
ar
X

iv
:2

11
1.

14
00

6v
1

 [
m

at
h.

N
A

]
 2

7
N

ov
 2

02
1 Preconditioned TBiCOR and TCORS Algorithms

for Solving the Sylvester Tensor Equation

Guang-Xin Huang1∗, Qi-Xing Chen1, Feng Yin2

1. College of Mathematics and Physics, Chengdu University of Technology, P.R.China

2. College of Mathematics and statistics, Sichuan University of Science and Engineering, P.R.China

Abstract. In this paper, the preconditioned TBiCOR and TCORS meth-
ods are presented for solving the Sylvester tensor equation. A tensor
Lanczos L-Biorthogonalization algorithm (TLB) is derived for solving the
Sylvester tensor equation. Two improved TLB methods are presented.
One is the biconjugate L-orthogonal residual algorithm in tensor form
(TBiCOR), which implements the LU decomposition for the triangular
coefficient matrix derived by the TLB method. The other is the conju-
gate L-orthogonal residual squared algorithm in tensor form (TCORS),
which introduces a square operator to the residual of the TBiCOR al-
gorithm. A preconditioner based on the nearest Kronecker product is
used to accelerate the TBiCOR and TCORS algorithms, and we obtain
the preconditioned TBiCOR algorithm (PTBiCOR) and preconditioned
TCORS algorithm (PTCORS). The proposed algorithms are proved to be
convergent within finite steps of iteration without roundoff errors. Sev-
eral examples illustrate that the preconditioned TBiCOR and TCORS
algorithms present excellent convergence.
Keywords. TLB, TBiCOR, TCORS, Sylvester tensor equation, Precon-
ditioner

1 Introduction

This paper is concerned of the computation of the Sylvester tensor equation of
the form

X ×1 A1 + X ×2 A2 + ...+ X ×N AN = D, (1.1)

where matrices An ∈ RIn×In(n = 1, 2, ..., N) and the tensor D ∈ RI1×I2×...×IN

are given, and the tensor X ∈ RI1×I2×...×IN is unknown.
The Sylvester tensor equation (1.1) plays vital roles in many fields such as

image processing [8], blind source separation [22] and the situation when we

∗Emails: huangx@cdut.edu.cn (G.X. Huang), qixinggenius@163.com (Q.X. Chen),
fyin@suse.edu.cn (F. Yin)

1

http://arxiv.org/abs/2111.14006v1

describes a chain of spin particles [2]. If N = 2, then (1.1) can be reduced to
the Sylvester matrix equation

AX+XBT = D, (1.2)

which has many applications in system and control theory [12–14]. WhenN = 3,
(1.1) becomes

X ×1 A1 + X ×2 A2 + X ×3 A3 = D, (1.3)

which often arises from the finite element [20], finite difference [3] and spectral
methods [21].

Many approaches are constructed to solve the Sylvester tensor equation (1.1)
in recent years. Chen and Lu [9] proposed the GMRES method based on a
tensor format for solving (1.1) and presented the gradient based iterative algo-
rithms [10] for solving (1.3). Beik et al. [24] also presented some global iterative
schemes based on Hessenberg process to solve the Sylvester tensor equation
(1.3). Beik et al. [5] solved the Sylvester tensor equation (1.1) with severely
ill-conditioned coefficient matrices and considered its application in color image
restoration. Heyouni et al. [15] proposed a general framework by using tensor
Krylov projection techniques to solve high order the Sylvester tensor equation
(1.1). Beik et al. [1] proposed the Arnoldi process and full orthogonalization
method in tensor form, and the conjugate gradient and nested conjugate gradi-
ent algorithms in tensor form to solve the Sylvester tensor equation (1.1). When
D in (1.1) is a tensor with low rank, Bentbib et al. [6] proposed Arnoldi-based
block and global methods. Kressner and Tobler [19] developed Krylov subspace
methods based on extended Arnoldi process for solving the system of equation
(1.1). The perturbation bounds and backward error are presented in [27] for
solving (1.1). For more methods on other linear systems in tensor form we re-
fer to [4, 16, 18, 23]. Using the nearest Kronecker product (NKP) in [28], Chen
and Lu [9] presented an efficient preconditioner for solving Eq.(1.1) based on
GMRES in tensor form. Very recently Zhang and Wang in [30] gave a pre-
conditioned BiCG (PBiCG) and a preconditioned BiCR (PBiCR) based on the
nearest Kronecker product (NKP) in [28].

Inspired by the Lanczos biorthogonalization (LB) algorithm in [26], BICOR
and CORS methods in [11] for non-symmetric linear equation, in this paper,
we present two improved Lanczos L-orthogonal algorithms in tensor form for
solving the Sylvester tensor equation (1.1). We further present preconditioned
TBiCOR (PTLB) and preconditioned TCORS (TCORS) algorithms by using
the NKP preconditioner in [9] for solving Eq (1.1). The preconditioned LB in
tensor form (PTLB) is also considered.

The rest of this paper is organized as follows. Section 2 reviews some re-
lated symbols, concepts and lemmas that will be used in the contexture. Sec-
tion 3 presents a tensor Lanczos L-biorthogonalization algorithm (TLB) and
two improved TLB methods are shown in section 4. The tensor biconjugate
L-orthogonal residual(TBiCOR) and tensor conjugate L-orthogonal residual
squared(TCORS) algorithms for solving the tensor equation (1.1) are presented
in subsections 4.1 and 4.2, respectively. The convergence of the TBiCOR and

2

TCORS methods are proved. Section 5 presents the preconditioned TLB, TBi-
COR and TCORS algorithms and the convergence of the preconditioned TBi-
COR and TCORS algorithms. Section 6 presents several examples and some
conclusions are drawn in section 7.

2 Preliminaries

The notations and definitions as follows are needed. For a positive integer N ,
an N -way or Nth-order tensor X = (xi1 ...iN) is a multidimensional array with
I1I2...IN entries, where 1 ≤ ij ≤ Ij , j = 1, ..., N . R

I1×...×IN denotes the set
of the Nth-order I1 × ... × IN dimension tensors over the real field R, while
CI1×...×IN defines the set of the Nth-order I1 × ...× IN dimension tensors over
the complex field C.

Let X×nA define the n-mode (matrix) product of a tensor X ∈ RI1×I2×...×IN

with a matrix A ∈ RJ×In , i.e.,

(X ×n A)i1...in−1jin+1...iN =

In∑

in=1

xi1i2...iN ajin .

The n-mode (vector) product of a tensor X ∈ R
I1×I2×...×IN and a vector v ∈ R

In

is denoted by X×nv, i.e.,

(X×nv)i1...in−1in+1...iN =

In∑

in=1

xi1i2...iNvin .

The inner product of X ,Y ∈ RI1×I2×...×IN is defined by

〈X ,Y〉 =

I1∑

i1=1

I2∑

i2=1

...

