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Abstract:
We study travelling wave solutions of a 1D continuum model for collective cell migration in which

cells are characterised by position and polarity. Four different types of travelling wave solutions are
identified which represent polarisation and depolarisation waves resulting from either colliding or de-
parting cell sheets as observed in model wound experiments. We study the linear stability of the
travelling wave solutions numerically and using spectral theory. This involves the computation of the
Evans function most of which we are able to carry out explicitly, with one final step left to numerical
simulation.
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1 Introduction

Epithelial cells line the surfaces of our body. They are tightly packed and found in various organ
systems. They serve many roles such as secretion, absorption, sensation, protection and transport.
In the context of various physiological and pathological processes including tissue repair, cancer and
wound healing [1,2] they undergo collective cell migration which is an important feature characterising
the development and life-cycle of multi-cellular organisms. The analysis of mathematical models for
cell migration is a powerful tool that allows to identify characteristic features of the collective dynamics.

Cells can move as a group with shared responsibilities according to recent studies on migratory ep-
ithelial tissues [3–7]. During collective cell migration epithelial cells maintain stable cell-cell junctions
[8–11].

Directed cell migration is closely linked to the polarity of the cells [12], which refers to the spatial
differences between cells in shape, structure and function.

How cell polarity is influenced by intercellular coupling is a fundamental question. The best way
of understanding its underlying biochemical signalling mechanism is the planar cell polarity pathway
coupling bistable intracellular states among adjacent cells [13–17].

In cells, polarity propagates as a travelling wave from cell to cell [17–19]. The corresponding
travelling wave solution of a 1D model for the collective migration of epithelial cells has been computed
explicitly in [17]. Preliminary numerical simulations in [17] have shown that the same model exhibits
other travelling wave solutions such as a depolarisation wave entering the sheet of departing cells.

In the present article we identify various other types of travelling wave solutions of this model.
We analyse their stability with the help of spectral theory and using tools from dynamical systems
theory [20–22] such as the Evans function which provides information about the point spectrum of
the linearised model. Note that we are able to compute most of the information to setup the Evans
function explicitly with only one last component being evaluated numerically.
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This article is structured as follows. Section 2 states the governing equations of the 1d model for
collective cell migration. Section 3 lists various types of polarising and depolarising travelling wave
solutions which can be formulated building on the solution found in [17]. In section 4 we provide
numerical evidence for their stability and in section 5 we perform the linear stability analysis. Finally
we wrap up and discuss these results in section 6.

2 Preliminary results

The mathematical model for collective migration of epithelial cells introduced in [17] characterises
each cell by its position along the real axis and by a real-valued quantity called polarity a ∈ R. It
represents the asymmetry of the cell and it is assumed to be linked to active migratory velocity through
a non-linear function vi = M(ai). This function may be thought of as the following step function (or
a smoothened version of it as in Fig. 1A)

M(a) =

{
0 a ≤ α ,
1 a > α ,

(1)

which models polarity-dependent motility with threshold polarity α > 0.
For a single cell the following differential equation for the polarity is defined which models auto-

depolarisation of the cell and adaption to actual motion. It is given (omitting physical constants) by
ȧ = −a+ v = −a+M(a) which - taken as a dynamical system - features two stable steady states, a
non-polarised one at a = 0 and a polarised one at a = 1 (see Fig. 1).
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Figure 1: A: Visualisation of the steady states (arrows) of the single cell model defined by M(a) = a.
B: Sketch of 1d model for collective cell migration.

The 1d model introduced in [17] treats the epithelial cell sheet as a 1d chain of such cells connected
by linearly elastic springs. As a consequence each cell’s velocity is determined by the spring forces
emanating from neighbouring cells and by the active migratory force. The governing equations (after
non-dimensionalisation) are {

ȧi = −ai + ẋi ,

ẋi = M(ai) + κ(xi1 − 2xi + xi−1) ,
(2)

where κ is a phenomenological parameter representing cellular contractility.
The continuum model associated to this particle model has been derived in [17]. Its governing

equations are the continuity equation for the cell density ρ = ρ(x, t) coupled to the momentum
equation and a separate equation for the cell polarity a(x, t) which correspond to the system (2).
After non-dimensionalisation, these equations are given by

∂ρ
∂t + ∂

∂x(ρv) = 0,
∂a
∂t + v ∂a∂x = −a+ v,

v = M(a)− κ 1
ρ3

∂ρ
∂x ,

(3)

which involves the velocity field as v = v(x, t) and the cell polarity a = a(x, t).
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In [17] the system (3) is reformulated using the travelling wave ansatz ρ(x, t) = R(z), a(x, t) = A(z),
where z = x− st parametrises the wave profiles and s is the wave speed. Then the reduced system of
equations is coupled to boundary conditions which correspond to one of the stable fixed points of the
single particle model (2) prescribed at z = −∞, namely (R−∞, A−∞) = (1, 0), where R−∞ is the cell
density at rest normalised to 1. This yields{

R′ = R2

κ ((M(A)− s)R+ s),

A′ = 1 + (A−ss )R.
(4)

Note that the second stationary point of (4) is (R∞, A∞) = ( s
s−1 , 1).

