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Universidade de São Paulo, Av. Trabalhador São-carlense, 400,

13566-590, São Carlos, SP, Brazil
bDepartment of Mathematical Sciences, The University of Texas at Dallas,

800 W. Campbell Road, Richardson, Texas 75080-3021, USA

Abstract

In this work we formulate and test a new procedure, the Multiscale Pertur-

bation Method for Two-Phase Flows (MPM-2P), for the fast, accurate and

naturally parallelizable numerical solution of two-phase, incompressible, im-

miscible displacement in porous media approximated by an operator splitting

method. The proposed procedure is based on domain decomposition and com-

bines the Multiscale Perturbation Method (MPM) [Ali, et al., Appl. Math. and

Comput., 125023 (2020)] with the Multiscale Robin Coupled Method (MRCM)

[Guiraldello, et al., J. Comput. Phys., 355 (2018) pp. 1-21]. When an update

of the velocity field is called by the operator splitting algorithm, the MPM-2P

may provide, depending on the magnitude of a dimensionless algorithmic pa-

rameter, an accurate and computationally inexpensive approximation for the

velocity field by reusing previously computed multiscale basis functions. Thus,

a full update of all multiscale basis functions required by the MRCM for the

construction of a new velocity field is avoided.

There are two main steps in the formulation of the MPM-2P. Initially, for

each subdomain one local boundary value problem with trivial Robin bound-

ary conditions is solved (instead of a full set of multiscale basis functions, that
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would be required by the MRCM). Then, the solution of an inexpensive inter-

face problem provides the velocity field on the skeleton of the decomposition of

the domain. The resulting approximation for the velocity field is obtained by

downscaling.

We consider challenging two-phase flow problems, with high-contrast perme-

ability fields and water-oil finger growth in homogeneous media. Our numerical

experiments show that the use of the MPM-2P gives exceptional speed-up -

almost 90% of reduction in computational cost - of two-phase flow simulations.

Hundreds of MRCM solutions can be replaced by inexpensive MPM-2P solu-

tions, and water breakthrough can be simulated with very few updates of the

MRCM set of multiscale basis functions.

Keywords: two-phase flows, porous media, multiscale perturbation method,

multiscale basis functions, Robin boundary conditions.

1. Introduction

We are concerned with the development of fast and scalable multiscale solvers

for porous media flows, aiming at the solution of inverse problems (uncertainty

quantification) in reservoir simulation, where thousands of forward in time sim-

ulations have to be performed (see, for instance [1] and references therein). In

this work we consider two-phase, incompressible, immiscible displacement in

porous media approximated by an operator splitting method. Such procedure

decomposes the governing coupled system of partial differential equations into

two equations that are solved sequentially: a second order elliptic equation for

the fluid pressure (the pressure equation) is followed by the solution of a scalar

hyperbolic conservation law for a phase saturation (the saturation equation).

Our focus here is to speed-up the solution of the pressure equation by com-

bining recent developments in the area of multiscale mixed methods for second

order elliptic equations. Within the splitting framework the hyperbolic conser-

vation law is solved by an explicit finite volume scheme, that can be efficiently

solved in multi-core devices.
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There are many different types of multiscale methods that can be used

to solve the elliptic equation frequently occurring in problems related to the

reservoir simulations. These methods are typically based on the finite element

method (FEM), finite volume method (FVM) or mixed finite element method.

A detailed review of some of the established multiscale methods based on these

various procedures can be found in [2]. Method discussed in [3, 4] and [5] are

FEM based while [6] and [7] are FVM based multiscale methods used to solve

the second order elliptic equation. There are also other different approaches

like the variational multiscale method [8], the generalized multiscale method [9]

and the hybrid multiscale method [10]. We are mainly concerned about the

multiscale methods based on mixed FEM approach (see [11] for details about

the theoretical aspect of the mixed FEM). These type of methods can be found,

for example, in [12, 13, 14, 15]. Recent developments in this area of research

have been introduced in [16] and [17].

We have recently established in [18, 19] that a recursive formulation of

the Multiscale Robin Coupled Method (MRCM) [16] shows excellent scalabil-

ity (both weak and strong) for the solution of the pressure equation. These

conclusions were reached by solving the pressure equation on state-of-the-art

multi-core devices, for problems with a few billion variables, that are of interest

to the oil industry. In [18, 19] the solution of a second order elliptic equation is

obtained in two steps. In a first step, for each subdomain of a decomposition of

the domain of interest a set of multiscale basis functions (local boundary value

problems of Robin type) has to be computed. Then, a coarse interface problem

defined on the skeleton of the domain decomposition needs to be solved. It has

been shown in [18, 19] that the time associated with the solution of the interface

problem is essentially negligible, when compared to the time spent in solving the

local boundary value problems that give the multiscale basis functions. Thus,

a fair assessment of the cost of the solution of the pressure equation by a multi-

scale method can be made in terms of the number of multiscale basis functions

that are computed. Our main objective in this work is to design a method

that can accomplish a reduction in the number of updates of multiscale basis
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functions that are needed in the numerical simulation of two-phase flows.

In order to explain our approach, consider the operator splitting scheme for

two-phase flows [20, 21, 22]. If the above mentioned multiscale mixed method is

applied to solve the pressure equation, then a set of multiscale basis functions

has to be, in principle, recomputed every time the solution algorithm calls for

an updated velocity field. Thus, the development of methods that reduce the

number of multiscale basis functions to be computed in each subdomain, with-

out loss of accuracy, is of great importance to speed-up the solution of two-phase

flow problems. The procedure that we introduce in this work, the Two-Phase

Multiscale Perturbation Method (MPM-2P) has precisely this objective. The

MPM-2P is based on the original Multiscale Perturbation Method (MPM) [23],

that was introduced to approximate the velocity field by reusing multiscale basis

functions computed for a distinct pressure equation (with different, but closely

related coefficients), provided that the solutions of the two elliptic equations

at hand can be related by classical perturbation theory [24]. The proposed

method combines the MPM with the most recent developments of the MRCM

for two-phase flow problems [25]. Our results are very encouraging. We con-

sider challenging two-phase flow simulations and we find that we can typically

reduce the computational cost of a simulation by up to two orders of magni-

tude. Although the new method is presented for two-phase flows it can also

be applied to other types of flows, as well as to the sequential implicit solution

of multiphase flows. These developments, including the implementation of the

procedure described here in multi-core and multi-GPU devices, are currently

being considered by the authors and their collaborators.

This work is organized as follows. The model equations for two-phase flows

appear in Section 2. In Section 3, we recall the MRCM and present a description

of special multiscale basis functions that will be used in our experiments. Then,

the new algorithm for the operator splitting method based on perturbation

techniques which we call the MPM-2P is introduced in Section 4. In this section,

at first we will briefly discuss the MPM-2P and then we propose a modified

operator splitting scheme. A cost analysis of the new method is presented
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which shows its computational efficiency when compared to a classic operator

splitting scheme. Our numerical experiments are presented in Section 5, followed

by Section 6 with the concluding remarks.