IN∑

iN=1

xi1i2...iN yi1i2...iN ,

and the norm of X is denoted by

‖X‖ =
√
〈X ,X〉.

Furthermore, it derives from [9] that

〈X ,Y ×n A〉 = 〈X ×n AT ,Y〉. (2.1)

We refer more notions and definitions in [17].
The following results from [1] will be used later.

Lemma 1. Suppose A ∈ RJn×In , y ∈ RJn and X ∈ RI1×I2×...×IN , we have

X ×n A×ne = X×n(A
Ty). (2.2)

3

Lemma 2. If X ∈ RI1×I2×...×IN , then

X×Nej = Xj , j = 1, 2, ..., IN , (2.3)

where ej is the j-th column of the IN -order identity matrix EIN , and Xj denotes
the j-th frontal slice of X .

For X ∈ RI1×I2×...×IN−1×IN and Y ∈ RI1×I2×...×IN−1×I
N̂ , let X ⊠

(N) Y ∈
R

IN×I
N̂ define the ⊠

(N)-product of X and Y, i.e.,

[X ⊠
(N) Y]i,j = trace(X::...:i ⊠

(N−1) Y::...:j), N = 2, 3,

In particular, X ⊠
1 Y = X TY for X ∈ RI1 and Y ∈ RI1 . For any X , Y ∈

RI1×I2×...×IN , a straightforward computation results in

〈X ,Y〉 = trace(X ⊠
(N) Y), N = 1, 2, ..., (2.4)

and (2.4) can be represented as

X ⊠
(N+1) Y = trace(X ⊠

(N) Y). (2.5)

Therefore we have
‖X‖2 = 〈X ,X〉 = X ⊠

(N+1) X . (2.6)

We also need the following results.

Lemma 3. ([1]) Let Y ∈ RI1×I2×...×IN×m be an (N + 1)-order tensor with
column tensors Y1,Y2, ...,Ym ∈ RI1×I2×...×IN and vector z ∈ Rm. For any
(N + 1)-order tensor X with N -order column tensors X1,X2, ...,Xm, it holds
that

X ⊠
(N+1) (Y×(N+1)z) = (X ⊠

(N+1) Y)z. (2.7)

Lemma 4. ([15]) Let X ∈ RI1×I2×...×IN−1×IN and Y ∈ RI1×I2×...×IN−1×I
N̂

be N -order tensors with column tensors Xi(i = 1, ..., IN) and Yj(j = 1, ..., I
N̂
).

For A ∈ R
IN×IN and B ∈ R

I
N̂
×I

N̂ , we have

(X ×N AT)⊠(N) (Y ×N BT) = AT (X ⊠
(N) Y)B. (2.8)

3 A Tensor Lanczos L-Biorthogonalization Al-

gorithm

Define the linear operator of the form

L : RI1×I2×...×IN → R
I1×I2×...×IN ,

X 7→ L(X) := X ×1 A1 + X ×2 A2 + ...+ X ×N AN ,
(3.1)

then the Sylvester tensor equation (1.1) can be represented as

L(X) = D. (3.2)

4

Let LT define the dual linear operator of L, i.e.,

LT : RI1×I2×...×IN → R
I1×I2×...×IN ,

X 7→ LT (X) := X ×1 A
T
1 + X ×2 A

T
2 + ...+ X ×N AT

N ,
(3.3)

then it holds that 〈L(X),Y〉 = 〈X ,LT (Y)〉 for any X ,Y ∈ R
I1×I2×...×IN . Define

the Krylov subspaces in tensor form as follows:

Km(L,V1) = span{V1,L(V1), ...,L
m−1(V1)}, (3.4)

where Li(V1) = L(Li−1(V1)), L
0(V1) = V1, then we have

Km(LT ,W1) = span{W1,L
T (W1), ..., (L

T)m−1(W1)}. (3.5)

Algorithm 1 lists the Lanczos L-Biorthogonalization procedure in tensor
form that will be used to produce two series of biorthogonalization tensors.

Algorithm 1 A Lanczos L-biorthogonalization procedure in tensor form.

Initial: Let V0 = W0 = O ∈ RI1×I2×...×IN . Select V1 and W1 subject to
〈W1,L(V1)〉 = 1. Set δ1 = β1 = 0.
Output: biorthogonalization tensor series Vj, Wj , j = 1, 2, ...
for j = 1, 2, ... do
αj = 〈L2(Vj),Wj〉
Vj+1 = L(Vj)− αjVj − βjVj−1

Wj+1 = LT (Wj)− αjWj − δjWj−1

δj+1 = |〈Wj+1,L(Vj+1)〉|
1
2

βj+1 =
〈Wj+1,L(Vj+1)〉

δj+1

Vj+1 =
Vj+1

δj+1

Wj+1 =
Wj+1

βj+1

end for

We have the following results for Algorithm 1. The proofs of these results
are similar to the proof of Proposition 1 in [11] by using the definitions of the
inner product (2.4), (2.5) and linear operator L in (3.1) and are omitted.

Proposition 1. If Alogrithm 1 stops at the m-th step, then the tensors Vj and
Wi(i, j = 1, 2, ...,m) produced Algorithm 1 are L-biorthogonal, i.e.,

〈Wi,L(Vj)〉 = δi,j , 1 ≤ i, j ≤ m, (3.6)

where

δi,j =

{
1, i = j,

0, otherwise.
(3.7)

Proposition 2. Suppose that Ṽm is the (N + 1)-order tensor with columns

V1,V2, ...,Vm, and W̃m is the (N+1)-order tensor with the columns W1,W2, ...,Wm,

5

H̃m and G̃m are the (N + 1)-order tensors with the columns Hj := L(Vj) and
Gj := LT (Wj) (j = 1, 2, ...,m), respectively. Then we have

H̃m = Ṽm+1 ×(N+1) T
T
m (3.8)

and
G̃m = W̃m+1 ×(N+1) Tm, (3.9)

where

Tm =

(
Tm

δm+1e
T
m

)
(3.10)

with

Tm =




α1 β2

δ2 α2 β3

. . .
. . .

. . .

δm−1 αm−1 βm

δm αm




(3.11)

being a triangular matrix with its elements generated by Algorithm 1. Moreover,
it holds that

W̃m ⊠
(N+1) H̃m = Em (3.12)

and
W̃m ⊠

(N+1) L(H̃m) = Tm, (3.13)

where Em denotes the identity matrix with m order.

We remark that (3.8) and (3.9) can be represented as

H̃m = Ṽm ×(N+1) T
T
m + δm+1Z1 ×(N+1) Km (3.14)

and
G̃m = W̃m ×(N+1) Tm + βm+1Z2 ×(N+1) Km, (3.15)

where Z1 is an (N +1)-order tensor with m column tensors O, ...,O,Vm+1, and
Z2 is an (N + 1)-order tensor with m column tensors O, ...,O,Wm+1, and Km

is an m × m matrix of the form Km = [0, ..., 0, em] with em being the m-th
column of Em.