In [17] the authors identify an explicit solution to the travelling wave problem for the specific
active velocity function given in (1). The travelling wave solution they single out models ongoing
polarisation of cells initiated by a departing cell sheet (Fig. 2). Its travelling wave speed and profiles
R and A (all with subscript 1) are

S1: Polarisation wave triggered by departing cell (Fig 2) sheet[17]: s1 = −
√
κ
(

1
α − 1

)
with travelling

wave profiles

A1(z) =

s1α
(

1− 1
g−1(M− zs1

κ
)

)
, z < 0

1 + (α− 1)e
z

s1−1 , z ≥ 0
and R1(z) =

{
g−1

(
M − zs1

κ

)
, z < 0

s1
s1−1 , z ≥ 0

where g(y) = 1
y + log

(
1
y − 1

)
and M = g

(
s1
s1−1

)
.
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Figure 2: (A) shows a simulation of (2) corresponding to the polarisation caused by a departing cell
sheet. (B) shows the corresponding phase plane diagram of (4) and (C) shows the travelling wave
profiles of density R(z) and polarity A(z).

3 Travelling wave solutions

In addition to the travelling wave solution S1 found in [17] we identify other travelling wave solu-
tions corresponding to polarization and depolarization waves. The specific travelling wave speeds and
profiles may be obtained through computations which are analogous to those performed in [17]. Al-
ternatively, one may also derive them directly through two different transformations. These specific
transformations of dependent and independent variables allow us to recast the travelling wave solution
S1 into other travelling wave solutions.

We consider two different transformations:

1. One which transforms a solution of system (4) into another solution of the same system,

T1 : (R(z), A(z), s) −→ (R̄(z̄), Ā(z̄), s̄),

where Ā = A, 1
R + 1

R̄
= 2, z̄ =

∫ z
0 (1− 2R(z̃)) dz̃ and s̄ = −s,
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2. and a transformation which transforms a solution to (3) to another solution of (3),

T2 : (ρ(x, t), a(x, t)) −→ (ρ̄(x̄, t̄), ā(x̄, t̄)),

where t̄ = t, x̄ = t− x, v̄ = 1− v, ā = 1− a, ᾱ = 1− α and ρ̄ = ρ.

Specifically for travelling wave solutions the transformation T2 is given by

T̃2 : (R(z), A(z), s) −→ (R̄(z̄), Ā(z̄), s̄) , where Ā = 1−A , R̄ = R and s̄ = 1− s .

Applying these transformations, we obtain three additional travelling wave solutions in addition to S1
as illustrated in Fig. 3.

T2

T1

T1

T2

S3       Depolarisation wave of
       departing cell sheets

S2        Polarisation wave of
        colliding cell sheets

S4        Depolarisation wave
        of colliding cell sheets

S1
        Polarisation wave of
        departing cell sheets [19]

Figure 3: Scheme of travelling wave solutions (polarising/depolarising, departing/colliding) obtain by
applied the transfromations T1 and T2.

Their specific speeds and profiles are:

S2: By applying the transformation T1 to the travelling wave solution (3), we obtain the polarisation

wave caused by a colliding cell sheet. Its speed is given by s2 =
√
κ
(

1
α − 1

)
and the wave profiles

A2 and R2 (third column of Fig. 4 S2) are given by

A2(z) =

s2α
(

1− 1
h−1(N− zs2

κ
)

)
, z ≥ 0

1 + (α− 1)e
z

s2−1 , z < 0
and R2(z) =

{
h−1

(
N − zs2

κ

)
, z ≥ 0

s2
s2−1 , z < 0

where h(y) = 1
y + log(1− 1

y ) and N = h
(

s2
s2−1

)
. Note that the travelling wave solution S2 can

only be realised if the model parameters κ and α are such that its wave speed s2 > 1. If that is
not the case the mathematical solution is not physical and violates the impenetrability of single
cells (see supplementary section C).

S3: After applying T2 to the solution S1, we find the depolarization wave due to a departing cell
sheet. The profiles A3 and R3 (third column of Fig. 4 S3) are given by

A3(z) =

1 + (1− s3) (1− α)

(
1

g−1
(
M+

(1−s3)z
κ

) − 1

)
, z ≥ 0

αe
z
s3 , z < 0

and R3(z) =

{
g−1

(
M + (1−s3)z

κ

)
, z ≥ 0

s3−1
s3

, z < 0

where M = g
(
s3−1
s3

)
and the wave speed is given by s3 = 1 +

√
κ
(

1
1−α − 1

)
.

S4: After applying T2 to the solution S2, we find the depolarization wave caused by a colliding cell
sheet. The profiles A4 and R4 (third column of Fig. 4 S4) are given by

A4(z) =

1 + (1− s4) (1− α)

(
1

h−1
(
N+

(1−s4)z
κ

) − 1

)
, z < 0

αe
z
s4 , z ≥ 0

and R4(z) =

{
h−1

(
N + (1−s4)z

κ

)
, z < 0

s4−1
s4

, z ≥ 0

where N = h
(
s4−1
s4

)
and the wave speed is given by s4 = 1−

√
κ
(

1
1−α − 1

)
. Note that similar

to S2 the travelling wave solution S4 violates the impenetrability of cells if the model parameters
κ and α are such that the wave speed satisfies s4 ≥ 0. (see supplementary section C).
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Figure 4: S2: Polarisation wave caused by a colliding cell sheet. S3: Depolarisation wave due to a
departing cell sheet. S4: Depolarisation wave caused by a colliding cell sheet. The second and third
columns of S1, S2 and S3 show the corresponding phase plane diagrams of solutions to (4) and the
travelling wave profiles respectively.

In the rest of the paper we will be concerned with the stability of the travelling wave solutions S1-S4.
Note that the transformation T2 acts on solutions of the continuum model (3) and in a vicinity of the
travelling wave solution it is a smooth map. Therefore any perturbation of one the travelling wave
solutions S1 and S2, respectively, translates into a perturbation of S3 and S4, respectively - and vice
versa. Therefore we will only investigate the spectral stability of the travelling wave solution S1, which
will immediately imply the spectral stability of S3.

