orders
in which they are listed. A truth assignment assigns a Boolean
value (True or False) to each variable, corresponding to a truth
assignment of opposite values for the two literals xi and x̄i: x̄i
is True if and only if xi is False. A clause is satisfied if at least
one of its literals is satisfied. The 3SAT problem asks whether
there is a truth assignment satisfying all clauses.
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In what follows, we assume there are at least three clauses such that their
(pairwise) intersection is empty. Any instance Φ that does not satisfy this
constraint can be transformed into an instance Φ′ with such three clauses by
adding five new variables a, b, c, d, e and the required three clauses {a, ā, b},
{b̄, c, c̄}, {d, d̄, e} that are always satisfied for each truth assignment. Then
the 3SAT instance Φ has a Yes answer if and only if Φ′ has a Yes answer.

We transform 3SAT to Mutual-Visibility. Let X = {x1, x2, . . . , xp}
and C = {c1, c2, . . . , cq} be any instance of 3SAT. We must construct a
graph G = (V,E) and a positive integer K ≤ |V | such that G has a mutual-
visibility set of size K or more if and only if C is satisfiable.

For each variable xi ∈ X, there is a true-setting convex subgraph of
G Ti = (Vi, Ei), with Vi = {ui, ūi, si, ti} and Ei = {uiūi, ūisi, ūisi, siti}.
See the top left part of Figure 2 for a drawing of Ti and the two possible
maximum mutual-visibility sets. Notice that each of the two maximum
mutual-visibility sets of Ti contains either ui or ūi.

For each clause cj ∈ C, there is a vertex vj and, for each literal xi (or
x̄i) in cj there is in an edge vjui (or an edge vj ūi, respectively). Moreover,
there is a vertex w and edges vjw for each j = 1, 2, . . . , q.

There are four more vertices in V , that is y, y′, z, z′. For each i ∈
{1, 2, . . . , p} there are edges uiy, ūiy, siz, tiz, siw, tiw. Finally, E contains
edges yz, yy′ and zz′.

A representation of G is given in Figure 2.
The construction of our instance of Mutual-Visibility is completed

by setting K = 3p + q + 2. It is easy to see how the construction can be
accomplished in polynomial time. All that remains to be shown is that C is
satisfiable if and only if G has a mutual-visibility set of size K or more.

First, suppose that t : X → {True, False} is a satisfying truth assign-
ment for C. The corresponding set of points P includes vertices ui if t(xi) is
False, and ūi otherwise, for each i ∈ {1, 2, . . . , p}. Moreover y′, z′, vj , si, ti
are in P , for each possible value of i and j. No further vertex is in P . Then
|P | = 3p+ q + 2 = K. It remains to show that P is a mutual-visibility set.
Clearly, y′ is in mutual visibility with z′. Let ST = {si, ti | i ∈ {1, 2, . . . , p}},
U = {ui, ūi | i ∈ {1, 2, . . . , p}}, D = {vj | j ∈ {1, 2, . . . , q}}. Each vertex
in ST is in mutual visibility with all the points in its true-setting sub-
graph and with all the other points in P thanks to shortest paths passing
through vertices w, y, and z that are not in P (e.g., for ti 6∈ T1, the paths
(ti, z, s1), (ti, z, t1), (ti, z, z

′), (ti, z, y, y
′), (ti, z, y, u1), (ti, z, y, ū1), (ti, w, v1)).