2. The Two-Phase Flow Problem

In this section we will introduce the model equations for the two-phase flow

problem where the two phases into consideration are oil and water (see [26, 27]

for a discussion of these equations). The governing system of equations that we

will describe here is in a dimensionless form (see [23] for a detailed description

of the dimensionless form). The system is given by the following elliptic problem

u = −λ(s)K(x)∇p in Ω,

∇ · u = q in Ω,

p = g on ∂Ωp,

u · n = z on ∂Ωu,

(1)

coupled with the hyperbolic conservation law for the saturation transport prob-

lem
∂s

∂t
+∇ · (f(s)u) = 0 in Ω,

s(x, t = 0) = s0(x) in Ω,

s(x, t) = s̄(x, t) in ∂Ω̄.

(2)

Here the velocity u(x, t), pressure p(x, t) fields and the water saturation s(x, t)

are the unknown quantities of the model problem in the domain Ω. We consider

the 2D system for our current experiments, but all developments here can be

extended to 3D space as well, without any additional effort. In this work,

capillary pressure and gravity effects are not taken into account, but they can

be added without changing the proposed method. Moreover, we also consider

a fully saturated media which is a common practice in problems related to oil-

water flows in petroleum reservoirs, which means that sw + so = 1, hence the

saturation equation needs to consider only one of them, say s := sw as stated in

Eq. (2). Here, K(x) is the absolute permeability; q = q(x, t) is a source term;
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g = g(x, t) is the boundary condition for pressure at ∂Ωp; z = z(x, t) is the

boundary condition for normal component of flux at ∂Ωu (n is the outward unit

normal); s0(x) is the saturation initial condition; and s̄(x, t) is the saturation

at the injection boundaries ∂Ω− = {x ∈ ∂Ω, u · n < 0}. The coefficient

λ(s) = λo(s) + λw(s) is the total phase mobility where,

λj(s) =
krj(s)

µj
, (3)

with j ∈ {w, o} representing the water and the oil phase, while krj(s) and µj

are the relative permeability field and viscosity corresponding to the j phase

respectively. The fractional flow function of water is given as,

f(s) =
λw(s)

λ(s)
. (4)

Our model considers a constant porosity scaled out by changing the time vari-

able. Henceforth, we will denote the conductivity by κ(x) = λ(s)K(x).

3. The Multiscale Robin Coupled Method

In this section we will provide a brief overview of the MRCM [16] which is

also a generalization of the Multiscale Mixed Method (MuMM) [14]. MRCM

is a non-overlapping domain decomposition method in that the domain Ω is

divided into several subdomains Ωi, i = 1, 2, · · · , N . The MRCM algorithm to

approximate the solution of the second order elliptic equation consists of two

parts. In the first part, the solution to the elliptic equation is approximated

locally for each of the subdomains Ωi, i = 1, 2, · · · , N . In the second part, the

coarse interface problem defined on the skeleton Γ of the domain decomposition

(the union of all interfaces Γij = Ωi ∩ Ωj) has to be solved. We refer to two

different length scales: h, the fine mesh size, and H, the characteristic size of

the subdomains also known as coarse scale. Here, H � h. We will denote the

elliptic solution obtained by MRCM for each fine scale element by (uh, ph).

Weak continuity of the solution is imposed on the coarse scale through the

following compatibility conditions:∫
Γ

(u+
h − u−h ) · ň ψ dΓ = 0 and

∫
Γ

(p+
h − p

−
h ) φ dΓ = 0. (5)

6



Here (φ, ψ) ∈ UH ×PH where UH and PH are low-dimensional interface spaces

defined over the edges Eh of the skeleton Γ, that are subspaces of

Fh(Eh) = {f : Eh → R; f |e ∈ P0 , ∀ e ∈ Eh} . (6)

In Eq. (5), the solution on each side of the interface Γ is represented by the

+ and − superscripts, while the normal vector to the skeleton is denoted by ň.

These compatibility conditions are enforced by imposing the following Robin-

type boundary conditions to the local problems

−βiuih · ňi + pih = −βiUH ň · ňi + PH (7)

where (uih, p
i
h) are the local normal flux and pressure unknowns for each sub-

domain Ωi and (UH , PH) are global unknowns defined on the interface of the

decomposition of the domain. The parameter βi on each subdomain is defined

as

βi(x) =
α(x)H

κi(x)
, (8)

where α(x) is a dimensionless algorithmic function that is locally defined ac-

cording to the variations in the permeability field (see [25]).

The MRCM is formulated as : Find (uih, p
i
h) and (UH , PH) such that the

following local problems are satisfied

uih = −κ(x) ∇pih in Ωi,

∇ · uih = q in Ωi,

pih = gp on ∂Ωi ∩ ∂Ωp,

uih · ňi = gu on ∂Ωi ∩ ∂Ωu,

−βiuih · ňi + pih = −βiUH ň · ňi + PH on ∂Ωi ∩ Γ,

(9)

along with the following global system

N∑
i=1

∫
∂Ωi∩Γ

(uih · ňi) ψ dΓ = 0,

N∑
i=1

∫
∂Ωi∩Γ

βi(u
i
h · ňi − UH ň · ňi) φ (ň · ňi) dΓ = 0,

(10)

for all (φ, ψ) ∈ UH × PH .
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The implementation of the MRCM considers an additive decomposition of

the local solutions (uih, p
i
h) given by

uih = ûih + ūih, pih = p̂ih + p̄ih, (11)

that satisfies

ûih = −κ(x) ∇p̂ih in Ωi

∇ · ûih = 0 in Ωi

p̂ih = 0 on ∂Ωi ∩ ∂Ωp

ûih · ňi = 0 on ∂Ωi ∩ ∂Ωu

−βiûih · ňi + p̂ih = −βiUH ň · ňi + PH on ∂Ωi ∩ Γ

(12)

and

ūih = −κ(x) ∇p̄ih in Ωi

∇ · ūih = q in Ωi

p̄ih = gp on ∂Ωi ∩ ∂Ωp

ūih · ňi = gu on ∂Ωi ∩ ∂Ωu

−βiūih · ňi + p̄ih = 0 on ∂Ωi ∩ Γ.

(13)

The local problems in Eq. (12) satisfy a nonzero Robin boundary condition for

the subdomain coupling and have source terms as well as physical boundary

conditions identically equal to zero. They correspond to the homogeneous part

of the solution. On the other hand, the local problems in Eq. (13) have interface

Robin boundary condition for the subdomain coupling equal to zero and take

into account the contribution of the nonzero source terms as well as the nonzero

boundary conditions. This solution represents the non-homogeneous part of the

final numerical solution. The set of solutions generated by numerically solving

Eq. (12) forms a set of multiscale basis functions (BFs). Moreover, the solution

to Eq. (13) gives one additional local BF.