With the results above we can present the Lanczos L-Biorthogonalization al-
gorithm in tensor form for solving (1.1). For any initial tensor X0 ∈ RI1×I2×...×IN ,
let R0 = D − L(X0) denote its residual. Let V1 = R0/‖R0‖ and

Xm ∈ X0 +Km(L,V1), (3.16)

then
Rm = (D − L(Xm)) ⊥ LT (Km(LT ,W1)). (3.17)

It is easy to verify that a series of tensors {V1,V2, ...,Vm} produced via Algo-
rithm 1 form a basis of Km(L,V1). Thus we have

Xm = X0 + Ṽm×(N+1)ym, (3.18)

6

where ym ∈ Rm. By Eq (3.17) and (3.18), we have

〈D − L(X0 + Ṽm×(N+1)ym),LT (W̃m)〉 = 0. (3.19)

A further computation results in

〈L(H̃m)×(N+1)ym, W̃m〉 = 〈L(R0), W̃m〉. (3.20)

Through a simple inner product operation and according to Eq.(2.6) and Lemma
3 we have

(W̃m ⊠
(N+1) L(H̃m))ym = W̃m ⊠

(N+1) L(R0). (3.21)

Submitting Eq.(3.13) into Eq.(3.21) results in the tridiagonal system on ym:

Tmym = ‖R0‖e1. (3.22)

Once we compute ym by (3.22), we get the solution Xm of (1.1) by (3.18).
We summarize this method in Algorithm 2, which is called Tensor Lanczos
L-Biorthogonalization algorithm (TLB).

Algorithm 2 TLB: A tensor Lanczos L-biorthogonalization Algorithm for solv-
ing (1.1)

Choose an initial tensor X0 and compute R0 = D − L(X0).
Set V1 = R0

‖R0‖
, choose a tensor W1 such that 〈L(V1),W1〉 = 1.

for m = 1, 2, ... until convergence do
Compute Lanczos L-Biorthogonalization tensors V1, ...,Vm, W1, ...,Wm and
Tm by Algorithm 1.
Compute ym by (3.22).

end for

Compute the solution Xm of (1.1) by (3.18).

We remark Algorithm 2 have to compute the inverse of Tm. When Tm is
of large size, it needs much computation. We present two improved algorithms
for Algorithm 2 in the next section.

4 The TBiCOR and TCORS Algorithms

4.1 The TBiCOR Algorithm

In this subsection, we develop an improved algorithm by introducing the LU
decomposition to Tm in Algorithm 2.

Let the LU decomposition of Tm be

Tm = LmUm, (4.1)

7

then, according to Lemma 1, substituting (3.22) and (4.1) into (3.18) results in

Xm = X0 + Ṽm×(N+1)ym

= X0 + Ṽm×(N+1)(U
−1
m L−1

m (‖R0‖e1))

= X0 + P̃m×(N+1)zm, (4.2)

where zm = L−1
m (‖R0‖e1) and P̃m = Ṽm ×(N+1) (U

−1
m)T .

We consider the solution of the system LT (X ∗) = D∗. The dual approxima-
tion X ∗

m is the subspace X ∗
0 +Km(LT ,W1) that satisfies

(D∗ − LT (X ∗
m)) ⊥ L(Km(L,V1)).

Set R∗
0 = D∗ − LT (X ∗

0) and W1 = R∗
0/‖R

∗
0‖. If we choose V1 such that

〈V1,L(W1)〉 = 1, then similar to (3.18)-(3.22), the solution of the dual system
LT (X ∗) = D∗ can be represented as

X ∗
m = X ∗

0 + W̃m×(N+1)y
∗
m, (4.3)

where y∗
m is derived from

TT
my∗

m = ‖R∗
0‖e1. (4.4)

Similar to (4.2), according to Lemma 1, (4.3) together with (4.1) and (4.4)
results in

X ∗
m = X ∗

0 + P̃∗
m×(N+1)z

∗
m,

where P̃∗
m = W̃m ×(N+1) L

−1
m , and z∗m = (UT

m)−1(‖R∗
0‖e1).

Proposition 3. Let Ri = D − L(Xi) and R∗
i = D∗ − LT (X ∗

i) are the i-th
residual tensor and the i-th dual residual tensor, respectively, then it holds that

〈L(Ri),R
∗
j 〉 = 0, (0 ≤ i 6= j ≤ k). (4.5)

Proof. According to Lemma 1, (3.14), (3.15), (3.18) and (4.3), we have

Ri = D − L(X0 + Ṽi×(N+1)yi)

= R0 − L(Ṽi)×(N+1)yi

= R0 − Ṽi ×(N+1) T
T
i ×(N+1)yi − δi+1Z1 ×(N+1) Ki×(N+1)yi

= R0 − Ṽi×(N+1)(Tiyi)− δi+1Z1×(N+1)(K
T
i yi)

= −δi+1e
T
i yiVi+1.

(4.6)

Similarly, we can prove that

R∗
j = −βj+1e

T
j y

∗
jWj+1. (4.7)

(4.6) and (4.7) together with Proposition 1 result in (4.5).

8

Proposition 4. Let Pi and P∗
i (i = 1, ..., k) are the i-th column tensor of P̃k

and P̃∗
k , respectively. It holds that

〈L2(Pi),P
∗
j 〉 = 0(i, j = 1, ..., k, i 6= j). (4.8)

Proof. According to Lemma 4 and (3.13), we have

(P̃∗
k ⊠

(N+1) L2(P̃k))ij = ((W̃k ×(N+1) L
−1
k)⊠(N+1) L2(Ṽk ×(N+1) (U

−1
k)T))ij

= (L−1
k (W̃k ⊠

(N+1) L(H̃k))U
−1
k)ij

= (L−1
k TkU

−1
k)ij

= (Ek)ij , (4.9)

which implies that (4.8) holds.