All the points in D are in mutual visibility through shortest paths of
length two via vertex w. More interesting is to show that each point v ∈ D
is in mutual visibility with y′ (and with z′). Point v corresponds to a clause
c ∈ C and, since C is satisfiable, there is a vertex u in NG(v) ∩ U that
is not in P corresponding to a True literal in c. Then the shortest paths
(v, u, y, y′) and (v, u, y, z, z′) show that v is in mutual visibility with y′ and
z′. Finally, each point in U is in mutual visibility with points y′, z′, and all
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the other points in U , because of shortest paths passing through y and z.
Regarding the mutual visibility of points in U with points in D, let vj be a
point in D corresponding to a clause cj and let xi (or x̄i) be a literal in cj
corresponding to vertex ui (or ūi). If t(xi) is True then either the point ūi is
connected to vj with the path (ūi, ui, vj) or ūi is adjacent to vj . Otherwise,
if t(xi) is False then either the point ūi is adjacent to vj or connected to
vj via (ui, ūi, vj). Similarly for all the literals in cj . If xi is not in cj then
point ui (or ūi) is in mutual visibility with vj ∈ D thanks to a shortest path
(ui, y, u

′, vj) (or (ūi, y, u
′, vj)), where the vertex u′ ∈ D is in correspondence

with a True literal in cj . This concludes the first part of the proof.
Conversely, let us suppose that there is a set P ⊆ V of points such that

|P | ≥ K = 3p + q + 2. In C there are three clauses that do not share any
variable. Assume, without loss of generality, that these three clauses are,
c1, c2, c3. Then the star subgraph H of G induced by vertices v1, v2, v3 and
w is a convex subgraph of G. Convex subgraph of G are Ti, the path graph
H ′ = (y′, y, z, z′) and each subgraph Lj ∼ K1 consisting in a single vertex
vj , j = 4, . . . q. The union of the vertices of these convex subgraphs is V
then, by applying Lemmas 2.3, we have:

µ(G) ≤ µ(H)+µ(H ′)+

p∑
i=1

µ(Ti)+

q∑
j=4

µ(Lj) = 3+2+3p+(q−3) = 3p+q+2

The above inequality holds since it is not difficult to see that µ(H) = 3
(see also Corollary 4.3), µ(H ′) = 2 by Lemma 2.8, and, by enumeration,
that µ(Ti) = 3. The mutual-visibility number µ(G) is the size of a largest
mutual-visibility set in G, then |P | = K = 3p + q + 2. Since y and z are
articulation vertices we can assume, by Lemma 2.5, they are not in P .

Moreover, at least one vertex for each Ti is not in P : call Q the set of
such vertices. Then the points in P are a subset of V ′ = V \ (Q ∪ {y, z}).
Since |V | = 4p+ q + 5 and |Q| ≥ p, then |V ′| ≤ 3p+ q + 3. Hence at most
one vertex in V ′ is not in P . Consequently, at least two vertices among v1,
v2, v3 of H are in P (say v1, v2), and since H is a convex subgraph of G
then the only shortest path between v1 and v2 is (v1, w, v2). This implies
that w is not in P , otherwise v1 and v2 are not in mutual visibility.

In conclusion, all the vertices in D are in P , y′ and z′ are in P and three
vertices for each Ti are in P , and in particular exactly one vertex among ui
and ūi is in P . Now, consider a point vj in D and its corresponding clause
cj . Since vj and y′ are mutually visible, at least one vertex in NG(vj)∩U is
not in P an then, the corresponding literal is True and cj is satisfied. By
the generality of cj all the clauses are satisfied. 2

Theorem 3.1 shows that Mutual-Visibility is hard, however the fol-
lowing problem, which asks to test if a given set of points is a mutual-
visibility set, can be solved in polynomial time.
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Definition 3.2 Mutual-Visibility Test:
Instance: A graph G = (V,E) and P ⊆ V .
Question: Is P a mutual-visibility set of G?

The solution is provided by means of Algorithm MV that in turn uses
Procedure BFS MV as a sub-routine. Procedure BFS MV and Algorithm
MV are shown in Figures 3 and 4, respectively.

Procedure: BFS MV
Input: A connected graph G = (V,E), a set of points P , v ∈ V , a

boolean t
Output: The distance vector of v from any vertex u in P calculated

in G, if t is True, otherwise calculated in G− P \ {u, v}.