The interface spaces UH and PH are spanned by the multiscale BFs

{φ1, φ2, · · · , φNU
} and {ψ1, ψ2, · · · , ψNP

}, where NU = dim(UH) and NP =

dim(PH). Thus, the interface unknowns UH and PH are given by,

UH =

NU∑
l=1

Ulφl, PH =

NP∑
l=1

Plψl, (14)
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where the coefficients Ul and Pl are the solution of the global interface system

generated by the Eq. (10) when tested with all BFs of UH and PH . We remark

that the local problems are completely independent and can be computed in

parallel.

3.1. Choice of interface spaces for the multiscale basis functions

In this section we will discuss our choice of the interface spaces UH and PH
that we will be using to obtain the solution of the multiscale BFs. In terms of

degrees of freedom per interface, NU = kU × NI and NP = kP × NI , where

kU , kP and NI are, respectively, the flux degrees of freedom, pressure degrees

of freedom and number of interfaces between subdomains (see [16] for more

details).

The use of classic low-degree polynomial functions (projected onto Fh(Eh))

is the most common choice for the interface spaces UH and PH . For Gaussian

permeability fields, these spaces are enough to ensure accurate approximations

by choosing linear polynomial interfaces. However, for high-contrast channelized

permeability fields, such as the ones considered here, polynomial based spaces

are not adequate to capture these types of features. Alternatives are informed

spaces, as in [17], or the use of recently developed spaces based on physics [28,

29], which are capable of accurately capturing homogeneities such as channels

and barriers, as happens in fractured karstified reservoirs [30, 31].

In short the new interface space based on physics is an adaptive piecewise

polynomial (further projected onto Fh(Eh)) that automatically accomodates

pressure discontinuities across high permeability channels, as well as flux dis-

continuities across low-permeability barriers. Such adaptive spaces are capable

of recovering the true physical solution of the flow in presence of these hetero-

geneities.

This strategy is seamlessly combined with the adaptive version of the MRCM

(called aMRCM) to set values of α(x) function according to permeability vari-

ations [25]. According to the authors, the aMRCM is able to reduce the error

introduced by the domain decomposition if small values of α are chosen for
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high permeable regions, whilst large values are chosen for remaining areas. The

combination of aMRCM [25] with interface spaces based on physics, as shown

in [17], seems to be the most accurate strategy to deal with highly heteroge-

neous media and therefore this is our choice of multiscale domain decomposition

method for the numerical simulations presented in this work.

4. The Multiscale Perturbation Method for Two-Phase Flows

We consider an operator splitting scheme for two-phase flows as presented in

[25], where pressure and saturation are updated sequentially (see [20, 21, 22] for

additional discussions about the operator splitting framework). The pressure is

updated at times tn = n∆tp, for n = 0, 1, . . . , while the saturation is computed

at intermediate times tn,k = tn + k∆ts, for k = 1, 2, . . . , Cn, such that tn <

tn,k ≤ tn+1. Here, ∆ts denotes the time step used in the discretization of the

saturation equation, ∆tp is the time step for pressure, and Cn is the number of

transport time steps between tn and tn+1.

Let pn(x), un(x) and sn(x) denote the pressure, velocity and saturation ap-

proximations at time tn. We compute the saturation sn(x) through Eq. (2)

by using an explicit Euler time integration (with un−1 constant at intermediate

times tn−1,k) combined with a first order upwind method [32]. Then, the satu-

ration sn(x) is used to compute the pressure pn(x) and velocity un(x) through

Eq. (1) by applying a multiscale method. At this point, instead of calling di-

rectly the MRCM, our operator splitting algorithm uses it in the framework of

the MPM.

4.1. Reusing previously computed basis functions

The goal of the MPM-2P is to approximate the pressure pn(x) and velocity

un(x) by reusing the BFs that are computed by the MRCM at an earlier time of

the simulation. In order to introduce the formulation of the MPM-2P, consider

that the BFs computed at time tm (m < n) will be reused. Therefore, we

have two elliptic problems: Ptm and Ptn , associated with times tm and tn,
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respectively. Following the perturbation theory presented in [23], we express the

conductivity for problem Ptn as a perturbation of the conductivity of problem

Ptm , i.e. κn = κn(x) = λ(sn(x))K(x) = κm + εκε, where ε = ||κn − κm|| is a

small parameter that measures the difference (in L2 norm) between κn and κm

from times tn and tm, respectively, while κε = (κn − κm)/ε is an auxiliary field

related to the formulation of the MPM. Thus, the two elliptic problems at hand

can be written as

Ptm :



um = −κm∇pm in Ω

∇ · um = q in Ω

pm = g on ∂Ωp

um · n = z on ∂Ωu

(15)

and

Ptn :



un = −(κm + εκε)∇pn in Ω

∇ · un = q in Ω

pn = g on ∂Ωp

un · n = z on ∂Ωu.

(16)

For simplicity, we assume that the source term and the known boundary func-

tions depend only on space, but time-dependent source terms and boundary

data can, in principle, be considered. Next, we write the pressure and flux of

problem Ptn as perturbations of the respective pressure and flux of problem

Ptm :

pn = pm + δpn, (17)

un = um + δun. (18)

By combining this decomposition with problem Ptn (16) we get the following

auxiliary system for the pair (δun, δpn)

Pû :



û = −(κm + εκε)∇δpn in Ω

∇ · û = q +∇ · ((κm + εκε)∇pm) in Ω

δpn = g − pm on ∂Ωp

û · n = z + ((κm + εκε)∇pm) · n on ∂Ωu,

(19)
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where û = um + δun + (κm + εκε)∇pm. Although this system is well-posed, its

solution is as expensive as the direct solution of problem Ptn , so approximations

are needed in order to reduce the cost of solving this auxiliary problem.

Since our goal is to reuse the BFs computed for problem Ptm (15), we need

to somehow connect the solution of Pû (19) to the solution space of Ptm . This

would allow us to write the solution of Pû by taking advantage of the span of

the precomputed BFs. To approximate δpn and δun, we consider the following

perturbation expansions:

δpn = δpn0 + εδpn1 + ε2δpn2 + ε3δpn3 + · · · (20)

and

δun = δun0 + εδun1 + ε2δun2 + ε3δun3 + · · · (21)

By applying Eqs. (20) and (21) in Eq. (19), and considering the expansions up

to term ε`, we get the following problems for ` = 0 and ` > 0, respectively:

Pû0
:



û0 = −κm∇δpn0 in Ω

∇ · û0 = q +∇ · ((κm + εκε)∇pm) in Ω

δpn0 = g − pm on ∂Ωp

û0 · n = z + ((κm + εκε)∇pm) · n on ∂Ωu,

(22)

Pû`
:



û` = −κm∇δpn` in Ω

∇ · û` = ∇ · (κε∇pn`−1) in Ω

δpn` = 0 on ∂Ωp

û` · n = 0 on ∂Ωu,

(23)

where û0 = um+δun0 +(κm+εκε)∇pm and û` = δun` +κε∇δpn`−1. The problem

Pû0
is associated with ε0, while the problems Pû`

are associated with ε`, for each

` > 0.

