
ar
X

iv
:1

90
5.

13
40

7v
2

 [
q-

fi
n.

C
P]

 3
 J

un
 2

01
9

A SIMPLE AND EFFICIENT NUMERICAL METHOD FOR

PRICING DISCRETELY MONITORED EARLY-EXERCISE

OPTIONS

MIN HUANG AND GUO LUO

Abstract. We present a simple, fast, and accurate method for pricing a va-
riety of discretely monitored options in the Black-Scholes framework, includ-
ing autocallable structured products, single and double barrier options, and
Bermudan options. The method is based on a quadrature technique, and it em-
ploys only elementary calculations and a fixed one-dimensional uniform grid.
The convergence rate is O(1/N4) and the complexity is O(MN logN), where
N is the number of grid points and M is the number of observation dates.

1. Introduction

Exotic options are commonly traded throughout the world. Many popular ex-
otic options are path-dependent and have early-exercise features. These options
can often be priced using analytical formulas if they are continuously monitored
(e.g. barrier options). In practice, however, most path-dependent exotic options
are discretely monitored [4], in which case they need to be priced using numerical
techniques. Due to the complicated structures of these options, traditional pricing
models based on Monte-Carlo simulations and finite difference methods are often
too time-consuming to be useful in practical situations. More recent pricing meth-
ods based on advanced mathematical techniques, on the other hand, tend to be more
efficient (e.g. [14, 12, 10, 11]), but for many financial institutions, these methods are
often too difficult to understand and to properly implement. To strike a balance be-
tween model performance and practical utility, we propose a new quadrature-based
method that is much faster and more accurate than the traditional Monte-Carlo
and PDE methods, yet at the same time is easy to understand and to implement.
We will first give a brief review of the types of products considered, as well as the
quadrature-based pricing model which is the foundation of our work. Then we will
explain our method and provide numerical examples.

1.1. Autocallable Structured Products. Autocallable structured products be-
long to a class of exotic options with early-exercise features. Many different types
of autocallable products have been created and traded in financial markets, and
they have become increasingly popular in recent years. We refer to the Appendix
of [9] for a description of the main features of various autocallable products.

We will consider a very common autocallable product with discrete observation
dates. At each observation date there is a pre-specified barrier level. If the price of

Key words and phrases. Discrete option pricing, quadrature method, autocallable structured
product, single and double barrier option, Bermudan option.

Disclaimer: The statements made and opinions expressed here are solely our own, and do not
reflect the views of China Mechants Bank or its employees and affiliates.

1

http://arxiv.org/abs/1905.13407v2

2 MIN HUANG AND GUO LUO

the underlying asset is greater (less) than or equal to the barrier level (depending
on the terms of the product), the option is exercised and a pre-specified fixed-rate
return is paid. If the asset price is below (above) the barriers at all observation
dates, the option is never exercised and the investor receives a negative return
at maturity. In addition, autocallable products may have a knock-in feature. In
this case, if the option is never exercised, the negative return the investor receives
depends on whether the asset price at maturity reaches a pre-specified knock-in
level. While the value of a continuously monitored autocallable product has a sim-
ple closed-form solution, the value of a discretely monitored autocallable product
cannot be calculated easily. In the discrete case, there exist analytical solutions in
terms of multiple integrals, cf. [25, 26, 9]. The numerical calculation of these inte-
grals, however, can become prohibitive if the number of observation dates exceeds
five. In practice, discretely monitored autocallable products are commonly priced
using Monte-Carlo simulations. This method is straightforward, but convergence
is usually slow and acceleration techniques such as variance reduction are often
needed (cf. [2, 13]). Another popular method for pricing discretely monitored
autocallable products is to solve the governing Black-Scholes partial differential
equation (PDE) using finite difference method (cf. [9]). Assuming a second-order
central difference approximation in space, the overall convergence rate of a typical
finite difference based pricing method is O((δx)2 + δt) if the explicit forward Euler
method is used in time, and O((δx)2+(δt)2) if the implicit Crank-Nicolson method
is used. Since two-dimensional grids are needed for finite difference methods, com-
putational complexities are at least of order 1/(δxδt). In addition, since the payoffs
of autocallable products are discontinuous (in asset price), additional care (such as
smoothing of payoff functions) must be taken to ensure the accuracy of any finite
difference approximations.