For a given initial guess X0, let R0 = D − L(X0) and P0 = R0. Set

Xj+1 = Xj + αjPj, (4.10)

Rj+1 = Rj − αjL(Pj), (4.11)

Pj+1 = Rj+1 + βjPj, j = 0, 1, (4.12)

Similarly, for the dual linear system LT (X ∗) = D∗, we set

R∗
j+1 = R∗

j − αjL
T (P∗

j),R
∗
0 = L(R0), (4.13)

P∗
j+1 = R∗

j+1 + βjP
∗
j for j = 0, 1, (4.14)

Now we determine αj and βj in (4.11)-(4.14). According to (4.11) we have that

〈L(Rj+1),R
∗
j 〉 = 〈L(Rj)− αjL

2(Pj),R
∗
j 〉 = 0, (4.15)

then by Propositions 3, 4 and (4.11)-(4.14) it holds that

αj =
〈L(Rj),R

∗
j 〉

〈L2(Pj),R∗
j 〉

=
〈L(Rj),R

∗
j 〉

〈L(Pj),LT (P∗
j)〉

. (4.16)

Similarly according to

〈L2(Pj+1),P
∗
j 〉 = 〈L(Pj+1),L

T (P∗
j)〉 = 0, (4.17)

we have

βj = −
〈L(Rj+1),L

T (P∗
j)〉

〈L(Pj),LT (P∗
j)〉

=
〈L(Rj+1),R

∗
j+1〉

〈L(Rj),R∗
j 〉

. (4.18)

Algorithm 3 summarizes the biconjugate L-orthogonal residual algorithm in
Tensor form for solving (1.1), which is abbreviated as TBiCOR.

We have the following convergence properties on Algorithm 3.

9

Algorithm 3 TBiCOR: A tensor biconjugate L-orthogonal residual algorithm
for solving (1.1)

Compute R0 = D − L(X0) (X0 is an initial guess)
Set R∗

0 = L(R0)
Set P∗

−1 = P−1 = 0, β−1 = 0
for n=0,1,..., until convergence do

Pn = Rn + βn−1Pn−1

P∗
n = R∗

n + βn−1P
∗
n−1

Sn = L(Pn)
S∗
n = LT (P∗

n)
Tn = L(Rn)

αn =
〈R∗

n,Tn〉
〈S∗

n,Sn〉

Xn+1 = Xn + αnPn

Rn+1 = Rn − αnSn

R∗
n+1 = R∗

n − αnS
∗
n

Tn+1 = L(Rn+1)

βn =
〈R∗

n+1,Tn+1〉

〈R∗

n,Tn〉

end for

Theorem 1. Assume that the Sylvester tensor equation (1.1) is consistent.
For any initial tensor X0 ∈ RI1×I2×...×IN , Algorithm 3 converges to an exact
solution of (1.1) at most M = I1 × I2 × ... × IN iteration steps in the absence
of roundoff errors.

Proof. Suppose that Rk 6= O(k = 0, 1, ...,M) and

M∑

k=0

λkRk = O.

According to Proposition 3, we have

0 = 〈R∗
i ,

M∑

k=0

λkL(Rk)〉 =

M∑

k=0

λk〈R
∗
i ,L(Rk)〉

= λi〈R
∗
i ,L(Ri)〉, i = 0, 1, ...,M.

When Algorithm 3 does not break down, 〈R∗
i ,L(Ri)〉 6= 0(i = 0, 1, ...,M), which

leads to λi = 0(i = 0, 1, ...,M). This means that R0,R1,...,RM are linearly
independent, while the dimension of tensor space RI1×I2×...×IN is M . This is
a contradiction. Thus Algorithm 3 converges to an exact solution within M
steps.

4.2 The TCORS Algorithm

This subsection presents an improved method on Algorithm 3 by introducing a
squared operator of the residual of Xn produced by Algorithm 3. The proposed

10

method is called the conjugate L-orthogonal residual squared algorithm in tensor
form, which is abbreviated as TCORS.

Algorithm 4 TCORS: A tensor conjugate L-orthogonal residual squared algo-
rithm for solving (1.1)

Compute R0 = D − L(X0); (X0 is an initial guess)
Set R∗

0 = L(R0)
for n=1,2,..., until convergence do

U0 = R0, Ẑ = L(Un−1); ρn−1 = 〈R∗
0, Ẑ〉; Zn−1 = Un−1

if ρn−1 = 0, stop and reset the initial tensor X0.
if n = 1
T0 = U0; D0 = T0; C0 = Ẑ; Q0 = Ẑ
else
βn−2 = ρn−1/ρn−2; Tn−1 = Un−1 + βn−2Hn−2

Dn−1 = Zn−1 + βn−2Vn−2; Cn−1 = Ẑ + βn−2Fn−2

Qn−1 = Cn−1 + βn−2(Fn−2 + βn−2Qn−2)
end if
Q̂ = L(Qn−1)

αn−1 = ρn−1/〈R
∗
0, Q̂〉; Hn−1 = Tn−1 − αn−1Qn−1

Vn−1 = Dn−1 − αn−1Qn−1; Fn−1 = Cn−1 − αn−1Q̂
Xn = Xn−1 + αn−1(2Dn−1 − αn−1Qn−1)

Un = Un−1 − αn−1(2Cn−1 − αn−1Q̂)
end for

The residual tensor of Xn produced by Algorithm 3 can be represented as

Rn = a0R0 + a1L(R0) + a2L
2(R0) + ...+ anL

n(R0)

= (a0L
0 + a1L+ a2L

2 + ...+ anL
n)R0,

(4.19)

where ai is determined by Algorithm 3. Denote ϕn(L) = a0L
0 + a1L+ a2L

2 +
...+ anL

n, then (4.19) can be represented as

Rn = ϕn(L)R0. (4.20)

Similarly, we have
Pn = φn(L)R0, (4.21)

where φn(L) = b0L
0+b1L+b2L

2+...+bnL
n, and bi can be derived by Algorithm

3. For the directions R∗
n and P∗

n in Algorithm (3), replacing L in (4.20) and
(4.21) with LT results in

R∗
n = ϕn(L

T)R∗
0,P

∗
n = φn(L

T)R∗
0.

Thus αn in (4.16) and βn in (4.18) can be represented as

αn =
〈L(ϕn(L)R0), ϕn(L

T)R∗
0〉

〈L(φn(L)R0),LT (φn(LT)R∗
0)〉

=
〈L(ϕ2

n(L)R0),R
∗
0〉

〈L2(φ2
n(L)R0),R∗

0〉
, (4.22)

11

βn =
〈ϕn+1(L

T)R∗
0,L(ϕn+1(L)R0)〉

〈ϕn(LT)R∗
0,L(ϕn(L)R0)〉

=
〈L(ϕ2

n+1(L)R0),R
∗
0〉

〈L(ϕ2
n(L)R0),R∗

0〉
. (4.23)

According to (4.11)-(4.12), ϕj and φj can be expressed as

ϕj+1(L) = ϕj(L)− αjL(φj(L)), (4.24)

φj+1(L) = ϕj+1(L) + βjφj(L), (4.25)

respectively. Squaring on both sides of (4.24) and (4.25) results in

ϕ2
j+1(L) = ϕ2

j(L)− 2αjL(φj(L)ϕj(L)) + α2
jL

2(φ2
j (L)), (4.26)

φ2
j+1(L) = ϕ2

j+1(L) + 2βjϕj+1(L)φj(L) + β2
jφ

2
j (L). (4.27)