The approach developed in [23], neglects the perturbation terms with ` > 1,

since they are small enough (ε2 � 1 if the perturbation in the conductivity

is small enough from time tm to time tn). We find from our numerical ex-

periments for two-phase flows that, even the first-order perturbation term can
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be neglected, still resulting in accurate results when compared to the solutions

given directly by the MRCM. Therefore, our numerical experiments consider

the approximation of (δun, δpn) given by the solution of problem Pû0
(22), that

is associated with ε0.

We solve Eq. (22) to approximate (û0, δp
n
0 ) by using the MRCM. Note

that the conductivity in this equation is κm, thus we can take advantage of the

BFs computed at time tm to solve only one local boundary value problem with

trivial Robin boundary conditions for each subdomain. Specifically, considering

the MRCM additive decomposition of the local approximations, we only need

to solve the non-homogeneous part of the solution given by Eq. (13). Then, the

global unknowns are given by a linear combination of the precomputed BFs,

whose coefficients are obtained by solving an inexpensive interface problem.

With the computed approximation for (û0, δp
n
0 ), and hence, for (δun0 , δp

n
0 ),

we can determine the pair (δun, δpn). Then, we can find the solution of problem

Ptn using Eqs. (17) and (18). Let ū = um + δun denote the approximation

of the velocity field at this stage. The resulting approximation is obtained by

downscaling, where ū defines fluxes on the interfaces of the domain decompo-

sition, which are used as boundary conditions for the following local problems



ũih = −κn∇p̃ih in Ωi

∇ · ũih = qi in Ωi

ũih · ňi = ūih · ňi on ∂Ωi ∩ ∂Ω

ũih · ňi = ūih · ňi on Γij ∀j

(24)

for all Ωi, i = 1, 2, · · · , N , where ũ is the final approximation for un. We

remark that these local problems are undefined up to a pressure constant. This

indeterminacy is removed by imposing a value for the pressure variable at some

point of the computational domain.

4.2. A modified operator splitting scheme

The operator splitting scheme for two-phase flows calls for an updated ve-

locity field at times tn = n∆tp, for n = 0, 1, . . . . We propose a modification in
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the algorithm to incorporate the option of choosing between the MRCM and

MPM at the elliptic solution steps.

In order to explain our modified operator splitting algorithm, let {Φm,Ψm}

denote the set of basis functions {φ1, φ2, · · · , φNU
} and {ψ1, ψ2, · · · , ψNP

} built

by the MRCM to solve the problem Ptm (15), associated with time tm. We

compute p0 and u0 with the MRCM and store the set of BFs {Φ0,Ψ0}, such

that we can use these basis functions to solve problems Ptn (16), at times

t1, t2, . . . .

The closer the field κm is to the field κn, the more accurate is the approx-

imation provided by the MPM [23]. Since the field κn takes into account an

updated saturation, it can be far from κm depending on the changes due to the

displacement of oil by water interface throughout the domain. The difference

between κn and κm is given by ε = ||κn−κm||. We intend to impose a tolerance

for ε values in the modified operator splitting scheme to control the difference

between κn and κm. For this purpose, we may need to update the BFs more

than once throughout the simulation. Thus, we propose to separate the elliptic

solutions into two cases: the case when the BFs are reused by the MPM and the

case when a full update of the BFs is required. The latter is computed directly

by the MRCM.

We start a two-phase flow simulation with the solutions p0 and u0 computed

by the MRCM, and the corresponding set of BFs {Φ0,Ψ0} stored. We use

these basis functions to solve problems Ptn (16), at times tn = t1, t2, · · · , tm1−1,

where tm1
is the first time such that ε > η (η is the chosen tolerance). At

time tm1 we compute pm1 and um1 by the MRCM and store the updated set

of BFs {Ψm1 ,Φm1}. Then, we use these BFs to solve problems Ptn , at times

tn = tm1+1, tm1+2, · · · , tm2−1, where tm2
is the next time when ε > η, hence we

compute pm2 , um2 and the updated set of BFs by the MRCM. We repeat this

procedure until the final simulation time. The MPM-2P algorithm is summa-

rized in Algorithm 1, where Te denotes the total of elliptic solutions computed.
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Algorithm 1 Solving equations (1)-(2) by the modified operator splitting

1: Given s0(x), compute κm0=0 = λ(s0(x))

2: Compute p0(x) and u0(x) from Eq. (1) by using the MRCM

3: Store the set of BFs {Ψm0=0,Φm0=0}

4: Set n = 1, ` = 0, and ε = η

5: while n < Te do

6: for k ∈ {1, · · · , Cn−1} do

7: tn−1,k = tn−1 + k∆ts

8: Solve Eq. (2) to compute s(x, tn−1,k)

9: end for

10: Given sn(x), update κn = λ(sn(x))

11: if ε > η then

12: ` = `+ 1

13: Compute pn=m`(x) and un=m`(x) from Eq. (1) by using the MRCM

14: Store the updated set of BFs {Ψm` ,Φm`}

15: Update κm` = λ(sn=m`(x))

16: else

17: Compute pn(x) and un(x) from Eq. (1) with the MPM, reusing BFs

{Ψm` ,Φm`}

18: end if

19: Compute ε =‖ κn − κm` ‖

20: n = n+ 1

21: end while
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4.3. Computational cost of the MPM-2P

To compare the computational cost of the MRCM and MPM-2P in the

solution of the elliptic equations arising within the operator splitting algorithm

we start by computing the number of BFs required by them, considering a

problem with a domain decomposition with N = Nx×Ny subdomains (2D). In

order to find the number of BFs required for each method in the approximation

of the two-phase flow problem, let us consider that a total of Te elliptic solutions

need to be computed. Note that:

• Number of BFs required for an elliptic solution:

The number of BFs required by the MRCM in each subdomain is 4 ×

(kU + kP ) homogeneous BFs for each one of the edges of the subdomain,

plus one non-homogeneous basis function. This number may be different

for distinct subdomains due to local choices of degrees of freedom per

interface. Let N̂ be the total number of homogeneous BFs required by

the MRCM, and hence, the total amount of BFs computed by the MRCM

is N̂ +N (in a serial mode implementation).

The MPM requires only the calculation of the basis function for the non-

homogeneous part of the solution in each subdomain. Therefore, we have

a total of N BFs.

• Number of BFs for the coupled flow and transport problem:

The number of BFs required by the MRCM for two-phase flows is (N̂ +

N)× Te. To compute the total of BFs required by the MPM-2P we have

to separate the cases when the basis functions are reused from the cases

when a full update is required.