1 D[u] :=∞ ∀u ∈ V ;
2 DP [p] :=∞ ∀p ∈ P ;
3 D[v] := 0;
4 if v ∈ P then DP [v] := 0;
5 Let Q be a queue;
6 Q.enqueue(v);
7 while Q is not empty and ∃p ∈ P,D[p] =∞ do
8 u := Q.dequeue();
9 for each w in NG(u) do

10 if D[w] =∞ then
11 D[w] := D[u] + 1;
12 if w ∈ P then DP [w] := D[w];
13 if t or w 6∈ P then Q.enqueue(w);

14 return DP

Figure 3: Procedure BFS MV

Theorem 3.2 Algorithm MV solves Mutual-Visibility Test in
O(|P |(|V |+ |E|)) time.

Proof. When G is connected, Algorithm MV (see Figure 4) calculates the
distances between any pair of points u, v ∈ P both in G and in G−P \{u, v},
the graph obtained by removing all the points in P except u and v (loop at
Line 4). To this end, MV uses Procedure BFS MV (see. Figure 3). If the
distances are equal (and Line 7 is reached) then there exits a shortest (u, v)-
path without points, that is u and v are in mutual visibility. Otherwise, P
is not a mutual-visibility set (Line 6).

Procedure BFS MV is a variant of the breadth-first search algorithm
that updates two distance vectors: the distance vector D, for the distances

12



Algorithm: MV
Input: A graph G = (V,E) and a set of points P ⊆ V
Output: True if P is a mutual-visibility set, False otherwise

1 if points in P are in different connected components of G then
2 return False

3 Let H be the connected component of G with points;
4 for each p ∈ P do
5 if BFS MV (H,P,p,False) 6= BFS MV (H,P,p,True) then
6 return False

7 return True

Figure 4: Algorithm MV

of v with each vertex in the graph, and the distance vector DP , for the
distances of v with the points in P . These distance vectors are initialized
at Lines 1–3. To track all the visited vertices, a queue Q is initialized with
the vertex v. Then, at Line 7, a loop starts, ending when all the points
are visited or there are no more vertices to visit. Within the loop, the first
vertex u in Q is dequeued at Line 8. For each non-visited neighbor w of u its
distance D[w] from v is correctly updated to D[u] + 1 (see Line 11). If w is
a point, this distance is recorded in DP . Finally, at Line 13, w is enqueued
in Q if it is not a point or the distances must be calculated in G (that is, if
t is True). Note that if t is False and w is a point, w is not enqueued in Q
because any shortest path between v and a point p ∈ P , p 6= w, useful to
calculate dG(v, p) and to test the mutual visibility of v and p, cannot pass
through w. Procedure BFS MV ends by returning the distance vector DP .

Algorithm MV first checks if the points in P are in different connected
components of G at Line 1. In this case P is not a mutual-visibility set
and the algorithm correctly returns False. If all the points are in the same
connected component H = (VH , EH) (and hence in G, if it is connected),
for each point p in P it calculates the distances of p from each other point
u ∈ P , both in H and in H − P \ {p, u} (see Line 5). If at least one of
these distances is different in the two graphs, then Algorithm MV correctly
returns False, otherwise True.

Procedure BFS MV works in O(|V |+ |E|) time, since every vertex and
every edge will be explored in the worst case. Algorithm MV calls Proce-
dure BFS MV at most two times for each p ∈ P , then the overall time is
O(|P |(|V |+ |E|)). 2
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4 Mutual-visibility set for special graph classes

In this section we study the mutual-visibility number for specific graph
classes and provide some results useful to calculate maximum mutual-
visibility sets in polynomial time in these graphs.

4.1 Graph characterization by mutual-visibility number

The following lemma characterizes some graph classes in terms of their
mutual-visibility number.

Lemma 4.1 Let G = (V,E) be a graph such that |V | = n. Then

1. µ(G) = 1 ⇐⇒ G ∼ Kn (if G is connected: µ(G) = 1 ⇐⇒ G ∼ K1);

2. µ(G) = 2 ⇐⇒ n > 1 and G ∼ Pn or G is the disjoint union of at
most n− 1 path graphs;

3. µ(G) = |V | ⇐⇒ G ∼ Kn;

4. if G is connected and |V | > 2: µ(G) = |E| ⇐⇒ G ∼ K1,n−1 or G is
a triangle

Proof.