Furthermore, we have

ϕj(L)φj(L) = ϕ2
j (L) + βj−1ϕj(L)φj−1(L), (4.28)

ϕj+1(L)φj(L) = ϕ2
j (L) + βj−1ϕj(L)φj−1(L)− αjL(φ

2
j (L)). (4.29)

Taking (4.28) into (4.26) results in

ϕ2
j+1(L) = ϕ2

j (L)− αjL(2ϕ
2
j (L) + 2βj−1ϕj(L)φj−1(L)− αjL(φ

2
j (L))). (4.30)

Denote

Uj = ϕ2
j(L)R0, (4.31)

Qj = L(φ2
j (L))R0, (4.32)

Fj = L(ϕj+1(L)φj(L))R0, (4.33)

then

Uj+1 = Uj − αj(2L(Uj) + 2βj−1Fj−1 − αjL(Qj)), (4.34)

Qj+1 = L(Uj+1) + 2βjFj + β2
jQj , (4.35)

Fj = L(Uj) + βj−1Fj−1 − αjL(Qj). (4.36)

Denote

L(Uj) + βj−1Fj−1 = Cj, (4.37)

then (4.34)-(4.36) can be represented as

Uj+1 = Uj − αj(2Cj − αjL(Qj)), (4.38)

Qj+1 = Cj+1 + βjFj + β2
jQj , (4.39)

Fj = Cj − αjL(Qj). (4.40)

Algorithm 4 summarizes the TCORS algorithm for solving (1.1). The fol-
lowing results list the convergence of Algorithm 4.

Theorem 2. Assume the Sylvester tensor equation (1.1) is consistent. For
any initial tensor X0 ∈ RI1×I2×...×IN , the iteration solution {Xn} produced by
Algorithm 4 converge to an exact solution of (1.1) at most M = I1×I2× ...×IN
iteration steps without roundoff errors.

Proof. The proof of Theorem 2 is similar to that of Theorem 1 by replacing Rk

with Uk, thus is omitted.

12

5 Preconditioned BiCOR and TCORSs Algo-

rithms

This section presents two preconditioned methods based on Algorithms 3-4 for
solving Eq.(5.1).

Using the definition of the Kronecker product in [4], one can transform
Eq.(1.1) to its equivalent linear system

Ax = b, (5.1)

where A = EIN ⊗· · ·⊗EI2 ⊗A1+ · · ·+AN ⊗EIN−1
⊗· · ·⊗EI1 , ’⊗’ denotes the

Kronecker product, x = vec(X), b = vec(D). We refer to [17] for more details.

Algorithm 5 PTBiCOR: A preconditioned tensor biconjugate L̃-orthogonal
residual algorithm for solving (1.1)

Compute matrices Qi(i = 1 . . .N) and D̃ = D ×1 Q
−1
N ×2 · · · ×N Q−1

1 .

Replace L, LT in algorithm 3 with L̃, L̃T , L̃(X) = X ×1 (Q
−1
N A1)×2 · · · ×N

Q−1
1 + · · ·+X ×1Q

−1
N ×2 · · ·×N (Q−1

1 AN) and L̃T (X) = X ×1 (Q
−1
N A1)

T ×2

· · · ×N (Q−1
1)T + · · ·+ X ×1 (Q

−1
N)T ×2 · · · ×N (Q−1

1 AN)T .

Compute R0 = D̃ − L̃(X0) (X0 is an initial guess)
Set R∗

0 = L̃(R0)
Set P∗

−1 = P−1 = 0, β−1 = 0
for n=0,1,..., until convergence do

Pn = Rn + βn−1Pn−1

P∗
n = R∗

n + βn−1P
∗
n−1

Sn = L̃(Pn)
S∗
n = L̃T (P∗

n)
Tn = L̃(Rn)

αn =
〈R∗

n,Tn〉
〈S∗

n,Sn〉

Xn+1 = Xn + αnPn

Rn+1 = Rn − αnSn

R∗
n+1 = R∗

n − αnS
∗
n

Tn+1 = L̃(Rn+1)

βn =
〈R∗

n+1,Tn+1〉

〈R∗

n,Tn〉

end for

We are interested in constructing a preconditionerM that transforms Eq.(1.1)
to a new system

MAx = Mb, (5.2)

which has the same solution with Eq.(5.1) and has better spectral properties
than Eq.(5.1) does. In particular, if M is a good approximation of A−1, then
Eq.(5.2) can be solved more effectively than Eq.(5.1). Using the nearest Kro-
necker product (NKP) in [28], Chen and Lu [9] presented an efficient precon-
ditioner for solving Eq.(5.1) based on GMRES in tensor form, which is abbre-

13

viated as preconditioned GMRES (PGMRES) later. Zhang and Wang in [30]
gave a preconditioned BiCG (PBiCG) and a preconditioned BiCR (PBiCR)
based on NKP in [28]. The preconditioner based on NKP approximates A−1

by Q−1
1 ⊗Q−1

2 ⊗ · · · ⊗Q−1
N with





Q1 ≈ a11AN + a12EIN ,
Q2 ≈ a21AN−1 + a22EIN−1

,
...
QN ≈ aN1A1 + aN2E1,

(5.3)

where the optimal parameters aij in (5.3) can be computed by using the non-
linear optimization software, such as fminsearch in MATLAB.

Introducing the preconditioner based on NKP to Algorithms 3 and 4, we get
our preconditioned TBiCOR (PTLB) algorithm and preconditioned TCORS
(TCORS) algorithm for solving Eq (1.1), which are summarized in Algorithms
5 and 6, respectively.

Algorithm 6 PTCORS: A preconditioned tensor conjugate L̃-orthogonal resid-
ual squared algorithm for solving (1.1)

Compute matrices Qi(i = 1 . . .N) and D̃ = D ×1 Q
−1
N ×2 · · · ×N Q−1

1 .

Replace L in algorithm 4 with L̃, L̃(X) = X ×1 (Q
−1
N A1) ×2 · · · ×N Q−1

1 +
· · ·+ X ×1 Q

−1
N ×2 · · · ×N (Q−1

1 AN).

Compute R0 = D̃ − L̃(X0); (X0 is an initial guess)
Set R∗

0 = L̃(R0)
for n=1,2,..., until convergence do

U0 = R0, Ẑ = L̃(Un−1); ρn−1 = 〈R∗
0, Ẑ〉; Zn−1 = Un−1

if ρn−1 = 0, stop and reset the initial tensor X0.
if n = 1
T0 = U0; D0 = T0; C0 = Ẑ; Q0 = Ẑ
else
βn−2 = ρn−1/ρn−2; Tn−1 = Un−1 + βn−2Hn−2

Dn−1 = Zn−1 + βn−2Vn−2; Cn−1 = Ẑ + βn−2Fn−2

Qn−1 = Cn−1 + βn−2(Fn−2 + βn−2Qn−2)
end if
Q̂ = L̃(Qn−1)

αn−1 = ρn−1/〈R
∗
0, Q̂〉; Hn−1 = Tn−1 − αn−1Qn−1

Vn−1 = Dn−1 − αn−1Qn−1; Fn−1 = Cn−1 − αn−1Q̂
Xn = Xn−1 + αn−1(2Dn−1 − αn−1Qn−1)

Un = Un−1 − αn−1(2Cn−1 − αn−1Q̂)
end for

We only give the convergence of Algorithm 5. Similarly we can obtain the
convergence of Algorithm 6, thus omit it.