1. Let Tm be the total number of updates required by the MPM-2P

(associated with the counter ` at line 12 of Algorithm 1). If we

compute each update with the MRCM (considering the same number

of BFs), the total number of BFs required by the updates of the

MPM-2P is (N̂ +N)× Tm.
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2. The total of BFs computed when reusing the basis functions is N ×

(Te − Tm).

Therefore, the total number of BFs computed by the MPM-2P is (N̂ +

N)× Tm +N × (Te − Tm).

To estimate the overall cost of the methods we have to consider the cost of

computing the BFs, downscaling, and a global interface problem. Let CBF , CDS
and CI be, respectively, the estimated computational cost to compute one basis

function, the downscaling in a subdomain, and the global interface problem.

We define the cost estimate of the MRCM as follows:

cost(MRCM) =
[
CBF × (N̂ +N) + CDS ×N + CI

]
× Te

≈ CBF × (N̂ + 2×N)× Te.
(25)

This approximation follows from the fact that the computational cost of the

interface problem is typically negligible when compared to the cost of computing

BFs [18, 19]. Furthermore, the downscaling step has essentially the same cost

of computing one basis function at each subdomain (CDS ≈ CBF ). Thus, the

cost estimate of the MPM-2P is given by:

cost(MPM-2P) =
[
CBF × (N̂ +N) + CDS ×N

]
× Tm

+(CBF + CDS)×N × (Te − Tm) + CI × Te

≈
[
CBF × (N̂ + 2×N)

]
× Tm + 2× CBF ×N × (Te − Tm).

(26)

We define a quantity to indicate the relation between the computational cost

of the methods. The following quantity measures the Relative Cost Reduction

(RCR) accomplished by the MPM-2P when compared with the approximation
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of two-phase flows directly by the MRCM.

RCR =
cost(MRCM)-cost(MPM-2P)

cost(MRCM)
100%

=

[
CBF × (N̂ + 2×N)

]
× (Te − Tm)− 2× CBF ×N × (Te − Tm)

CBF × (N̂ + 2×N)× Te
100%

=
Te − Tm
Te

[
1− 2×N

N̂ + 2×N

]
100%.

(27)

Let us consider as an example a domain decomposition of 4× 4 subdomains

that is used in some of the numerical experiments below. If we consider the

MRCM with constant interface spaces for both flux and pressure, i.e. kU = kP =

1, the total number of homogeneous BFs to be computed is N̂ = 96 (considering

the physical boundary conditions). In order to find the RCR for a two-phase

flow problem, let us consider that a total of Te = 3500 elliptic solutions need

to be computed. This is typically the order of the number of elliptic solutions

needed to reach water breakthrough in some of our simulations. We find in our

numerical experiments that usually, less than 10 updates are required by the

MPM-2P for this type of problem. Therefore, the RCR is given by

RCR =
Te − Tm
Te

[
1− 2×N

N̂ + 2×N

]
100%

=
3500− 10

3500

[
1− 2× 16

96 + 2× 16

]
100% ≈ 74.79%

(28)

The values attained by the cost function for each one of our numerical experi-

ments are shown in the following section. We find that the MPM-2P presents

outstanding speed-up. It reduces significantly the cost of the simulation of two-

phase flows when compared to the traditional operator splitting combined with

the MRCM. A RCR of 68.60% is the least value that we find in our numerical

experiments. The more basis functions we consider the greater is the advantage

of using the MPM-2P.
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5. Numerical Results

In this section, we present numerical simulations to investigate the accuracy

as well as the computational cost of the MPM-2P. We consider challenging two-

phase flow problems, with high-contrast permeability fields and water-oil finger

growth in a homogeneous medium.

In all simulations, we set the relative permeability curves kro = (1− s)2 and

krw = s2, and hence, the fractional flow function is given by

f(s) =
Ms2

Ms2 + (1− s)2
, (29)

where M = µo/µw. The time is expressed in PVI (Pore Volume Injected) [26],

and the results are presented in terms of the number of elliptic solutions. The

downscaling procedure used to compute a conservative solution for the MRCM

approximation is the Stitch method presented in [33].

5.1. A Gaussian permeability field

In the first example, we will consider a slab geometry problem with a Gaus-

sian permeability field. Our initial assumption is that the reservoir is fully

saturated with oil. Water is then injected at a constant rate. Moreover, here

M = 40 in the definition of f(s). The computational domain is taken as a

square [0, 1] × [0, 1] containing 64 × 64 fine grid cells. There is a Dirichlet

boundary on the left (p = 1) and right (p = 0). The top and bottom are no

flow (Neumann) boundary conditions. The domain is divided into 4 × 4 sub-

domains with each subdomain having 16 × 16 fine cells. There are no source

terms taken into account for this example. The permeability data is consid-

ered to be K(x) = 0.8 eδξ(x), where δ = 2.5 for a permeability contrast of

Kmax/Kmin ≈ 103 and δ = 4.5 for Kmax/Kmin ≈ 106. The field ξ(x) is a

self similar Gaussian distribution having zero mean and the covariance function

given by C(x,y) = |x− y|−1/2. A sample permeability field is shown in Fig. 1.

We will discuss the relative error obtained by the MPM-2P and the MRCM

for both the flux and the saturation with respect to a reference fine grid so-

lution. The updates of the BFs for the MPM-2P consider the same set-up of
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the approximation given directly by the MRCM, with a tolerance of η = 10−2

for the values of ε, in line with [23]. The errors are shown as a function of the

number of elliptic solutions. The flux error is computed in terms of the L2(Ω)

norm while the saturation is in terms of the L1(Ω) norm. In addition to that,

we will discuss the saturation profiles obtained at the breakthrough time.

In this example, the interface spaces for the MRCM are the simplest pos-

sible, being constant for both pressure and flux. Additionally, we use an in-

termediate length scale h ≤ H̄ ≤ H to define the constant polynomials at

the interfaces of the subdomains. We test in our numerical experiments two

choices: H̄ = H = 16h, that is the classic choice of one constant basis function

per subdomain interface, and H̄ = H/2 = 8h, that represents a division of

each subdomain interface into two parts, each one containing a constant basis

function. The MRCM solution with constant interface spaces along with the

algorithmic function set as α(x) = 1 is equivalent to the solution yielded by the

MuMM [14].

Figure 1: Gaussian permeability field (log-scaled) with a permeability contrast of

Kmax/Kmin ≈ 106.

Figure 2 indicates the relative error for the flux and saturation obtained for

the permeability contrast of 103 and setting Cn = 1, ∀n, which means that the

elliptic solution has to be computed again after each transport step. There is a

comparison between the results obtained by using the MRCM and the MPM-
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2P, both considering H̄ = H and H̄ = H/2. The MPM-2P with H̄ = H

(and H̄ = H/2 respectively) is more accurate than the MRCM with H̄ = H

(and H̄ = H/2 respectively). The lowest accuracy is observed for the MRCM

approximation with H̄ = H. Moreover, the highest accuracy can be observed

in the case of the MPM-2P with H̄ = H/2. Remember that, in the case of the

MRCM, the set of BFs get recomputed at every elliptic update, while, in the

case of the MPM-2P algorithm, the BFs are recomputed only when ε > 10−2.