1. (⇒) Since µ(G) = 1, E must be empty otherwise there exist xy ∈ E,
and x and y are mutually visible, so µ(G) ≥ 2. Hence G is a graph
with n vertices and no edges, that is Kn

(⇐) Since E is empty there are no paths between vertices, then any
mutual-visibility set cannot have more than one point. Hence µ(G) =
1.

2. (⇒) Since µ(G) = 2, then n > 1. Assume now by contradiction that
G is not isomorphic to Pn and G is not the disjoint union of n−1 path
graphs. Since at least one connected component of G has at least two
vertices, ∆(G) cannot be zero. If ∆(G) = 1, G would be the disjoint
union of K1 and P2 graphs, but this is not possible. For the same
reason, if ∆(G) = 2 at least one connected component must be a cycle
graph Ck, for a certain k, impossible since µ(Ck) = 3 by Lemma 2.8.
Then ∆(G) ≥ 3, but by Lemma 2.6, also in this case µ(G) ≥ 3.
(⇐) Since n ≥ 2, µ(G) = 2 by Lemma 2.8 applied to a connected
component of G with more than two vertices, that must exist since
the connected components are at most n− 1.

3. (⇒) Since all vertices are in mutual visibility then G is connected.
Moreover each u, v ∈ V must be adjacent otherwise in any shortest
path connecting them there is at least one vertex, that is a point since
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Figure 5: A block graph. Red vertices are points of the maximum mutual-
visibility set.

the mutual-visibility set is V .
(⇐) Obvious since all pair of vertices are adjacent and then mutually
visible.

4. (⇒) Since G is connected, |E| ≥ |V | − 1. Moreover |V | ≥ µ(G) = |E|.
Then |E| ≤ |V | ≤ |E| + 1. If |V | = |E| = µ(G) then, by point 3),
G is a clique graph and then a triangle (the only case where |E| =
n(n−1)

2 = n = |V |). If |V | = |E| + 1, G is a tree with |V | > 2 vertices
and µ(G) = |V | − 1 points. Then only one vertex is not a point. It
can be a leaf only if |V | = 3 (and then G ∼ K1,2) otherwise there is a
convex path connecting two leaves with at least three points in mutual
visibility, a contradiction by Lemmas 2.1 and 2.8. For the same reason,
when G 6∼ K1,2, it is the only vertex that is not a leaf. Then the graph
G is a star with n vertices, that is G ∼ K1,n−1.
(⇐) Obvious if G is a triangle, otherwise, by Lemma 2.7, µ(G) ≥
∆(G) = deg(v) = |V | − 1 = |E|, where v is the center of G. However
µ(G) cannot be larger than |E| = |V | − 1 otherwise v should be a
point, preventing the mutual visibility among the pendant vertices.

2

4.2 Block graphs, Trees and Geodesic graphs

A block graph is a graph in which every maximal biconnected subgraph
(called block) is a clique (see Figure 5). As an application of Lemma 2.5
on articulation vertices, the next Theorem characterizes the largest mutual-
visibility sets (an then the mutual-visibility number) for block graphs.

Theorem 4.2 Let G = (V,E) be a connected block graph and X the set of
its articulation vertices. V \ X is a mutual-visibility set of G and µ(G) =
|V \X|.
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Proof. By Lemma 2.5 there exists a maximum mutual-visibility set P ∈
M(G) without vertices in X. To show that P includes all the vertices of
G in V \ X, consider two of them u, v and the shortest (u, v)-path (note
that in block graphs the shortest path between two vertices is unique). If
u and v belong to the same block then they are adjacent since a block is a
clique by definition. Otherwise, the shortest (u, v)-path passes only through
articulation vertices of G, since they are induced paths. Then u and v are
mutually visible. By the generality of u and v the lemma holds. 2

An immediate consequence of Theorem 4.2 is the following corollary
holding for trees.