Remark 1.1. Some autocallable products may have payoffs at maturity that are of
the same type as that of European vanilla options. These products can be effectively
viewed as combinations of autocallable products and barrier options (see below).

1.2. Discrete Barrier Options. Barrier options are among the most popular
types of exotic options. A barrier option may be activated (knock-in option) or
deactivated (knock-out option) when the price of the underlying asset crosses cer-
tain barrier levels. Barrier options may be discretely or continuously monitored.
A single barrier option has one barrier at each observation date, while a double
barrier option has two barriers at each observation date. The final payoff of a
barrier option (if it is active at maturity) may be of the same type as that of a
vanilla option or that of a digital option. A special type of barrier option has a
constant amount of cash as the final payoff, and such an option is called a touch
option. Most barrier options have time-independent barrier levels, but options with
time-dependent barrier levels have also been studied [7].

Similar to the case of autocallable structured products, there are closed-form
solutions for discrete barrier options in terms of multiple integrals [23], but such
solutions are often difficult to evaluate directly. In practice, discrete barrier options
can be priced using Monte-Carlo simulations or standard binomial tree methods,
but these methods are usually slow [5]. Other methods that have been proposed to
price discrete barrier options include continuity correction approximations [4, 27],
Wiener-Hopf methods [14], adaptive mesh methods [1], Hilbert transform meth-
ods [12], finite element methods [16], Fourier-cosine series expansion methods [10],

A SIMPLE AND EFFICIENT METHOD FOR OPTION PRICING 3

and quadrature methods [3, 6]. These methods, while useful in certain contexts,
have not been as widely used as the traditional Monte-Carlo and finite difference
methods, usually due to their complexity.

1.3. Bermudan Options. Bermudan options are discrete versions of American
options. A Bermudan option can be exercised at any of the prescribed observation
dates, and the payoff is of the same type as that of a vanilla option. Similar
to discrete barrier options, Bermudan options can be priced using Monte-Carlo
simulations [17], Hilbert transform methods [11], Fourier-cosine series expansion
methods [10], and quadrature methods [22, 21, 6].

1.4. Overview of the Quadrature Method. Among the various methods pro-
posed to price discretely monitored options, the quadrature method is particularly
appealing because of its high efficiency and accuracy. The method has been applied
to discrete barrier options and Bermudan options [3, 22, 21, 6]. The main idea is
to solve for option values at each observation date via backward induction in time.
The risk-neutral valuation formula is expressed as a single integral, which is then
evaluated numerically to produce the option price. Specifically, let V denote the
value of the option, S the value of the underlying asset, r the risk-neutral interest
rate, t1, . . . , tM the observation dates, and E the risk-neutral expectation. If the
underlying asset S does not trigger an early exercise at tm, we have

V (tm, S) = e−r(tm+1−tm)
E
[

V (tm+1, ·)|S
]

= e−r(tm+1−tm)

∫ ∞

0

V (tm+1, y)f(y|S) dy,

where f(y|S) is a probability density function whose form depends on the model
of the underlying asset. If S triggers an early exercise at tm, on the other hand,
the option price V (tm, S) would be equal to a prescribed value. The integral above
can be calculated using FFT [21, 22] or Fast Gauss Transform [6]. Since, however,
V (tm+1, y) is discontinuous (in y) for autocallable products and barrier options,
and non-differentiable (in y) for Bermudan options, care must be taken to ensure
the accuracy of the numerical evaluation of the integral. While several shifted or
nonuniform grids have been designed in previous studies to address this difficulty
[21, 6], the problem becomes particularly challenging when multiple discontinuities
are present at each observation point, for instance in the case of double barrier
options with time-dependent barrier levels.