The nodes on the curves corresponding to the relative error obtained using the

MPM-2P indicate these elliptic updates. The zoomed version in Fig. 2 indicates

precisely the advantages of using the MPM-2P. Each blue or black cross in the

MRCM indicates the recalculation of the BFs while in the case of MPM-2P,

the two black nodes, and the two blue nodes indicate elliptic updates where the

BFs were recomputed. With respect to the breakthrough time, of the fine grid

solution, the MRCM computes the set of BFs 3283 times while the MPM-2P

computes the set of BFs 10 times (the initial set plus 9 updates). This is where

the real computational advantage of the MPM-2P is observed.

Figure 3 shows the saturation profiles for the previous experiment obtained

at the breakthrough time TPVI = 0.12 (elliptic time step number 3283). We can

compare how close or accurate the approximation obtained by using MPM-2P

and the MRCM with different H̄ values are to the fine scale solution. We can

observe that the approximations that consider H̄ = H/2 capture the saturation

profile in more accurate manner compared to the approximations with H̄ =

H. Therefore, the MPM-2P approximation with H̄ = H/2 helps to lower the

computational cost as well as produce approximations which are accurate.

We perform the same study by considering approximately 20 transport steps

between successive elliptic updates (Cn ≈ 20, ∀n), which means that a smaller

number of elliptic solutions will be required during the simulation. Figure 4

shows a comparison between the results obtained by using the MRCM and the

MPM-2P. Results are similar to the case with Cn = 1, ∀n, where we note a

higher accuracy for the MPM-2P with H̄ = H/2 as compared to the other

cases.
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Figure 2: Relative errors for the Gaussian permeability field with contrast of Kmax/Kmin ≈

103. Top: the relative L2(Ω) error norm for the flux (left) and the relative L1(Ω) error norm

for the saturation (right). Bottom: the zoomed version of the flux error shown in the top left.

We consider H̄ = H and H̄ = H/2 and compare the MRCM and the MPM-2P. The nodes on

each of the MPM-2P curves indicate the times when the BFs are updated. The breakthrough

time is illustrated by a vertical dashed line. Note that the MPM-2P is significantly less

expensive than the MRCM.
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Figure 3: Saturation profiles at breakthrough time TPVI = 0.12 (that corresponds to

the elliptic time step number 3283) for the Gaussian permeability field with contrast of

Kmax/Kmin ≈ 103. First line, left to right: fine grid solution; MRCM with H̄ = H; MRCM

with H̄ = H/2. Second line shows the solutions for the MPM-2P, with H̄ = H (left) and

H̄ = H/2 (right).

Figure 4: Relative errors for the Gaussian permeability field with contrast of Kmax/Kmin ≈

103 and Cn ≈ 20, ∀n. Relative L2(Ω) error for flux (left) and L1(Ω) error for saturation

(right). We consider H̄ = H and H̄ = H/2 and compare the MRCM and the MPM-2P. The

nodes on each of the MPM-2P curves indicate the times when the BFs are updated. The

results are essentially the same as those attained with Cn = 1, ∀n.
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Next, we conducted similar experiments with a higher contrast permeability

ratio where Kmax/Kmin ≈ 106. With the new permeability field, the problem

becomes more difficult and presents a challenge for the multiscale methods.

Results obtained for this case with Cn = 1, ∀n, can be seen in Fig. 5. We

observe similar patterns in the relative error for the flux and saturation as

discussed for the case where Kmax/Kmin ≈ 103. The MPM-2P with H̄ = H/2

gives the best approximation in terms of accuracy and computational cost. The

saturation profiles at the breakthrough time TPVI = 0.10 (elliptic time step

number 3652) are shown in Fig. 6. Here also we can make a similar observation

as we did for Fig. 3.

Figure 5: Relative errors for the Gaussian permeability field with contrast of Kmax/Kmin ≈

106 and Cn = 1, ∀n. Relative L2(Ω) error for flux (left) and L1(Ω) error for saturation

(right). We consider H̄ = H and H̄ = H/2 and compare the MRCM and the MPM-2P. The

nodes on each of the MPM-2P curves indicate the times when the BFs are updated.

We also perform the study for the higher permeability contrast by con-

sidering approximately 20 transport steps between successive elliptic updates

(Cn ≈ 20, ∀n), which are summarized in Fig. 7. The obtained results are

similar to the case with Cn = 1, ∀n, where we can conclude that the MPM-2P

with H̄ = H/2 is a good balance between accuracy and computational cost.

Table 1 presents the Relative Cost Reduction obtained by the MPM-2P for

the previous experiments. We can observe that with the use of the MPM-2P

we are able to obtain an exceptional speed-up: ranging from around 68.60% to

85.60% for both the types of permeability ratios. Hence, we can make one more
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Figure 6: Saturation profiles at breakthrough time TPVI = 0.10 (that corresponds to

the elliptic time step number 3652) for the Gaussian permeability field with contrast of

Kmax/Kmin ≈ 106. First line, left to right: fine grid solution; MRCM with H̄ = H; MRCM

with H̄ = H/2. Second line shows the solutions for the MPM-2P, with H̄ = H (left) and

H̄ = H/2 (right).

Figure 7: Relative errors for the Gaussian permeability field with contrast of Kmax/Kmin ≈

106 and Cn ≈ 20, ∀n. Relative L2(Ω) error for flux (left) and L1(Ω) error for saturation

(right). We consider H̄ = H and H̄ = H/2 and compare the MRCM and the MPM-2P. The

nodes on each of the MPM-2P curves indicate the times when the BFs are updated. The

MPM-2P with H̄ = H/2 is a good balance between accuracy and computational cost.

25



conclusion that the MPM-2P can significantly reduce the computational cost of

solving the two-phase flow problem irrespective of the contrast of the Gaussian

permeability field considered. This is a noteworthy achievement when consid-

ering its application to solving the two-phase problem with a more challenging

permeability data field.

Table 1: Relative Cost Reduction obtained by the MPM-2P for the experiments with the

Gaussian permeability field.

Kmax/Kmin = 103 Kmax/Kmin = 106

Cn = 1 Cn ≈ 20 Cn = 1 Cn ≈ 20

H̄ = H 74.77% 68.60% 74.90% 69.05%

H̄ = H/2 85.45% 78.40% 85.60% 78.91%

5.2. A high-contrast permeability field

The second experiment considers a high-contrast permeability field contain-

ing a high-permeable channel and a low-permeable region, as illustrated in Fig.