Corollary 4.3 Let T = (V,E) be a tree and L the set of its leaves. Then
L is a mutual-visibility set and µ(T ) = |L|.

Proof. A tree is a block graph where the blocks are the edges (K2 sub-
graphs) in E and each vertex in V that is not a leaf is an articulation
vertex. Then L is a maximum mutual-visibility set by Theorem 4.2. 2

Figure 1 shows the maximum mutual-visibility set P of a tree. However,
the maximum mutual-visibility set of trees and block graphs is not unique.
This is the case when the removal of an articulation point creates a new
component that is a path Pn, n ≥ 2. In that case, we can create several
mutual-visibility sets of maximum size by choosing single vertices of Pn for
each of them.

In [16] the same result on block graphs is achieved for general position
sets by using the concept of simplicial vertex. A vertex is simplicial if its
neighbours induce a complete graph.

Theorem 4.4 ([16], Th. 3.6) Let S be the set of simplicial vertices of a block
graph G. Then S is a maximum general position set and hence gp(G) = |S|.

Indeed, in Figure 5, red vertices are simplicial vertices. Then, for block
graphs, since the vertices are simplicial vertices or articulation vertices, we
have gp(G) = µ(G). This result can be easily generalized to geodetic graphs:
a graph is geodetic if the shortest path between any pair of vertices is unique,
like in block graphs and trees.

Remark 4.5 If G is a a geodetic graph then gp(G) = µ(G).

The contrary of Remark 4.5 is not true. Cycle graphs C2n, are not geodetic,
but, for n ≥ 3, gp(C2n) = µ(C2n) = 3 (see [16] and Lemma 2.8).
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Figure 6: On the left: mutual-visibility sets for grid graphs Γ1,1, Γ1,2, Γ2,2,
and Γ2,3. On the right: two non isomorphic mutual-visibility sets for Γ3,3.
The size of each mutual-visibility set determines the mutual-visibility num-
ber of the corresponding graph.

a)

u

v z

y

xw b)

Figure 7: a) The unique maximum mutual-visibility set for Γ4,4. b) A
maximum mutual-visibility set for Γ6,6. An extension of this set for Γ7,7,
when Γ6,6 is seen as one of its subgraphs, is obtained by removing points u
and v and by adding points w, x, y, and z.

4.3 Grids, Tori

For grid graphs Γm,n, Figure 6 represents the mutual-visibility sets of max-
imum size for small values of m and n, and Theorem 4.6 gives the values
of µ(Γm,n) for m > 3 and n > 3. These values are based on maximum
mutual-visibility sets shown in Figure 7. Furthermore, Table 1 shows the
values of µ(Γm,n) for all the possible settings of m and n, m ≤ n.

Theorem 4.6 Let Γm,n = Pm �Pn be a grid graph such that m > 3 and
n > 3 then

µ(Γm,n) = 2 ·min(m,n).

Proof. Let Pm = (u0, u1, . . . , um−1) and Pn = (v0, v1, . . . , vn−1). In each
subgraph ((u0, vi), (u1, vi), . . . , (um−1, vi)), representing the i-row of Γm,n,
there are at most two points as an immediate consequence of Lemmas 2.3
and 2.8, since a row is a convex subgraph of Γm,n and is a path. The
same holds for each subgraph ((uj , v0), (uj , v1), . . . , (uj , vn−1)), represent-
ing the j-column of the grid. Then µ(Γm,n) ≤ 2 · min(m,n). To show
that the equality holds, let k = min(m,n) and consider a subgraph Γk,k of
Γm,n. If k = 4, the unique maximum mutual-visibility set of Γ4,4 is given
by: (u1, v0), (u2, v0), (u0, v1), (u3, v1), (u0, v2), (u3, v2), (u1, v3), (u2, v3) and is
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m n Graph G µ(G) Reference