The same argument will also apply to S2 and S4, respectively. Yet, since the transformation T1
only applies to solutions of (4), but not of (3) we have to investigate the stability of S2 separately
along the same lines as for S1. For this reason this will be added in the supplementary section B.

4 Numerical Simulation

To explore the stability of the travelling wave solution S1 we compute numerical solutions of (3)
numerically using a Lax-Friedrichs scheme [23]. Typically we use very fine spatial grids to minimise
the approximation error.

We are interested in the question whether the choice of the threshold polarity 0 < α < 1 which
models the sensitivity of cells to polarisation affects the stability of the travelling wave solutions.
Running the simulations starting with the initial condition given by the travelling wave solution S1
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shows that for both, small values of α and large values of α, the travelling wave solution is stable
(Fig 5(A,B) and Fig 5(C,D)).

(C)

(B)

(D)

(A)

Figure 5: Travelling wave solution S1 for different parameter values α and κ.

We take this as an indication that that the travelling wave S1 (and therefore S3) is stable for
all parameter values. Further below we will investigate this question using spectral analysis of the
linearised operator.
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(A)

(B)

Figure 6: (A): Travelling wave for small α. (B): Depolarization travelling wave due to large α.

We also perform a numerical experiment in order to explore whether the size of the attractive
regions of the polarisation wave S1 and the respective depolarisation wave S3 may depend on the
sensitivity α. To this end we simulate (3) starting with a given initial condition that is distinct from
the two travelling wave profiles, namely a step function centred at x = 0. The simulations for small
α (Fig 6(A)) illustrate the convergence of the solution towards the polarisation wave. The same
simulation for a large value of α, however, (Fig 6(B)) shows that the solution readjusts and exhibits a
depolarisation wave in the opposite direction. Taking into account potential approximation errors due
to the numerical discretisation, we find that the threshold value ᾱ (i.e. convergence to polarisation
wave if α < ᾱ, otherwise convergence to depolarisation wave) converges to about ᾱ = 0.79 as the
spatial grid is gradually tuned finer (Fig 7).
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Figure 7: The threshold value ᾱ such that the solution converges to the polarisation wave if α < ᾱ,
and to the depolarisation wave otherwise.

5 Stability Analysis

We now investigate the spectral stability of these travelling wave solutions. To this end we introduce
the perturbations of density δρ, polarity δa and velocity δv and linearise the system (3) in the moving
coordinate frame (t, z = x − st) at the travelling wave profile S1, i.e. s = s1 and in what follows we
write R = R1, A = A1 and V for the associated velocity field. The linearised system of equations is
given by (

∂tδρ
∂tδa

)
= L

(
δρ
δa

)
=

(
sδρ′ − (V δρ+Rδv)′

sδa′ − δv(A′ − 1)− V δa′ − δa

)
,

where δv = M ′(A)δa− κ
(

1

R3
δρ

)′
,

(5)

and where we use the notation ′ = ∂z. To obtain the associated eigenvalue problem (L−λ)(δρ, δa)T =
0, consider the solution of the above system (5) to be δρ(z, t) = eλtδρ(z) and δa(z, t) = eλtδa(z). This
converts the eigenvalue problem into a system of first order ODEs,δρ′δv′

δa′

 = A(z, λ)

δρδv
δa

 , where A(z, λ) =

 3R′

R
−R3

κ
M ′R3

κ
2R′s−R2 λ

R3
−R′
R −

Rs
κ

M ′Rs
κ

0 (A′−1)R
s

R (λ+1)
s

 , (6)

where we used that the velocity field (third equation in (3)) for the travelling wave solution S1
satisfies

V = s(1− 1/R) and V ′ = sR′/R2 . (7)

We then denote the corresponding linear operator by T , where T (y)(z) = ( ∂∂z − A(z, λ))y and
y = (δρ, δv, δa)T .

It is our goal to find the spectrum of the linearized operator L which is an operator on H2 ×H1

mapping into L2 ×L2 [20,24]. If (L− λ)−1 is unbounded or does not exist for λ ∈ C, then λ is in the
spectrum σ(L). The Fredholm index of L is ind(L) = dim[ker(L)] − codim[R(L)], where R(L) and
ker(L) denote the range and kernel of L respectively [24]. The spectrum of a Fredholm operator L
is composed of two disjoint sets, namely point spectrum and essential spectrum. The point spectrum
will consist of values λ ∈ σ(L) such that (L − λ) is a Fredholm operator of index zero. The essential
spectrum is the complement of the point spectrum in σ(L).
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Figure 8: The essential spectrum of L (for travelling wave S1) is given by λ along the Fredholm
borders, in this case the union of a straight line (λ1) and a parabola (λ2) in the complex plane.

5.1 Essential spectrum

The essential spectrum is the spectrum up to relatively compact perturbations. To this end we consider
the asymptotic matrices A±(λ) = limz→±∞A(z, λ) given by

A+(λ) =

 0 −s3
κ (s−1)3

0

(1
s − 1)λ s2

κ (1−s) 0

0 1
1−s

λ+1
s−1

 and A−(λ) =

 0 −1
κ 0

−λ − s
κ 0

0 −1
s

λ+1
s

 . (8)

The asymptotic operator of T is given by

T∞

δρδv
δa

 =

δρ′δv′
δa′

−A∞
δρδv
δa

 , where A∞ =

{
A−(λ) z < 0 ,

A+(λ) z ≥ 0 .
(9)

Note that the opterator L is a relatively compact perturbation of the asymptotic operator L∞ which is
defined as the limit of L as z → ±∞ and which is equivalent to the operator T∞ ([24], Theorem 3.1.11),
see also [25]). According to Weyl’s Essential Spectrum Theorem ([24], Theorem 2.2.6), the operators
L and L∞ have the same spectra, i.e., σess(L) = σess(L∞), or equivalently σess(T ) = σess(T∞).