8 (left). This permeability field is a modification of one of the layers of the

SPE-10 project [34], built to benchmark the methods developed in [25]. This

field is very challenging to multiscale methods, since it combines both channels

of high permeability and barriers of low permeability in the same problem. The

domain Ω = [0, 33/12]× [0, 3/2] is divided into 11× 6 subdomains with 15× 15

cells into each one. The flow is established by imposing unit flow at the left

boundary and zero pressure at the right boundary along with no-flow at top

and bottom. No source terms are considered. Here, we also consider that the

porous medium is initially filled with oil and water is injected at a constant rate.

The viscosity ratio is set to be M = 40.

Our objective is to compare the approximations provided by the MPM-2P

and those obtained purely by the MRCM. To solve this difficult problem, we

consider an improved version of the MRCM, the adaptive MRCM, as presented

originally in [25]. The adaptive version of the MRCM automatically sets the

parameter α(x) on the interfaces of the domain decomposition, depending if
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the interfaces are crossed by heterogeneities such as high permeable channels

or low permeable barriers. The values of α(x) are set based on a threshold

function, which is illustrated in Fig. 8 (right) for the chosen permeability field.

In the MPM-2P method, the recalculation of the basis functions, when needed,

will be performed by the same adaptive MRCM. Both methods (MPM-2P and

aMRCM) will be tested with two different interface spaces, a linear polynomial

interface space (denoted by the suffix -POL), and the interface spaces based on

physics, as presented in [28] (denoted by the suffix -PBS). We remark that the

cost and accuracy of the linear polynomial interface space are about the same as

using constant spaces with H̄ = H/2, as performed in the previous section. The

interested reader is referred to [25, 28, 29] for more details about the parameters

of adaptive MRCM and about the construction of the interface spaces based on

physics.

Figure 8: Log-scaled permeability field (left) and map of the permeability variations at the

boundaries of the subdomains (right). On the right, the red color identifies regions of high-

permeability and the cyan color represents the regions of low-permeability. Note that the

channelized structures and barriers are well captured by this procedure.

As in the previous results, we have chosen Cn ≈ 20, which means nearly 20

transport steps between successive elliptic updates for all methods considered.

Figure 9 shows the relative L2(Ω) errors for flux (left) and relative L1(Ω) errors

for saturation (right) as a function of the number of elliptic solutions performed.

The errors are computed with respect to a reference fine grid solution. In this

figure, the breakthrough time for the fine grid solution is indicated by a vertical

dashed line.

Remember that the BFs are fully rebuild every elliptic solution when using
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purely the adaptive MRCM. When using the MPM-2P, however, these updates

are drastically reduced, being required only when ε > η. In such cases, the same

adaptive MRCM is used to update the BFs. We compare the errors of the MPM-

2P (with η = 10−2) and the adaptive MRCM with the fine (undecomposed)

grid solution, that are displayed in Fig. 9. The nodes appearing on each of the

MPM-2P curves indicate the times when the BFs are updated. One can see

in these results that the set of BFs was computed 10 times by the MPM-2P

(the initial set plus 9 updates), that is significantly less than the total of 412

full updates required by the adaptive MRCM. As expected, the aMRCM-PBS

(and respectively the MPM-2P that uses the aMRCM-PBS) is more accurate

than the aMRCM-POL (respectively the MPM-2P using the aMRCM-POL),

but most importantly, the MPM-2P yield results that are more accurate than

the adaptive MRCM alone. Note that the flux errors of the MPM-2P tend to

be slightly lower than those produced by the aMRCM, with a subtle increase

when the aMRCM is invoked to update the basis functions. The error rapidly

drops after every BFs full recalculations. By these results, one can see that the

MPM-2P also benefits from the physics-based spaces.

Figure 9: Relative L2(Ω) errors for flux (left) and relative L1(Ω) errors for saturation (right).

We compare both MPM-2P (with η = 10−2) and aMRCM, for both choices of interface spaces

(POL and PBS). The nodes on each of the MPM-2P curves indicate the times when the BFs

are updated. Note the improved accuracy of both methods when using physics-based interface

spaces.

In Fig. 10 we test the sensitivity of the tolerance η, by comparing the results
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yielded by MPM-2P for different choices of η with the results obtained by the

aMRCM-PBS. By changing from η = 0.01 to η = 0.05, one can see a decrease

in the number of updates of the BFs in the same time frame from about 10 to 3.

Note the error is still well bounded around 10−1 even with such low number of

updates. We also turned off BFs updates, that shows an increase in the error,

that is still well behaved, tending to converge to a value around 5 × 10−1 for

this problem. The variation of ε throughout the simulation can be found in Fig.

11, where we point out the tolerance criterion controlling its values.

Figure 10: Relative L2(Ω) errors for flux (left) and relative L1(Ω) errors for saturation (right).

We compare the aMRCM-PBS with the MPM-2P with different tolerances: with no BFs

updates, η = 0.01, and η = 0.05. The nodes on each of the MPM-2P curves indicate the times

when the BFs are updated.

Figure 11: Variation of ε throughout the simulation controlled by three different tolerance

criteria: no BFs updates, η = 0.01, and η = 0.05.
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To close this example, we compare the methods in terms of their satura-

tion profiles in Fig. 12. We show saturation plots for the fine mesh, aMRCM-

POL, aMRCM-PBS, and the MPM-2P considering η = 0.01 (combined with the

aMRCM-POL and aMRCM-PBS) and η = 0.05 (combined with the aMRCM-

PBS). The profiles are taken at time TPVI = 0.06, that corresponds to the

breakthrough time, i.e. 206 elliptic solutions. Note that the improvement pro-

vided by the choice of the interface spaces base on physics (-PBS) over the

aMRCM carry on to the MPM-2P as well. This accuracy is maintained even

when the tolerance is relaxed to η = 0.05, which further decreases the number

of BFs updates.

The Relative Cost Reduction attained by the MPM-2P for this numerical

experiment can be found on Table 2. These remarkable results show how much

we can save by not recomputing all BFs every elliptic time step when solving

two-phase flows through such heterogeneous media, and still keeping the so-

lutions as accurate as those obtained by direct use of sophisticated multiscale

mixed methods, with unprecedented reduction of the computational cost.

Figure 12: Saturation profiles at breakthrough time TPVI = 0.06 (that corresponds to 206

elliptic solutions), comparing the methods aMRCM-POL, aMRCM-PBS, MPM-2P-POL (η =

0.01), MPM-2P-PBS (η = 0.01) and MPM-2P-PBS (η = 0.05).
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Table 2: Relative Cost Reduction attained by the MPM-2P using aMRCM-POL and aMRCM-

PBS with different values of the tolerance η.