1 1 K1 1 Lemma 4.1

1 n > 1 Pn 2 Lemma 2.8

2 2 C4 3 Lemma 2.8

2 n > 2 Γ2,n 4 Lemmas 2.3 and 2.8

3 3 Γ3,3 5 Figure 6

3 n > 3 Γ3,n 6 Lemmas 2.3 and 2.8

4 4 Γ4,4 8 Figure 7

m > 3 n > 3 Γm,n 2m Theorem 4.6

Table 1: Values of µ(G) when G ∼ Γm,n, for all the possible value of m and
n such that m ≤ n.

represented in Figure 7a. Then µ(Γk,k) = 8, and since there are two points
for each row and each column, then µ(Γm,n) = 8 = 2 ·min(m,n).

For k ≥ 5, consider again a grid subgraph Γk,k of Γm,n and the set of
points: (u1, v0), (u2, v0), (u0, v1), (u3, v1), (uj−2, vj), (uj+2, vj), for each j =
2, . . . , k − 3, and (uk−4, vk−2), (uk−1, vk−2), (uk−3, vk−1), (uk−2, vk−1). This
set generalizes the solution given for k = 4 and is represented in Figure 7b.
Since there are two points for each row and each column and all the points
are in mutual visibility, then µ(Γm,n) = 2 ·min(m,n). 2

In [17] it is proved that gp(Γn,n) = 4 for n ≥ 3. Since µ(Γn,n) = 2n for
n > 3, then the difference between the two numbers can be arbitrarily large.

For tori Tm,n = Cm �Cn, notice that each copy of Cm and Cn is a convex
subgraph of Tm,n. Then, by Lemmas 2.3 and 2.8, we derive:

Corollary 4.7 Let Tm,n = Cm �Cn be a torus such that m ≥ 3 and n ≥ 3
then

µ(Tm,n) ≤ 3 ·min(m,n).

However, the problem of finding m and n such that the mutual-visibility
number of Tm,n is equal to 3 ·min(m,n) is still open. In general, solutions
for tori are quite irregular, like that shown in Figure 8a for a torus T5,5,
where the upper bound is not reached. It would be interesting to find the
values of m such that µ(Tm,m) reaches the upper bound of Corollary 4.7.
There are no mutual-visibility sets for tori Tm,m such that µ(Tm,m) = 3 ·m,
for m ≤ 11 (result obtained with a backtracking algorithm that explored a
space of

(
m
3

)m
possible solutions using Algorithm MV as subprocedure). As

shown in Figures 8c and 8d, for m = 12 and m = 15 there are tori such that
µ(T12,12) = 3 · 12 and µ(T15,15) = 3 · 15. These solutions were found without
the help of a computer, but a scalable solution, such as the one provided in
Theorem 4.6 and shown in Figure 7 for grids, is not available. With respect
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a) b)

c) d)

Figure 8: a) A torus C5 �C5. Vertices in red form a maximum mutual-
visibility set. b) The same graph represented as a three-dimentional torus.
The dotted vertex corresponds to the dotted vertex in a). c) A solution for
a torus T12,12 such that µ(T12,12) = 3 · 12. d) A solution for a torus T15,15
such that µ(T15,15) = 3 · 15.

to grids, the main difficulty is due to the fact that, for m′ > m and n′ > n,
Tm,n is not a subgraph of Tm′,n′ , whereas Γm,n is a subgraph of Γm′,n′ .

In [15], Theorem 4.5, it is proved that if r ≥ s ≥ 3, s 6= 4, and r ≥ 6,
then gp(Tr,s) ∈ {6, 7}.

4.4 Complete bipartite graphs, cographs and more general
graphs

Let us start with a preliminary result about graphs such that almost all the
vertices can be part of a mutual-visibility set.

Lemma 4.8 Let G = (V,E) be a graph. Then µ(G) ≥ |V | − 1 if and
only if there exists v ∈ V adjacent to each vertex u ∈ G − v such that
degG−v(u) < |V | − 2.