1.5. Motivation of Our Work. Although a good number of advanced techniques
have been proposed to improve pricing models’ accuracy and efficiency, in most
practical situations, simple methods that are more cost effective are usually pre-
ferred over their more sophisticated counterparts. The reason for this is twofold.
First of all, when data quality is not high enough, sophisticated models are not
necessarily beneficial. For instance, interest rates and volatilities are crucial com-
ponents of nearly every pricing model, but they need to be estimated from available
market data. If the estimated parameters contain large errors, which is not uncom-
mon in products sold in emerging markets, any advantages gained from the use
of sophisticated models may be (more than) offset by these errors, making the
simpler models more attractive. Secondly, implementations of pricing models usu-
ally involve staff members from multiple business departments, and the resulting
products often need active maintenance and updates. As a result, models that are

4 MIN HUANG AND GUO LUO

too complicated in nature may hinder effective business communications, which
increases maintenance costs and operational risks. In view of these considerations,
it is not difficult to see why traditional Monte-Carlo and PDE methods are still
among the most popular methods in the valuation of discretely monitored options,
even though their computational costs are already high enough to adversely impact
their applicability in business.

In view of the practical concerns mentioned above, we propose a new quad-
rature method to price the aforementioned discretely monitored options in the
Black-Scholes framework. The convergence rate of our method is O(1/N4) and
the complexity is O(MN logN), where N is the number of grid points and M is
the number of observation dates. The performance of our method is on par with
previous quadrature-based methods such as the CONV method [21], but it is more
straightforward, and is better suited for products with multiple discontinuities. Our
method differs from other quadrature methods mainly in three aspects. First, we
work with probability density functions directly instead of using characteristic func-
tions or Toeplitz matrices. Secondly, we use only a fixed one-dimensional uniform
grid to compute all integrals. Thirdly, we utilize explicit Black-Scholes formulas
to improve the accuracy of the calculations. Due to these novel modifications, our
method is very easy to implement, and is capable of handling sophisticated products
such as double-barrier options with time-dependent barrier levels.

1.6. Organization of the Paper. The rest of the paper is organized as follows.
Section 2 specifies the class of (discrete) option pricing problems that our quadra-
ture method is intended to solve, and Section 3 presents the main recursion formula
for our method. After detailing the implementation of our method in Section 4–5,
we summarize the algorithm in Section 6 and then present numerical examples in
Section 7. The Appendix collects a few useful theoretical results, which lay the
foundation of a class of (discrete) option pricing algorithms (including the one de-
scribed here) but which, to our best knowledge, do not seem to have been rigorously
proved or even properly formulated in the literature. We supply the proofs here in
the hope that they would be useful to interested readers.

2. Basic Assumptions

We assume that the price of the underlying asset S(t) satisfies the following
stochastic differential equation in the risk-neutral measure:

(2.1) dS(t) =
[

r(t)− q(t)
]

S(t) dt+ σ(t)S(t) dW (t),

where r(t) is the risk-neutral interest rate, q(t) is the yield rate, σ(t) is the volatility,
and W (t) is the Wiener process.

In practice, interest rates are always time dependent. Yield rates for FX products
are simply foreign interest rates, and for other types of products they may be implied
from futures prices. Thus yield rates are usually time dependent as well. Implied
volatilities are time dependent, whereas historical volatilities can often be taken as
constant.

The solution to (2.1) is

(2.2) S(t) = S(t0) exp

{
∫ t

t0

[

r(s)− q(s)− 1
2σ

2(s)
]

ds+

∫ t

t0

σ(s) dW (s)

}

,

A SIMPLE AND EFFICIENT METHOD FOR OPTION PRICING 5

where t0 is the present date. We consider a discretely monitored option with obser-
vation dates t1, . . . , tM , where the last observation date tM is the maturity date. It
follows from (2.2) that each S(tm) for 1 ≤ m ≤M has the lognormal distribution

(2.3) S(tm) ∼ S(t0) exp

{
∫ tm

t0

[

r(s)− q(s)− 1
2σ

2(s)
]

ds+
(

∫ tm

t0

σ2(s) ds
)1/2

Z

}

,

where Z denotes the standard normal distribution. Now define

rm =

∫ tm

tm−1

r(s)

∆tm
ds, qm =

∫ tm

tm−1

q(s)

∆tm
ds, σ2

m =

∫ tm

tm−1

σ2(s)

∆tm
ds,

for 1 ≤ m ≤M where ∆tm = tm − tm−1, and define piecewise constant functions

r̃(t) = rm, q̃(t) = qm, and σ̃(t) = σm, for tm−1 < t ≤ tm.