Exponential dichotomies can be used to characterise the spectrum of an operator. According
to this concept each solution to (5) decays exponentially either for z → ∞ or for z → −∞ [25].
For spatially constant matrices the presence of an exponential dichotomy implies that the matrix is
hyperbolic. The Morse indices of the constant matrices A±(λ) are defined as the dimension of their
unstable subspaces written as i±(λ), respectively. For λ ∈ C such that T∞ is Fredholm, we have
ind(T∞ − λ) = i−(λ) − i+(λ) ([24], Lemma 3.1.10). As a consequence we can define the essential
spectrum of L∞ as ([24])

σess(L∞) = {λ ∈ C | i−(λ) 6= i+(λ)} ∪ {λ ∈ C | dim Ec(A±(λ)) 6= 0} , (10)

where Ec denotes the centre subspace associated to the asymptotic linearised system.
The dispersion relations of A− and A+ which characterise dim Ec(A±(λ)) 6= 0 are defined by

det(A− − i µ Id) = 0 and det(A+ − iµ Id) = 0 , where µ ∈ R . (11)

These relations of both A− and A+, after rescaling the spatial eigenvalue µ, coincide and are given by

λ1 = −1 + iµs and λ2 = −µ2κ+ iµs . (12)

Note that the matrix eigenvalues of A−(λ) defined in (8) are given by

µ1(λ) =
λ+ 1

s
, µ2(λ) =

−s
2κ

+

√
s2 + 4κλ

2κ
, µ3(λ) =

−s
2κ
−
√
s2 + 4κλ

2κ
. (13)
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Figure 9: Absolute spectrum shown in red (for s = −2, κ = 1).

and those of A+(λ) are

µ1(λ) =
λ+ 1

s− 1
and µ2,3(λ) =

s2

2κ(1− s)
∓ s
√
s2 + 4κλ

2κ(1− s)
, (14)

which are multiples of the matrix eigenvalues of A−(λ) by s
s−1 > 0. As a consequence the Morse

indices coincide for all λ, i.e. i−(λ) = i+(λ). Therefore the essential spectrum only consists of the the
Fredholm borders (12) which are visualised in Fig. 8.

5.2 Absolute spectrum

While the absolute spectrum is not spectrum [26], it gives information about the stability of the
operator L in exponentially weighted spaces. Most notably it tells us how far the essential spectrum
may be shifted to the left by considering weighted function spaces with exponential weights at ±∞.
If the absolute spectrum lies completely in the open left half-plane of the complex plane, then we say
L is absolutely stable, otherwise absolutely unstable.

We note that common value of the of the Morse index for λ� 1 by i∞, i.e. i∞ = i±(λ). We define
the matrix (spatial) eigenvalues µj± , j = 1, ..., n of the asymptotic matrices A±(λ) ordered according
to the size of their real parts[24],

Reµ1
±(λ) ≥ ..... ≥ Reµl±(λ) ≥ ..... ≥ Reµn±(λ) ,

and introduce the stable and unstable extrema

µu±(λ) = Reµi∞± (λ) , µs±(λ) = Reµi∞+1
± (λ) .

Hence µu±(λ) denotes the smallest (positive) real part of any of the matrix eigenvalues, and µs±(λ)
denotes the largest(negative) real part of any of the matrix eigenvalues, of the asymptotic matrices
A±(λ). Here we have µu±(λ) > 0 > µs±(λ) for Reλ � 1. As we move the eigenvalue λ towards the
Fredholm border coming from the very far right of the complex plane, then at least one of the matrix
eigenvalues will become close to the imaginary axis. Moreover, for the weighted spaces, when the
distance between the spatial eigenvalues, µu± (λ) − µs± (λ), becomes zero, we can not choose a weight
that renders the operator L − λ Fredholm with index zero. This motivates the following definition.

The subset
∑+

abs of C consists exactly of those λ for which Reµi∞+ (λ) = Reµi∞+1
+ (λ) . Analo-

gously, λ is in
∑−

abs if, and only if, Reµi∞− (λ) = Reµi∞+1
− (λ) . Finally, we say that λ is in the absolute

spectrum
∑

abs of an operator if λ is in
∑+

abs or in
∑−

abs (or in both).
For Re(λ) � 1 the matrix eigenvalues of A−(λ) given in (13) satisfy Re(µ2) > 0 as well as

Re(µ3) < 0 and Re(µ1) < 0 (since s < 0). In order to find which of the two asymptotically negative

10



spatial eigenvalues is larger (real part) for a given λ, we solve the inequality Re(µ1) ≤ Re(µ3), i.e.,

Re

(
1 + λ1 + iλ2

s

)
≤ Re

(
−s
2κ
−
√
s2 + 4κ(λ1 + iλ2)

2κ

)
.

In this case we get, writing S(λ1) =
(s2+2κ (1+λ1))

√
(s2+κ (1+λ1)2)

s2
√
κ

, that

Ω1 =

{
λ = λ1 + i λ2 such that λ1 ∈

[
− s

2 + 2κ

2κ
,∞
)

and λ2 ∈ [−S(λ1), S(λ1)]

}
(hatched area in Fig. 9) and Re(µ1) > Re(µ3) is satisfied by all λ in the complement Ω2 = (C \ Ω1)
of this set. As a consequence the absolute spectrum is the set of all λ such that Re(µ2) = Re(µ3) in
Ω1 and Re(µ2) = Re(µ1) in Ω2.