Method and tolerance RCR

aMRCM-POL η = 0.01 84.06%

aMRCM-PBS η = 0.01 84.99%

aMRCM-PBS η = 0.05 87.13%

aMRCM-PBS no updates 88.43%

5.3. A fractured permeability field

Another challenging test for the MPM-2P is the fractured permeability field

illustrated in Fig. 13. The domain is set to Ω = [0, 1]× [0, 1], with 200×200 fine

grid cells and a domain decomposition of 10 × 10 subdomains. The flow setup

is about the same as in the previous experiment. The aMRCM-PBS is used to

deal with the high-permeable fractures.

Figure 13: Fractured permeability field (log-scaled).

Figure 14 shows the relative L2(Ω) errors for flux (left) and relative L1(Ω)

errors for saturation (right) computed with respect to the reference fine grid

solution. The breakthrough time for the fine grid solution is indicated by a

vertical dashed line. We consider the tolerance of η = 10−2 for the updates

of the BFs in the MPM-2P algorithm (represented by the nodes). Note that

the set of BFs was computed 10 times by the MPM-2P (the initial set plus 9
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updates), that is significantly less than the total of 692 full updates required

by the aMRCM-PBS. This reduction represents a significant reduction for the

computational cost, while the accuracies of the approximations are comparable.

Figure 14: Relative L2(Ω) errors for flux (left) and relative L1(Ω) errors for saturation (right).

We consider physics-based interface spaces and compare the aMRCM-PBS and the MPM-2P

(with η = 10−2). The nodes on each of the MPM-2P curves indicate the times when the BFs

are updated. Note that the precision of the aMRCM-PBS and the MPM-2P are comparable.

A comparison of the saturation profiles at the breakthrough time TPVI =

0.03, that corresponds to 346 elliptic solutions, is shown in Fig. 15. We show

saturation maps for the fine mesh, aMRCM-PBS, and the MPM-2P combined

with the aMRCM-PBS. Note that both approximations are closely related to

the reference solution, being the MPM-2P approximation significantly less ex-

pensive than the aMRCM-PBS one. The Relative Cost Reduction attained by

the MPM-2P for this experiment is RCR = 88.45%.

5.4. Water-oil finger growth in a homogeneous medium

In this last experiment, we test the MPM-2P with an unstable interface of

oil-water in a homogeneous medium. We consider an injection of water at the

left boundary of the domain Ω = [0, 3] × [0, 1/2], with an initial front fully

saturated of water at the left and filled with oil at the right. The water front

has a small perturbation at the center of the channel, as shown in Fig. 16.

This is a 2D Riemann problem with physical instabilities, similar to the studied

in [35], where the authors have shown that a finger grows at the center of the
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Figure 15: Saturation profile at breakthrough time TPVI = 0.03, that corresponds to the

elliptic time step number 346. Left to right: fine grid solution; aMRCM-PBS; MPM-2P using

the aMRCM-PBS for the updates with η = 0.01.

channel and evolves in time. Here we consider the same viscosity ratio M = 4,

that is close to the critical value for unstable flows (M ≈ 2.657) as described

in [36]. The boundary conditions considered are no-flow at the top and bottom

along with an imposed pressure p = 0 on the left and p = −104 on the right

boundaries. Furthermore, no source terms are considered.

Figure 16 shows the evolution of the saturation for times TPVI = 0.00, 0.03,

0.19, 0.39, 0.66 (corresponding to 1, 100, 600, 1100, and 1600 elliptic solutions,

respectively), from top to bottom. The reference fine grid solution (left) and the

MPM-2P approximation (right) are compared in this figure. The MPM-2P uses

a domain decomposition of 15× 5 subdomains, with 20× 10 cells into each one.

For the update of BFs we use the MRCM with H̄ = h and constant interface

spaces, therefore, the solution obtained by the MRCM with these parameters

is the same as the undecomposed case (see [16]), which means that we do not

have inaccuracies coming from the domain decomposition by the MRCM in this

comparison. Moreover, inaccuracies associated with the operator splitting are

also reduced by setting Cn = 1, ∀n. The updates of the BFs in the MPM-2P

are performed according to the chosen tolerance of η = 10−2.

The relative L2(Ω) error for flux and relative L1(Ω) error for saturation as

functions of the number of elliptic solutions can be found in Fig. 17. A total of
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Te = 2000 elliptic solutions were performed, and the MPM-2P solution required

only 64 updates of the BFs (indicated by the nodes in that figure). The trend

of quickly increasing errors until the breakthrough time (illustrated by a dashed

line) was controlled by the updates of the BFs. This illustrates how challenging

is this problem and how it is well handled by the MPM-2P, with a rapid drop

on flux error after every update. Even for this complex problem with physical

instabilities, the MPM-2P decreases the number of full updates of the set of

BFs from 2000 to 64, yielding a Relative Cost Reduction of RCR = 94.62%.

These results confirm the great potential the MPM-2P to reduce drastically the

computational cost of two-phase flow simulations, without loss of accuracy, being

suitable for any physically-challenging incompressible two-phase subsurface flow

problem.

Figure 16: Saturation evolution for the Riemann problem with a small perturbation of the

initial water-oil interface at the center of the domain. We show the fine grid solution (left) and

the MPM-2P approximation (right) at times TPVI = 0.00, 0.03, 0.19, 0.39, 0.66 (corresponding

to 1, 100, 600, 1100, and 1600 elliptic solutions, respectively), from top to bottom.

6. Conclusion and future work

In this work, we introduced and tested the Multiscale Perturbation Method

for two-phase flows in porous media (MPM-2P). We formulate a modified oper-
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Figure 17: Relative L2(Ω) error for flux and relative L1(Ω) error for saturation, obtained by

the MPM-2P for the Riemann problem with a small perturbation at the center of the domain.

The nodes indicate the times when BFs were updated.

ator splitting method, where we replace full updates of local solutions by reusing

basis functions computed by a multiscale mixed method (such as the Multiscale

Robin Coupled Method - MRCM) at an earlier time of the simulation. The

reuse of multiscale basis functions is guaranteed by using perturbation theory

to write suitable local problems, drastically reducing the computational cost of

multiscale mixed methods.

Our numerical results show an exceptional reduction in the computational

cost of the simulation of two-phase flows in challenging permeability fields. The

MPM-2P can improve significantly the efficiency of an operator splitting method

for two-phase flows, without loss of accuracy. The numerical examples show that

water breakthrough can be simulated with very few updates of the MRCM set

of basis functions. The errors produced by the MPM-2P are comparable, and in

most cases smaller, to the typical values of error attained by multiscale mixed

methods. We remark that any multiscale mixed method can be used for the

updates of the basis functions of the MPM-2P formulation in a straightforward

manner.

The implementation of the new method in multi-core and multi-GPU devices

and its application to the sequential implicit solution of multiphase flows are

currently being considered by the authors and their collaborators. Moreover,

the use of MPM-2P in accelerating Markov chain Monte Carlo methods for
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uncertainty quantification of subsurface flows is a promising research topic and

is also being investigated by the authors.
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