For the process

dS̃(t) =
[

r̃(t)− q̃(t)
]

S̃(t) dt+ σ̃(t)S̃(t) dW (t),

since
∫ tm

t0

r(s) ds =

m
∑

n=1

∫ tn

tn−1

r(s) ds =

m
∑

n=1

rn∆tn =

∫ tm

t0

r̃(s) ds,

∫ tm

t0

q(s) ds =

m
∑

n=1

∫ tn

tn−1

q(s) ds =

m
∑

n=1

qn∆tn =

∫ tm

t0

q̃(s) ds,

and

∫ tm

t0

σ2(s) ds =

m
∑

n=1

∫ tn

tn−1

σ2(s) ds =

m
∑

n=1

σ2
n∆tn =

∫ tm

t0

σ̃2(s) ds,

it follows that S̃(tm) has the same distribution as S(tm) in (2.3) for each m. Since
the value of the option depends only on probability distributions of the asset price
at observation dates, the option value remains the same if we replace the process
S by the process S̃. In other words, we may safely assume that r(t), q(t), and σ(t)
are piecewise constant functions. Thus in what follows, we shall assume

r(t) = rm, q(t) = qm, and σ(t) = σm, for tm−1 < t ≤ tm.

Consider now a general class of discretely monitored options with barriers. Since
the sum of a knock-in barrier option and a knock-out barrier option with the same
observation dates and barrier levels is a vanilla option (or a digital option if the
barrier options are digital), to study the pricing of these discretely monitored op-
tions, it suffices to consider a knock-out barrier option which ceases to exist when
barrier levels are crossed. To this end, assume that

(A) The option has two strike prices K−
m, K+

m ∈ [0,∞], with K−
m ≤ K+

m, at each
observation date tm, m = 1, 2, . . . ,M .

(B) The option is exercised if S ≤ K−
m or S ≥ K+

m at some tm, and the payoffs
are given by a−mS+b−m (if S ≤ K−

m) and a+mS+b+m (if S ≥ K+
m), respectively,

for some a±m, b±m ∈ R.
(C) The final payoff at maturity is

V (tM , S) = aMS + bM , for K−
M < S < K+

M .

6 MIN HUANG AND GUO LUO

These assumptions are general enough to cover a wide class of discretely moni-
tored options, such as the ones mentioned in the introduction. For instance, com-
mon up-and-out autocallable products would have

1 ≤ m ≤M : 0 < K+
m <∞, K−

m = 0, a+m = 0, b+m > 0;

m = M : aM = 0, bM < 0.

Down-and-out put barrier options would have

1 ≤ m ≤M − 1 : K+
m =∞, 0 < K−

m <∞, a−m = 0, b−m = 0;

m = M : K−
M = 0, 0 < K+

M <∞, aM = −1, bM = K+
M ,

a+M = b+M = 0.

Double barrier knock-out call options would have

1 ≤ m ≤M − 1 : 0 < K±
m <∞, a±m = 0, b±m = 0;

m = M : K+
M =∞, 0 < K−

M <∞, aM = 1, bM = −K−
M ,

a−M = b−M = 0.

Bermudan put options with strike K would have

1 ≤ m ≤M : K−
m : the unique solution of K −K−

m = V (tm,K−
m),

K+
m =∞, a−m = −1, b−m = K;

m = M : aM = 0, bM = 0.

We will give a proof of the uniqueness ofK±
m for Bermudan options in the Appendix.