Proof. (⇒) If µ(G) = |V | then, by Lemma 4.1, G is a clique graph and
then the statement is obviously true. If µ(G) = |V | − 1, then there exists a
unique vertex v of G such that v 6∈ P , where P ∈M(G). Let u ∈ G− v. If
degG−v(u) = |V | − 2, then u is adjacent to any other point in P , and then
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m n Graph G µ(G) Reference

1 1 P2 2 Lemma 2.8

1 n > 1 K1,n n Corollary 4.3

2 2 C4 3 Lemma 2.8

2 n > 2 K2,n n+1 Lemma 4.8

m ≥ 3 n ≥ 3 Km,n n+m-2 Theorem 4.9

Table 2: Values of µ(G) for G ∼ Km,n for all the possible value of m and n
such that m ≤ n.

is in mutual visibility with it. If degG−v(u) < |V | − 2 then there exists at
least a vertex w ∈ P not adjacent to u. Since u and w are mutually visible,
there must exist the path (u, v, w), then v is adjacent to u.

(⇐) Let P = V \ {v} be a set of points. Let us show that it is a mutual-
visibility set and then that µ(G) ≥ |V |−1. Let u ∈ P , if degG−v(u) = |V |−2,
then, as noted above, u is adjacent to any other vertex in P . Otherwise
degG−v(u) < |V | − 2 and uv ∈ E by hypothesis. In this case, let Q =
P \ NG−v[u] be the set of points in P not adjacent to u. Then for each
w ∈ Q, degG−v(w) < |V |−2. Hence w is adjacent to v and then u and w are
in mutual visibility through the shortest path (u, v, w). By the generality of
u and w, we have that P is a mutual-visibility set of G. 2

For complete bipartite graphs Km,n, Table 2 reports the values of
µ(Km,n) for small values of m and n. Note that for K2,n ∼ K2 + Kn

Lemma 4.8 applies if the vertex v is taken in the partition K2. A general
result is the following.

Theorem 4.9 Let G be a complete bipartite graph Km,n such that m ≥ 3
and n ≥ 3. Then µ(G) = m+ n− 2.

Proof. First we notice that µ(G) ≤ m+n−2 because µ(G) = m+n would
imply that G is a clique graph and µ(G) = m+n−1 is not possible because
Lemma 4.8 does not apply. To show that µ(G) = m+ n− 2, it is sufficient
to find exactly two vertices that are not in the maximum mutual-visibility
set consisting of all other vertices. Since G ∼ Km +Kn, we take a vertex u
from Km and a vertex v from Km.

Each point w in Km − v is in mutual visibility with other points in
Km−v because of vertex u. Furthermore, w is adjacent to points in Kn−u.
Symmetrically, points in Kn− u are in mutual visibility because of vertex v
and are adjacent to all other points. 2

We can generalize the results of Lemma 4.8 and Theorem 4.9 to more
general graphs resulting from a join operation.
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Corollary 4.10 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs and
J = G1 + G2 = (V,E) their join. Then one of the following three cases
holds:

1. µ(J) = |V | ⇐⇒ G1 and G2 are clique graphs

2. µ(J) = |V | − 1 ⇐⇒ µ(J) 6= |V | and µ(G1) ≥ |V1| − 1 or µ(G2) ≥
|V2| − 1

3. µ(J) = |V | − 2 ⇐⇒ µ(G1) < |V1| − 1 and µ(G2) < |V2| − 1.

Proof.

1. Obvious by Lemma 4.1.

2. (⇒) If µ(J) = |V | − 1 then there is a vertex v that is not a point.
Without loss of generality, let v ∈ V1. Then each pair x, y of non
adjacent points in G1 − v must be connected to v to be in mutual
visibility. Hence, by Lemma 4.8, µ(G1) ≥ |V | − 1.
(⇐) Without loss of generality, assume µ(G1) ≥ |V1| − 1. If µ(G1) =
|V1| − 1, let v ∈ V1 be the only vertex of G1 that is not a point,
otherwise, if G1 is a clique graph, let v be any point of V1. Given
µ(G1) ≥ |V | − 1, all the points in V1 \ {v} are in mutual visibility.
Any pair of points in V2 are in mutual visibility since either adjacent
or connected to v. Since any point in V2 is adjacent to any point in
V1, we conclude that all the points are in mutual visibility and then
µ(J) = |V | − 1