14

Theorem 3. Let {R∗
i }, {R

∗
i }, {Pi} and {P∗

i }(i = 0, 1, ..., k) be the iterative
sequences given by Algorithm 5, then we have

〈L̃(Ri),R
∗
j 〉 = 0 (5.4)

and
〈L̃(Pi), L̃

T (P∗
j)〉 = 0(i, j = 0, 1, ..., k, i 6= j). (5.5)

Proof. The proof is very similar to those of Propositions (3) and (4) with the
operator L being replaced by L̃ in Algorithm 5, and is omitted.

Theorem 4. Assume that the Sylvester tensor equation (1.1) is consistent.
For any initial tensor X0 ∈ RI1×I2×...×IN , Algorithm 5 converges to an exact
solution of (1.1) at most M = I1 × I2 × ... × IN iteration steps in the absence
of roundoff errors.

Proof. The proof is similar to that of Theorem 1 by replacing L with L̃ and is
omitted.

We can also obtain a preconditioned TLB (PTLB) by introducing the NKP
preconditioner in [9] to Algorithm 2, which is listed in Algorithm 7.

Algorithm 7 PTLB: A preconditioned tensor Lanczos L̃-biorthogonalization
Algorithm for solving (1.1)

Compute matrices Qi(i = 1 . . .N) and D̃ = D ×1 Q
−1
N ×2 · · · ×N Q−1

1 .

Replace L, LT in algorithm 1, 2 with L̃, L̃T , L̃(X) = X ×1 (Q
−1
N A1)×2 · · ·×N

Q−1
1 + · · ·+X ×1Q

−1
N ×2 · · ·×N (Q−1

1 AN) and L̃T (X) = X ×1 (Q
−1
N A1)

T ×2

· · · ×N (Q−1
1)T + · · ·+ X ×1 (Q

−1
N)T ×2 · · · ×N (Q−1

1 AN)T .

Choose an initial tensor X0 and compute R0 = D̃ − L̃(X0).
Set V1 = R0

‖R0‖
, choose a tensor W1 such that 〈L̃(V1),W1〉 = 1.

for m = 1, 2, ... until convergence do
Compute Lanczos L̃-Biorthogonalization tensors V1, ...,Vm, W1, ...,Wm and
Tm by Algorithm 1.
Compute ym by (3.22).

end for

Compute the solution Xm of (1.1) by (3.18).

6 Numerical Experiments

In this section, we show several numerical examples to illustrate Algorithms 2–7
and compare them with CGLS in [16], MCG in [23], preconditioned GMRES
(PGMRES) in [9], preconditioned BiCG (PBiCG) and preconditioned BiCR
(PBiCR) in [30]. All experiments are implemented on a computer with macOS
Big Sur 11.1 and 8G memory. The MATLAB R2018a (9.4.0) is used to run
all examples. All algorithms are stopped when the relative error rk = ‖Xk −
X ∗‖/‖X ∗‖ < 10−10, where X ∗ is assumed to be an exact solution of (1.1).

15

Example 6.1. In this example, we consider the Poisson equation in d-dimensional
space [4] {

−△u = f, in Ω = (0, 1)d,
u = 0, on ∂Ω.

A finite difference discretization leads to the Sylvester tensor equation (1.1),
where Ai ∈ R10×10(i = 1, 2, ..., d) are

Ai =
1

h2




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2




10×10

(6.1)

with the mesh-width h = 1
11 .

0 5 10 15 20 25 30 35 40 45 50
k(iteration step)

10-12

10-10

10-8

10-6

10-4

10-2

100

T
he

 r
el

at
iv

e
er

ro
r

r k

CGLS
MCG
TLB
TBiCOR
TCORS
PBiCG
PBiCR
PGMRES
PTLB
PTBiCOR
PTCORS

Figure 1: Plot of rk for Example 6.1.

We set d = 3 and let the initial tensor X0 = O. The right-hand side D of
(1.1) is constructed by (1.1) with the exact solution X ∗ of (1.3) derived by the
MATLAB command tenones(10, 10, 10) in [7]. Algorithms 2-6 are used to solve
(1.1) with the matrices Ai in (6.1). These methods are compared with CGLS
in [16] and MCG in [23], respectively.

Figure 1 shows the convergence of the relative error rk versus the number of
iterations for all methods. From Figure 1, we can see that our preconditioned
Algorithms 5-7 present better convergence than Algorithms 2-4 without precon-
ditioning, PGMRES in [9], PBiCG and PBiCR in [30]. While Algorithms 2-4

16

can compare with PGMRES, PBiCG and PBiCR, and are better than CGLS [16]
and MCG [23]. Algorithm 6 converges fastest among all algorithms. Algorithm
5 converges the second fastest among all algorithms.

Example 6.2. Consider the convection-diffusion equation in [4,29]
{

v∆u+ cT∇u = f, in Ω = [0, 1]N ,
u = 0, on ∂Ω.

A standard finite difference discretization on equidistant nodes combined with
the second order convergent scheme [18,20] for the convection term leads to the
linear system (1.1) with

An =
v

h2




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2




+
cn
4h




3 −5 1
1 3 −5 1

. . .
. . .

. . . 1
1 3 −5

1 3




p×p

,

(6.2)
where n = 1, 2, ..., N and the mesh-size h = 1

p+1 .

We consider the case when N = 3 and p = 10. The right-hand side D
is constructed by (1.1) with the exact solution X ∗ of (1.3) produced by the
MATLAB commend tenones(10, 10, 10) in [7].

0 50 100 150 200 250
k(iteration step)

10-12

10-10

10-8

10-6

10-4

10-2

100

102

T
he

 r
el

at
iv

e
er

ro
r

r k

CGLS
MCG
TLB
TBiCOR
TCORS
PBiCG
PBiCR
PGMRES
PTLB
PTBiCOR
PTCORS

Figure 2: Plot of rk for Example 6.2 when v = 0.01, c1 = 1, c2 = 2, c3 = 3.