Now for the absolute spectrum in the set Ω1, we solve the equation Re(µ2) = Re(µ3), i.e.

Re

(
−s
2κ

+

√
s2 + 4κλ

2κ

)
= Re

(
−s
2κ
−
√
s2 + 4κλ

2κ

)
,

which implies that Re(λ) ∈
[
− s2+2κ

2κ ,− s2

4κ

]
and Im(λ) = 0.

To obtain the absolute spectrum in the set Ω2, we solve the equation Re(µ1) = Re(µ3), i.e.

Re

(
1 + λ1 + iλ2

s

)
= Re

(
−s
2κ

+

√
s2 + 4κ(λ1 + iλ2)

2κ

)
,

which is the case for all λ = λ1 + i λ2 such that λ1 < − s2+2κ
2κ and λ2 = ± (s2+2κ (1+λ1))

√
(s2+κ (1+λ1)2)

s2
√
κ

.

Thus the absolute spectrum of A−(λ) is given by

σ−abs =

[
−s

2 + 2κ

2κ
,− s

2

4κ

]
∪

{
λ = λ1 + i λ2 | λ1 < − s

2 + 2κ

2κ
and

λ2 = ±
(s2 + 2κ (1 + λ1))

√
(s2 + κ (1 + λ1)2)

s2
√
κ

}
. (15)

Finally the matrix eigenvalues of A+(λ) given in (14) are a multiple of the matrix eigenvalues of
A−(λ), namely by s

s−1 > 0. So the absolute spectrum of A+(λ) is equal to the absolute spectrum of
A−(λ) and the absolute spectrum is given by (15) (see Fig. 9).

This implies in a conveniently chosen weighted space, and without the presence of any point
spectrum with non-negative real part, save for at λ = 0 (see Section 5.3), the wave is spectrally stable.
To determine the weights for which we potentially have spectral stability, we follow [26,27] looking for
a so-called ideal weight. The ideal weight will be the (two-sided) weight which maximises the resolvent

set. We find the ideal weight η∗+ to satisfy Re(η∗+) = s2

2κ(1−s) , for the operator corresponding to A+(λ),

and Re(η∗−) = −s
2κ for the operator corresponding to A−(λ). We note that these also differ by a factor

of s
s−1 . By considering perturbations that decay at least like exp (−ηz) as z →∞ with η ∈ (0, s2

κ(1−s) ],

and like exp ηz as z → −∞, with η ∈ (0,− s
κ ], we have that the essential spectrum will be contained

in the (open) left half plane. This is worth noting because the derivative of the S1 wave decays as

z → +∞ like exp
(

z
s−1

)
, and as z → −∞, like exp

(−3sz
κ

)
and so will remain in the weighted space

for the weights we want to consider. This means that λ = 0 will still be an eigenvalue both in L2

and in the weighted space. As we shall see in the next section, λ = 0 is the only element of the point
spectrum that we can numerically find.
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5.3 Point Spectrum

In this section we investigate the point spectrum of L. We compute the Evans function whose zeros
in the complex plan characterise the point spectrum. In 1972, J. W. Evans used this technique to
investigate the stability of the solution to equations modelling the nerve axon [28,29]. He showed that
the Evans function D(λ) is always analytic to the right side of the essential spectrum. In addition it
has an analytic extension up to the absolute spectrum (Fig. 9).

To compute the Evans function, we start by identifying the stable and unstable eigenvectors of
the asymptotic matrices A±(λ) respectively in an attempt to construct an integrable function which
plays the role of an eigenvector for the linearised system.

The unstable eigenvalue of A− and the stable eigenvalues of A+ are given by

µ−2 (λ) =
−s+

√
s2 + 4κλ

2κ
, µ+

1 (λ) =
λ+ 1

s− 1
and µ+

3 (λ) =
s2 + s

√
s2 + 4κλ

2κ(1− s)
, (16)

which satisfy µ−2 (λ) > 0 and µ+
1 (λ) , µ+

3 (λ) < 0 for Reλ � 1 since that travelling wave speed is
negative, s = s1 < 0.

We introduce the eigenvectors X−0 (λ) associated to the eigenvalue µ−2 (λ) of A− as well as X+
0 (λ)

and Y +
0 (λ) being eigenvectors of A+ associated to µ+

1 (λ) and µ+
3 (λ).

To construct an eigenfunction of the linearised system we solve (6) using these vectors as initial,
respectively terminal conditions until z = 0. Then the Evans function is defined as the Wronskian

D(λ) = det [X−(z = 0, λ), X+(z = 0, λ), Y +(z = 0, λ)] , (17)

which vanishes if the stable and unstable eigenvectors propagated to z = 0 are linearly dependent and
can be combined into a smooth eigenfunction.

We start by computing X+(z = 0, λ) and Y +(z = 0, λ) which can be done in terms of a closed-form
expression. Only for the computation of X−(z = 0, λ) we will resort to numerical results.

For z > 0 it holds that R ≡ s/(s− 1) and the matrix A(z, λ) from (6) is given by

A(z, λ) =

 0 −s3
κ (s−1)3

0

(1
s − 1)λ s2

κ (1−s) 0

0 A′−1
s−1

λ+1
s−1

 . (18)

Note that due to the zeros in the third column the equations for δρ and δv are not coupled to δa.
They satisfy (

δρ′

δv′

)
=

(
0 −s3

κ (s−1)3

(1
s − 1)λ s2

κ (1−s)

)(
δρ
δv

)
, (19)

which is a system of two linear, constant-coefficient equations. It admits one fundamental solution
with negative eigenvalue (we omit the unstable fundamental solution) given by(

δρ
δv

)
= C3 exp(µ+

3 (λ) z)

(
s2 (−s+

√
s2+4κλ)

(s−1)2 κ

2λ

)
(20)

With this information we can rewrite the equation for δa which is contained in the third row of
(18),

δa′ =
A′ − 1

s− 1
δv +

λ+ 1

s− 1
δa

=
A′ − 1

s− 1
2λC3 e

µ3 z + µ+
1 δa .