To summarize, our basic assumptions are

(1) The underlying asset price S follows a geometric Brownian motion with
piecewise constant interest rates, yield rates, and volatilities.

(2) There are finitely many observation points, and two exercise levels (possibly
∞) at each observation point. If S is above the upper exercise level or below
the lower exercise level at any observation point, the option is exercised and
the payoff is a linear function in S.

(3) At maturity, if S is between the two exercise levels, a payoff is incurred
which is also a linear function in S.

3. Outline of the method

Let V (t, S) denote the value of the option (as a function of asset price S) at any
time t, and let

Vm(S) = V (tm, S), m = 0, 1, . . . ,M,

denote the value of the option at the observation dates. Our goal is to find V0(S(t0)),
and our strategy is to use backward induction in time. Since VM (S) is piecewise
linear in S, VM−1(S) has a simple explicit expression. For each m = M − 1, . . . , 1,
we write Vm−1(S) as the risk-neutral expectation of Vm(S) for K−

m−1 < S < K+
m−1,

and as a±m−1S + b±m−1 otherwise. The expectation is given by an explicit integral
and is calculated numerically. The core of the quadrature method is the calculation
of M − 1 expectation integrals step-by-step. Let

τm =
1

2
σ2
m∆tm =

1

2
σ2
m(tm − tm−1).

A SIMPLE AND EFFICIENT METHOD FOR OPTION PRICING 7

For each 1 ≤ m ≤M − 1, note that S(tm) has a lognormal distribution as in (2.3).
The relevant probability density functions are known to be [19]

(3.1) ρm(y, S) =
1

2
√
πτm y

exp

{

− 1

4τm

(

log
y

S
− 2

σ2
m

[

rm − qm − 1
2σ

2
m

]

τm

)2
}

.

For simplicity of notations we define K+
0 = ∞ and K−

0 = 0. By the fundamental
theorems of asset pricing, we have the risk-neutral pricing formula [24]:

Vm−1(S) = e−2rmτm/σ2
mE

[

Vm(·)|S
]

= e−2rmτm/σ2
m

∫ ∞

0

Vm(y)ρm(y, S) dy

(3.2)

=
e−2rmτm/σ2

m

2
√
πτm

∫ ∞

0

1

y
Vm(y) exp

{

− 1

4τm

(

log
y

S
− 2

σ2
m

[

rm − qm − 1
2σ

2
m

]

τm

)2
}

dy,

for K−
m−1 < S < K+

m−1 and 1 ≤ m ≤ M − 1. By Assumption (B) from Section 2,
we also have

(3.3) Vm−1(S) =

{

a−m−1S + b−m−1, S ≤ K−
m−1

a+m−1S + b+m−1, S ≥ K+
m−1

.

To further study the formulas (3.2) and (3.3), we first recall some classical results
on the pricing of binary options.

Lemma 3.1. Let K > 0, and let χA denote the characteristic function of a set A.
Consider an option with no early-exercise features.

(1) If the option has payoff V̂m(y) = χ[K,∞)y, then V̂m−1(S) = V a
m(S,K, 1).

(2) If V̂m(y) = χ(0,K]y, then V̂m−1(S) = V a
m(S,K,−1).

(3) If V̂m(y) = χ[K,∞), then V̂m−1(S) = V b
m(S,K, 1).

(4) If V̂m(y) = χ(0,K], then V̂m−1(S) = V b
m(S,K,−1).

The functions V a
m and V b

m are defined as

V a
m(S,K, ǫ) = e−2qmτm/σ2

mSN(ǫd1), V b
m(S,K, ǫ) = e−2rmτm/σ2

mN(ǫd2),

where N is the cumulative normal distribution function, and

d1 =
1√
2τm

(

log
S

K
+

2

σ2
m

[

rm − qm + 1
2σ

2
m

]

τm

)

, d2 = d1 −
√
2τm.