Let the initial solution X0 be a tensor with each element being zero. Al-
gorithms 2-7 are used to solve (1.1) with Ai given in (6.2). These methods

17

Table 1: Comparison of the running time, total iteration number and the corre-
sponding relative error for different method with different parameters when the
criterion is satisfied for Example 6.2

Methods time(s) TIN rTIN Methods time(s) TIN rTIN

v = 1 CGLS 0.422117 131 9.7291e-11 PBiCG 0.407984 27 5.7115e-11
c1 = 1 MCG 0.314574 130 9.1914e-11 PBiCR 0.333801 27 6.2653e-11
c2 = 1 PGMRES 1.195048 26 8.4492e-11
c3 = 1 TLB 0.439216 48 8.0006e-11 PTLB 0.413785 25 4.4981e-11

TBiCOR 0.379316 48 1.2006e-11 PTBiCOR 0.283238 24 4.5384e-11
TCORS 0.235870 32 7.9107e-11 PTCORS 0.202668 15 7.9490e-12

v = 0.1 CGLS 0.420019 142 9.7422e-11 PBiCG 0.327606 39 7.7596e-11
c1 = 1 MCG 0.349199 141 9.1934e-11 PBiCR 0.365583 39 7.7732e-11
c2 = 1 PGMRES 2.643044 37 7.6420e-11
c3 = 1 TLB 0.547317 57 2.2617e-11 PTLB 0.452652 24 6.9294e-11

TBiCOR 0.275463 51 6.4086e-11 PTBiCOR 0.240380 22 9.2513e-11
TCORS 0.199584 30 3.6561e-11 PTCORS 0.167069 13 1.5901e-11

v = 0.01 CGLS 0.400485 137 7.8655e-11 PBiCG 0.345495 23 5.9009e-12
c1 = 1 MCG 0.314983 136 7.9150e-11 PBiCR 0.420298 23 5.1618e-12
c2 = 1 PGMRES 0.716276 20 2.9726e-11
c3 = 1 TLB 0.490665 53 4.5843e-11 PTLB 0.412092 24 1.3665e-12

TBiCOR 0.431553 49 2.6997e-11 PTBiCOR 0.271265 22 6.3548e-11
TCORS 0.289261 29 4.6591e-11 PTCORS 0.182132 14 1.4634e-11

v = 1 CGLS 0.619692 231 9.8161e-11 PBiCG 0.302540 24 9.6344e-11
c1 = 1 MCG 0.479290 228 9.5604e-11 PBiCR 0.332252 25 1.8973e-11
c2 = 2 PGMRES 0.969060 23 8.3597e-11
c3 = 3 TLB 0.574761 60 6.1992e-11 PTLB 0.463983 25 6.7805e-11

TBiCOR 0.359788 59 6.2755e-11 PTBiCOR 0.294740 25 3.1182e-11
TCORS 0.259970 33 9.4662e-11 PTCORS 0.204611 15 1.2034e-11

v = 0.1 CGLS 0.661334 234 8.5041e-11 PBiCG 0.321293 26 7.8704e-12
c1 = 1 MCG 0.508388 231 9.1198e-11 PBiCR 0.435445 24 7.5118e-11
c2 = 2 PGMRES 0.885821 22 7.6295e-11
c3 = 3 TLB 0.500843 53 7.0480e-12 PTLB 0.360964 22 1.1481e-12

TBiCOR 0.275404 48 7.3762e-11 PTBiCOR 0.244606 20 5.4227e-11
TCORS 0.229283 28 1.0059e-12 PTCORS 0.146302 12 1.2266e-11

v = 0.01 CGLS 0.658699 240 8.7261e-11 PBiCG 0.321684 39 9.3669e-11
c1 = 1 MCG 0.517902 236 9.5783e-11 PBiCR 0.356874 38 9.4120e-11
c2 = 2 PGMRES 2.472089 36 3.8573e-11
c3 = 3 TLB 0.531822 55 6.9508e-11 PTLB 0.491639 29 8.5332e-12

TBiCOR 0.316190 54 5.6945e-11 PTBiCOR 0.268896 28 8.7378e-11
TCORS 0.203383 30 6.8170e-12 PTCORS 0.164989 16 2.5240e-12

18

are compared with CGLS [16], MCG [23], PGMRES in [9], PBiCG and PBiCR
in [30].

Table 1 displays the running time, total iteration number (TIN) and relative
error of different method with different parameters v = 1, 0.1, 0.001 and ci.
Figure 2 shows the convergence of the relative error rk for each method with
the parameters v = 0.01, c1 = 1, c2 = 2 and c3 = 3.

Table 1 shows that, when the stop criterion is satisfied, preconditioned Algo-
rithms 5-6 require less CPU time and iterations than Algorithms 2-4, PGMRES,
PBiCG and PBiCR. In most cases Algorithms 2-4 requires much less CPU time
but more iterations than PGMRES, PBiCG and PBiCR, and are better than
CGLS [16] and MCG [23] both in CPU time and the number of iterations. Al-
gorithm 6 requires the minimal CPU time and iterations among all methods.
Figure 2 shows similar results to that in Figure 1.

Example 6.3. We consider the Sylvester tensor equation (1.1) with the coeffi-
cient matrices Ai, i = 1, 2, 3, which comes from the discretization of the operator

Lu := △u− exy
∂u

∂x
+ sin(xy)

∂u

∂y
+ y2 − x2 (6.3)

on the unit square [0, 1]× [0, 1] with homogeneous Dirichlet boundary conditions.
We use the MATLAB command fdm 2d matrix in the Lyapack package [25] to
generate matrices Ai:

Ai = fdm 2d matrix(Ii, e
xy, sin(xy), y2 − x2), , (6.4)

where Ii = 1+ i, i = 1, 2, 3. We construct D by (1.1) with the exact solution X ∗

of (1.3) produced by the MATLAB commend tenones(4, 9, 16) in [7].

The initial solution X0 is selected as zero tensor. Algorithms 2-6 are used to
solve (1.1) with Ai given in (6.4). These methods are compared with CGLS [16],
MCG [23], PGMRES in [9], PBiCG and PBiCR in [30]. Figure 3 shows that
Algorithm 6 converges fastest among all methods and Algorithm 6 converges the
second fastest among all methods, which are very similar to those in Figures 1
and 2.

7 Conclusion

This paper first presents a tensor Lanczos L-Biorthogonalization (TLB) algo-
rithm for solving the Sylvester tensor equation (1.1) based on the Lanczos L-
Biorthogonalization procedure. Then two improved methods based on the TLB
algorithm are developed. The one is the biconjugate L-orthogonal residual al-
gorithm in tensor form (TBiCOR). The other is the conjugate L-orthogonal
residual squared algorithm in tensor form (TCORS). The preconditioner based
on the nearest Kronecker product (NKP) are used to accelerate the TBiCOR
and TCORS algorithms, thus we present preconditioned a preconditioned TBi-
COR method and a preconditioned TCORS method. The convergence of these
proposed algorithms are proved. Numerical examples show the advantage of the
preconditioned TBiCOR and TCORS methods.