The general solution is given by

δa = C1e
µ+1 z +

2λ

s− 1
C3

∫ z

0
e(µ+3 −µ

+
1 )z

(
α− 1

s− 1
e

z
s−1 − 1

)
dz̃
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This implies that

lim
z→0+

δρδv
δa

 =

C3
s2 (−s+

√
s2+4κλ)

(s−1)2 κ

C3 2λ
C1

 .

While most components of A(z, λ) in (6) are functions, the derivative of the active speed of migration
(1) is a δ-distribution, M ′(a) = δ(a − α). The change of variables between z and the monotone
function a = A(z) = A1(z) shows that when integrating with respect to z the following expression is
a δ-distribution centred at z = 0, M ′(A(z))A′(z) = δ(z). Therefore δρ and δv in the solution of (6)
undergo a jump at z = 0 which involves the factor 1/A′(0) (for details see appendix A). The left limit
as z → 0 of the solution vector is given by

lim
z→0−

δρδv
δa

 =

C3
s2 (−s+

√
s2+4κλ)

(s−1)2 κ

C3 2λ
C1

− C1

A′(0)

1

κ

R3(0)
R(0) s

0



=C3

 s2 (−s+
√
s2+4κλ)

(s−1)2 κ

2λ
0

+ C1

−
s3

(s−1)2 (α−1)κ

− s2

(α−1)κ

1

 .

where we take the values of R(0) and A′(0) from the travelling wave profile S1.
We obtain the closed-form solutions X+(0, λ) and Y +(0, λ) corresponding to the stable eigenvalues

µ+
1 (λ) and µ+

3 (λ),

X+(0, λ) =

−
s3

(s−1)2 (α−1) k

− s2

(α−1) k

1

 and Y +(0, λ) =

 s2 (−s+
√
s2+4 k λ)

(s−1)2 k

2λ
0

 . (21)

Finally, in order to evaluate the Evans function (17) for a given λ ∈ C, we compute X−(0, λ)
propagating the eigenvector associated to the spatial eigenvalue µ2 given by

v2 =

 −s2+
√
s4+4s2κλ

2λsκ
1
2κ

s2+2κ(1+λ)+
√
s4+4s2κλ

 for λ 6= 0 and v2 =

 1
s
1
κ

s2+κ

 for λ = 0

from an arbitrary small value of z (we choose z = −20) until z = 0 solving the system (6) numerically.

We apply the Argument principle to identify zeros of the Evans function [25]. The argument
principle states that

W =
1

2πi

∮
C

D′(λ)

D(λ)
dλ

corresponds to the winding number around the origin of the image of C under the map D. Here
C is a closed curve, oriented in a counterclockwise direction. Since we choose the contour C to the
right of the absolution spectrum the Evans function D(λ) is analytic on and inside C and the the
winding number W corresponds to the number of zeros of D(λ) inside C. Note that λ = 0 is always
an eigenvalue corresponding to the propagation of the travelling wave profile [20].
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Figure 10: (A) and (B) show the contours C1 and C2 including and excluding the origin, respectively.

We take the contours C1 and C2 such that these are always to the right of the absolute spectrum.
For the contour C1, we take the line l, parallel to the imaginary axis and right to the branch point
with distance dl from the axis and the semicircle right to the origin has radius r. In the right hand
side of the complex plane, we draw the contour C2 with the radii ri and ro of the inner and outer
semicircles respectively excluding the origin.

In figure 11, we draw the image of C1 (where dl = −0.05 and r = 0.1) under D(λ). According to
the argument principle, the winding number for different α’s is one, so there is only one zero which is
at λ = 0. Hence we see the 0 is the only eigenvalue close to the origin.

Now we investigate whether there are eigenvalues on the right side of the complex plane. To do
this we define a semicircle excluding the origin. We draw the contour C2 (see Fig. 10 (B)).

In figure 12, we see that the winding number about the origin is zero for the contour C2 with
ri = 0.1 and ro = 5.
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Figure 11: D(C1) for α = 0.2 , 0.4 , 0.5 and 0.7.
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Figure 12: D(C2) for α = 0.2 , 0.4 , 0.5 and 0.7.
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Figure 13: D(C1) for κ = 5.
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Figure 14: D(C2) for κ = 5.

This illustrates that there is no point spectrum on the right side of the complex plane other than
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the eigenvalue at λ = 0 which corresponds to the translocation of the travelling wave. This indicates
that the travelling wave solution S1 is spectrally stable.

6 Conclusion

We study the travelling wave solutions of a 1D model for collective cell migration in an epithelial layer.
We identify four different travelling waves, two of them corresponding to gradual polarisation of the
cells and the other two corresponding to depolarisation. These travelling wave solutions are related
by the two different transformations T1 and T2.

We apply the transformation T1 obtaining the polarisation, respectively depolarisation waves
associated to departing cell sheets from the (de)polarisation waves of colliding cell sheets and vice
versa. The transformation T2 can be used to turn polarisation waves into depolarisation waves and
vice versa.