3. Let v1 ∈ V1 and v2 ∈ V2, and let P = V \ {v1, v2} be the set of points.
Then P is a mutual-visibility set, since any point in V1\{v1} (V2\{v2},
resp.) is adjacent to any point in V2 (V1, resp.) and it is in mutual
visibility with any non adjacent point of V1 with a shortest path of
length two passing through v2 (v1, resp.).

2

Cographs are well studied in literature and were independently redis-
covered many times, since they represent the class of graphs that can be
generated from K1 by complementation and disjoint union (see Theorem
11.3.3 in [7] for equivalent definitions). As reported in Section 2, a con-
nected cograph can be obtained starting from K1 by a sequence of splittings,
that is by adding a sequence of twin vertices. In [10] the notion of twin-free
subgraph was introduced.

Definition 4.1[10] Let G = (V,E) be a graph. The twin-free subgraph
tf (G) of G is the subgraph G[V ′] induced by the largest set of vertices V ′ ⊆ V
such that G[V ′] has no twins.
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Since any induced subgraph of a connected cograph G is a cograph, then
tf (G) ∼ K1 and it can be obtained by the polynomial time Pruning al-
gorithm presented in the same paper. This algorithm removes any vertex
v of G that has a twin, and it applies the same procedure to G − v until
a graph without twin vertices is reached. Then it provides a sequence of
vertex removals that corresponds to a sequence of splitting operations to
rebuild the whole G starting from K1 and in such a way that G results the
join of two of its subgraphs. Based on this observation we can provide the
following result.

Theorem 4.11 Let G = (V,E) be a connected cograph. Then µ(G) ≥
|V | − 2 and a maximum mutual-visibility set can be computed in polynomial
time.

Proof. Let us show that the vertices of any connected cograph G = (V,E)
can be partitioned into two subsets V1 and V2 such that G = G[V1] +G[V2].

Let v1 be the only vertex of tf (G) and let V1 = {v1}. Since G is con-
nected, the first splitting operation to rebuild G from v1 produces a true
twin v2 of v1 and the resulting graph is a K2. Let V2 = {v2}. Now add any
vertex v′1 (v′2, resp.) produced by a splitting operation on a vertex of V1 (V2,
resp.) to V1 (V2, resp.). Eventually, each vertex in V1 is connected to all
the vertices in V2 and vice versa. Hence G = G[V1] + G[V2]. By applying
Corollary 4.10, µ(G) ≥ |V | − 2. If all the splitting operations generate true
twins, then G is a clique graph and µ(G) = |V |. By Algorithm MV, we
can test if V \ {v} is a mutual-visibility set of G for some vertex v ∈ V ,
and then µ(G) = |V | − 1. Otherwise, µ(G) = |V | − 2 and V \ {v1, v2} is a
mutual-visibility set of G. 2

In [4], Theorem 4.2, it is proved that if G is a connected cograph, then
gp(G) = max{ω(G), ω(G)},

5 Conclusions

This paper is a first study on the concepts of mutual-visibility set and
mutual-visibility number. It would be interesting to study the same concepts
for weighted graphs and directed graphs. The latter case is very different
from the studied one since, given a set of points P , the relation of visibility
between two points is not symmetric.

From a computational point of view, the Mutual-Visibility problem
could be analyzed with respect to approximability and parameterized com-
plexity.

Given a graph, we have shown some relations between the mutual-
visibility number and both the general position number and the maximum
degree of the graph. It would be interesting to study relations with other
invariants, such as the treewidth or the clique-width of a graph.
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Finally, different kinds of visibility can be investigated. For example, the
single point visibility : find the vertex in the graph seen by the largest set of
points.
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