19

0 5 10 15 20 25 30 35 40 45
k(iteration step)

10-12

10-10

10-8

10-6

10-4

10-2

100

T
he

 r
el

at
iv

e
er

ro
r

r k

CGLS
MCG
TLB
TBiCOR
TCORS
PBiCG
PBiCR
PGMRES
PTLB
PTBiCOR
PTCORS

Figure 3: Plot of the relative error rk for Example 6.3.

8 Acknowledgments

The authors would like to thank the referees for their helpful comments which
form the present version of this paper. The preconditioned methods are added
according to one comment. Research by G.H. was supported in part by Ap-
plication Fundamentals Foundation of STD of Sichuan (2020YJ0366) and Key
Laboratory of bridge nondestructive testing and engineering calculation Open
fund projects (2020QZJ03), and research by F.Y. was partially supported by
NNSF (11501392) and SUSE (2019RC09).

References

[1] F.A. Beik, F. Movahed, S. Ahmadi-Asl, On the Krylov subspace methods
based on tensor format for positive definite Sylvester tensor equations, Nu-
mer. Linear Algebr. 23 (2016) 444-466.

[2] M. August, M.C. Banuls, T. Huckle, On the approximation of functionals
of very large hermitian matrices represented as matrix product operators,
Electron. T. Numer. Ana. 46 (2017) 215-232.

[3] Z.Z. Bai, G. Golub, M. Ng, Hermitian and skew-Hermitian splitting methods
for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal.
Appl. 24 (2002) 603-626.

20

[4] J. Ballani, L. Grasedyck, A projection method to solve linear systems in
tensor format, Numer. Linear Algebr. 20 (2013) 27-43.

[5] F.A. Beik, M. Najafi-Kalyani, L. Reiche, Iterative Tikhonov regularization
of tensor equations based on the Arnoldi process and some of its generaliza-
tions, Appl. Numer. Math. 151 (2020) 425-447.

[6] A.H. Bentbib, S. El-Halouy, E.M. Sadek, Krylov subspace projection method
for Sylvester tensor equation with low rank right-hand side, Numer. Alg. 84
(2020) 1411-1430.

[7] B.W. Bader, T.G. Kolda, Matlab tensor toolbox, Version 2.5, Available
online at http://www.sandia.gov/tgkolda/TensorToolbox/, 2012.

[8] D. Calvetti, L. Reichel, Application of ADI iterative methods to the restora-
tion of noisy images, SIAM J. Matrix Anal. Appl. 17 (1) (1996) 165-186.

[9] Z. Chen, L. Lu, A projection method and Kronecker product preconditioner
for solving Sylvester tensor equations, SCI. China Ser. A. Math. 55 (2012)
1281-1292.

[10] Z. Chen, L. Lu, A Gradient Based Iterative Solutions for Sylvester Tensor
Equations, Math. Probl. Eng. (2013) 1-7.

[11] B. Carpentieri, Y.F. Jing, T.Z. Huang, The BiCOR and CORS iterative
algorithms for solving nonsymmetric linear systems, SIAM J. Sci. Comput.
33 (2011) 3020-3036.

[12] F. Ding, T. Chen, Gradient based iterative algorithms for solving a class
of matrix equations, IEEE T. Automat. Contr. 50 (2005) 1216-1221.

[13] F. Ding, T. Chen, Iterative least-squares solutions of coupled Sylvester
matrix equations, Syst. Contr. Lett. 54 (2005) 95-107.

[14] G. Golub, S. Nash, C. Van Loan, A Hessenberg-Schur method for the prob-
lem AX +XB = C, IEEE T. Automat. Contr. 24 (1979) 909-913.

[15] M. Heyouni, F. Saberi-Movahed, A. Tajaddini, A tensor format for the
generalized Hessenberg method for solving Sylvester tensor equations, J.
Comput. Appl. Math. 377 (2020) 112878.

[16] B. Huang, C. Ma, An iterative algorithm to solve the generalized Sylvester
tensor equations, Linear Multilinear A. 68 (2018) 1175-1200.

[17] T.G. Kolda, B.W. Bader, Tensor Decompositions and Applications, SIAM
Rev. 51 (2009) 455-500.

[18] D. Kressner, C. Tobler, Krylov subspace methods for linear systems with
tensor product structure, SIAM J. Matrix Anal. Appl. 31 (2010) 1688-1714.

21

[19] D. Kressner, C. Tobler, Low-rank tensor Krylov subspace methods for
parametrized linear systems, SIAM J. Matrix Anal. Appl. 32 (2011) 1288-
1316.

[20] L. Grasedyck, Existence and computation of low Kronecker-rank approxi-
mations for large linear systems of tensor product structure, Computing 72
(2004) 247-265.

[21] B.W. Li, Y.S. Sun, D.W. Zhang, Chebyshev collocation spectral methods
for coupled radiation and conduction in a concentric spherical participating
medium, J. Heat Trans. 131 (2009) 1-9.

[22] N. Li, C. Navasca, C. Glemn, Iterative methods for symmetric outer prod-
uct tensor decomposition, Electron. T. Numer. Ana. 44 (2015) 124-139.

[23] C. Lv, C. Ma, A modified CG algorithm for solving generalized coupled
Sylvester tensor equations, Appl. Math. Comput. 365 (2020) 124699.

[24] M. Najafi-Kalyani, F.A. Beik, K. Jbilou, On global iterative schemes based
on Hessenberg process for (ill-posed) Sylvester tensor equations, J. Comput.
Appl. Math. 373 (2020) 112216.

[25] T. Penzl, Lyapack, A MATLAB toolbox for large Lyapunov and
Riccati equations, model reduction problems,and linear-quadratic
optimal control problems, Available online at https://www.tu-
chemnitz.de/sfb393/lyapack/, 2000.

[26] Y. Saad, Iterative methods for sparse linear systems, Society for Industrial
and Applied Mathematics, 2nd edition, 2003.

[27] X.H. Shi, Y.M. Wei, S.Y. Ling, Backward error and perturbation bounds
for high order Sylvester tensor equation, Linear Multilinear A. 61 (2013)
1436-1446.

[28] C.F. Van Loan, N. Pitsianis, Approximation with Kronecker products, In
Proc.: Linear Algebra for Large Scale and Real-Time Applications, Kluwer
Publications 232 (1993) 293-314.

[29] H. Xiang, L. Grigori, Kronecker product approximation preconditioners
for convection-diffusion model problems, Numer. Linear Algebr. 17 (2010)
691-712.

[30] X.F. Zhang, Q.W. Wang, Developing iterative algorithms to solve Sylvester
tensor equations, Appl. Math. Comput. 409 (2021) 126403.

22