A preliminary test of the stability of these travelling waves computing numerical solutions of the
underlaying PDE suggest that they are stable for all parameter values. Yet, we also illustrate that the
threshold polarity α which represents the sensitivity to polarisation has a significant impact on the
respective sizes of the domains of convergence of the polarisation, respectively depolarisation waves.

Using spectral theory and the Evans function we investigate the stability of travelling waves. This
analysis confirms the spectral stability of the travelling wave solutions. While the essential spectrum
touches the origin, we show that the absolution spectrum is on the left hand side of the complex plane.
As a consequence in appropriately chosen weighted spaces the essential spectrum is contained in the
left hand side of the complex plane. The evaluation of the Evans function is done in a way which
combines explicit computations and numerics, and illustrates that the only eigenvalue is the simple
eigenvalue λ = 0 associated with the propagation of the travelling wave.

We perform this analysis in the context of the polarisation wave associated to departing cell sheets.
Due to the smoothness of the map T2 the stability of the polarisation wave also translates into stability
of the associated depolarisation wave S3. We add the analogous analysis for the polarisation wave
associated to colliding cell sheets in the supplementary material, which through the map T2 also applies
to S4.

In conclusion, we find that the travelling waves of cell polarisation (or depolarisation) arising in cell
migration due to departing or colliding cell sheets are always stable. For biological tissues this implies
that for both, sensitivity to polarisation (α) and strength of intercellular mechanical interaction (κ),
there is no absolute threshold such that gradual recruitment of cells into migration, respectively the
gradual transition into a non-migratory rest state comes to a halt. Yet, the preliminary numerical
experiments (Fig. 6) indicate that the sensitivity to polarisation α characterises behaviour which is
reminiscent of a domain of attraction, i.e. lower sensitivity to polarisation (high α) renders polarisation
waves more prone to disruption.
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A Solution of (6) around z = 0.

The first component of Eq. (6) is given by

δρ
′

=
3R
′

R
δρ− R3

k
δv +

M ′(A)R3

k
δa ,
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which we write as the 1st order ODE

δρ′ − C(z)δρ = D(z) ,

where C(z) = 3R
′

R and D(z) = −R3

k δv + M ′(A)R3

k δa. Note that the definition of M = M(A) in (1)

implies that M ′(A) = δ(A− α). Multiplying both sides by the integrating factor e−
∫ z
0 C(z̃)dz̃ we find

(e−
∫ z
0 C(z̃)dz̃ δρ)′ = D(z) e−

∫ z
0 C(z̃)dz̃ .

Integrating on [−ε, ε] for a small value ε > 0 we obtain

e−
∫ ε
0 C(z̃)dz̃ δρ(ε)− e−

∫−ε
0 C(z̃)dz̃ δρ(−ε) =

∫ ε

−ε
D(ẑ) e−

∫ ẑ
0 C(z̃)dz̃dẑ

=

∫ ε

−ε

(
−R

3

k
δv +

R3

k
δ(A− α) δa

)
e−

∫ ẑ
0 C(z̃)dz̃dẑ .

The change of variables â = A(ẑ) implies

e−
∫ ε
0 C(z̃)dz̃ δρ(ε)− e−

∫−ε
0 C(z̃)dz̃ δρ(−ε) =

=

∫ A(ε)

A(−ε)

(
−R

3

k
δv +

R3

k
δ(â− α) δa

)
1

A′(A−1(â))
e−

∫A−1(â)
0 C(z̃)dz̃dâ .

Note that A is monotonically increasing with A(0) = α. Therefore
∫ A(ε)
A(−ε) δ(â − α)dâ = 1 and we

obtain in the limit as ε→ 0 that

lim
ε→0+

δρ(ε)− lim
ε→0−

δρ(ε) =
R3

k
δa

1

A′ (A−1(α))
=
R3

k
δa

1

A′ (0))
.

B Stability Analysis of polarisation wave S2

Here we investigate the linear stability of the travelling wave solution S2. Linearisation of the system
(3) in the moving coordinate frame (t, z = x− st) at the travelling wave profile S2 lead to (5) where
s = s2 as well as R = R2 and A = A2. The associated eigenvalue problem (L − λ)(δρ, δa)T = 0 is
given by (6), (7).

At the far left and right ends the travelling wave profiles R2 and A2 converge to (R−∞, A−∞) =
( s2
s2−1 , 1) and (R∞, A∞) = (1, 0) which corresponds to the limit values of R1 and A1 ”swapped around”.

This implies that the asymptotic matrices B±(λ) = limz→±∞A(z, λ) for S2 are the same as for S1
given in (22), however with + and − inverted.

B−(λ) =

 0 −s3
κ (s−1)3

0

(1
s − 1)λ s2

κ (1−s) 0

0 1
1−s

λ+1
s−1

 and B+(λ) =

 0 −1
κ 0

−λ − s
κ 0

0 −1
s

λ+1
s

 , (22)

where s = s2. As a consequence the essential spectra as well as the absolute spectra of S2 and S1
coincide.

Note that the spatial eigenvalues of B− are given by those of A+ given in (14) and those of B+

are given by those of A− listed in (13), again where s = s2(= −s1).
To compute the Evans function, we start by identifying the stable and unstable eigenvectors of the

asymptotic matrices B±(λ) respectively in an attempt to construct an integrable function which plays
the role of an eigenvector for the linearised system. The spatial eigenvalues (13) and (14) are also
spatial eigenvalues of B±. Since here s = s2 > 1 to avoid violations of the impenetrability constraint
(see section C), the unstable eigenvalue of B− and the stable eigenvalues of B+ are given by

µ−1 (λ) =
λ+ 1

s− 1
, µ−2 (λ) =

s2 − s
√
s2 + 4κλ

2κ(1− s)
and µ+

3 (λ) =
−s−

√
s2 + 4κλ

2κ
, (23)
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which satisfy µ+
3 (λ) < 0 and µ−1 (λ) , µ−2 (λ) > 0 for Reλ� 1.

We introduce the eigenvectors X+
0 (λ) associated to the eigenvalue µ+

2 (λ) of A+ as well as X−0 (λ)
and Y −0 (λ) being eigenvectors of A− associated to µ−1 (λ) and µ−3 (λ).

To construct an eigenfunction of the linearised system we solve (6) using these vectors as initial,
respectively terminal condition until z = 0. Then the Evans function is defined as the Wronskian

D(λ) = det [X+(z = 0, λ), X−(z = 0, λ), Y −(z = 0, λ)] , (24)

which vanishes if the stable and unstable eigenvectors propagated to z = 0 are linearly dependent and
can be combined into a smooth eigenfunction. We start by computing X−(z = 0, λ) and Y −(z = 0, λ)
which can be in terms of a closed-form expression. Only for the computation of X+(z = 0, λ) we will
resort to numerical results.

For z < 0 it holds that R ≡ s2/(s2−1) and the matrix (6) is given by (18). Again, due to the zeros
in the third column the equations for δρ and δv are not coupled to δa. They satisfy (19) which is a
system of two linear, constant-coefficient equations. It admits one fundamental solution with positive
eigenvalue (we omit the stable fundamental solution) given by(

δρ
δv

)
= C2 exp(µ−2 (λ) z)

(
− s2 (s+

√
s2+4κλ)

(s−1)2 κ

2λ

)
(25)

With this information we can rewrite the equation for δa which is contained in the third row of
(18),

δa′ =
A′ − 1

s− 1
δv +

λ+ 1

s− 1
δa

=
A′ − 1

s− 1
2λC2 e

µ−2 z + µ−1 δa .

The general solution is given by

δa = C1e
µ−1 z +

2λ

s− 1
C2

∫ z

0
e(µ−2 −µ

−
1 )z

(
α− 1

s− 1
e

z
s−1 − 1

)
dz̃ .

This implies that

lim
z→0−

δρδv
δa

 =

C2

(
− s2 (s+

√
s2+4κλ)

(s−1)2 κ

)
C2 2λ
C1

 .

While most components of A(z, λ) in (6) are functions, the derivative of the active speed of migra-
tion (1) is a δ-distribution, M ′(a) = δ(a−α). The change of variables between z and the monotonically
decreasing function a = A(z) = A2(z) shows that when integrating with respect to z the following
expression is a δ-distribution centred at z = 0, −M ′(A(z))A′(z) = δ(z). Therefore δρ and δv in the
solution of (6) undergo a jump at z = 0 which involves the factor −1/A′(0). The right limit as z → 0
of the solution vector is given by

lim
z→0+

δρδv
δa

 =

C2

(
− s2 (s+

√
s2+4κλ)

(s−1)2 κ

)
C2 2λ
C1

+
(−1)C1

A′(0)

1

κ

R3(0)
R(0) s

0



=C2

− s2 (s+
√
s2+4κλ)

(s−1)2 κ

2λ
0

+ C1

−
s3

(s−1)2 (α−1)κ

− s2

(α−1)κ

1

 .

where we take the values of R(0) and A′(0) from the travelling wave profile S2.
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We obtain the closed-form solutions X−(0, λ) and Y −(0, λ) corresponding to the stable eigenvalues
µ−1 (λ) and µ−2 (λ),

X−(0, λ) =


s3

(s−1)2 (α−1) k
s2

(α−1) k

1

 and Y −(0, λ) =

− s2 (s+
√
s2+4 k λ)

(s−1)2 k

2λ
0

 . (26)

Finally, in order to evaluate the Evans function (17) for a given λ ∈ C, we compute X+(0, λ) propa-
gating the eigenvector associated to the spatial eigenvalue µ+

3 given by

v3 =

 −s2+
√
s4+4s2κλ

2λsκ
1
2κ

s2+2κ(1+λ)+
√
s4+4s2κλ

 for λ 6= 0 and v3 =

 1
s
1
κ

s2+κ

 for λ = 0

from an arbitrary small value of z (we choose z = 20) until z = 0 solving the system (6) numerically.

(D)

(B)

(C)

(A)

Figure 15: D(C1) for α = 0.2, 0.4, 0.5 and 0.6.
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Figure 16: D(C2) for α = 0.2, 0.4, 0.5 and 0.6.

Finally we compute the image of both contours C1 and C2 (Fig.10) under the Evans function
defined by (24). For various parameter values α and κ we find that for C1 the winding number around
the origin is 1 (Fig. 15) and for the contour C2 which does not enclose the origin, the winding number
is 0 (Fig. 16). As for S1 this indicates that the point spectrum on the right of the complex plane only
consists of λ = 0 which is expected for a travelling wave solution. This suggests that the travelling
wave solutions S2 and – through to transformation T2 – S4 are linearly stable.

C Unphysical travelling wave solutions

Note that the travelling wave solution S2 can only be realised if the model parameters κ and α are
such that s2 > 1. If that is not the case the mathematical solution is not physical and violates the
impenetrability of single cells as illustrated in Fig. 17.
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Figure 17: Un-physical travelling wave solutions in violation of the cells’ impenetrablity. (A) shows a
simulation of the polarisation wave S2 for a set of parameters for which s2 < 1. (B) shows a simulation
of the polarisation wave S4 for a set of parameters for which s4 > 0.
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