Proof. By definition V a
m is the value of an asset-or-nothing option, and V b

m is the
value of a cash-or-nothing option. The valuation formulas are just standard results
for binary options [18]. �

Remark 3.2. The standard Black-Scholes formulas in Lemma 3.1 ignore the possi-
ble effects of volatility smiles. If such effects need to be taken into account, one may
amend the definitions of V a

m and V b
m (as given in the Lemma) by incorporating suit-

able vega-induced correction terms [15]. For instance, the value of a cash-or-nothing
call option in the presence of volatility smiles would become

Vsmile = Vno smile −
∂Vvanilla

∂σ

∂σ

∂K
.

8 MIN HUANG AND GUO LUO

We can use Lemma 3.1 to obtain an explicit formula for the value of VM−1(S).
By Assumption (B)–(C) from Section 2, we have

(3.4) VM (S) =











a−MS + b−M , S ≤ K−
M

aMS + bM , K−
M < S < K+

M

a+MS + b+M , S ≥ K+
M

.

Without loss of generality we may assume 0 < K±
M < ∞, since otherwise we may

choose some arbitrary 0 < K±
M <∞ and set a±M = aM , b±M = bM .

Proposition 3.3. The value of the option at tM−1 is given by

ṼM−1(S) = a−MV a
M (S,K−

M ,−1) + b−MV b
M (S,K−

M ,−1)
+ aM

[

V a
M (S,K−

M , 1)− V a
M (S,K+

M , 1)
]

+ bM
[

V b
m(S,K−

M , 1)− V b
M (S,K+

M , 1)
]

+ a+MV a
M (S,K+

M , 1) + b+MV b
M (S,K+

M , 1),

for K−
M−1 < S < K+

M−1.

Proof. Clearly, the option from tM−1 to tM is equivalent to a linear combination
of binary options consisting of two put options with strike K−

M , two call options

with strike K−
M and four call options with strike K+

M . The result then follows from
Lemma 3.1. �

With the aid of (3.2) and Proposition 3.3, we may write the main recursion of
our quadrature method as follows.

Proposition 3.4. Let ṼM = VM be defined in (3.4), and Ṽm−1 be given by the
following recursion formula:

Ṽm−1(S) = e−2rmτm/σ2
m

∫ K+
m

K−

m

Ṽm(y)ρm(y, S) dy + a+mV a
m(S,K+

m, 1)(3.5)

+ b+mV b
m(S,K+

m, 1) + a−mV a
m(S,K−

m,−1) + b−mV b
m(S,K−

m,−1),

for 1 ≤ m ≤ M . Then we have Ṽm(S) = Vm(S) for K−
m < S < K+

m and 0 ≤ m ≤
M . In particular, Ṽ0(S(t0)) = V0(S(t0)).

Proof. This is merely the classical recursion formula for quadrature methods spe-
cialized to the Black-Scholes model. To prove the formula, we only need to show

(3.6) Vm(S) = Ṽm(S)χ(K−

m,K+
m) + (a+mS + b+m)χ[K+

m,∞) + (a−mS + b−m)χ(0,K−

m],

for all 0 ≤ m ≤ M . By assumption (3.6) is true for m = M . Assume now (3.6)
holds for some 1 ≤ m ≤M . Substituting the equation into (3.2), applying Lemma
3.1, comparing the result with (3.5) and using (3.3), we observe that (3.6) holds for
m− 1. The result then follows from induction. �

Remark 3.5. Recursion formula (3.5) lies at the heart of our quadrature method
and distinguishes our method from other quadrature methods, which are primarily
based on (3.2) or one of its many variants. The significance of the formula (3.5)

A SIMPLE AND EFFICIENT METHOD FOR OPTION PRICING 9

lies in the fact that it makes explicit use of Black-Scholes formulas to separate the
expectation integral E

[

Vm(·)|S
]

into a “quadrature part”

Fm−1(S) = e−2rmτm/σ2
m

∫ K+
m

K−

m

Ṽm(y)ρm(y, S) dy,

and an “early-exercise part”

Em−1(S) = a+mV a
m(S,K+

m, 1) + b+mV b
m(S,K+

m, 1)

+ a−mV a
m(S,K−

m,−1) + b−mV b
m(S,K−

m,−1).

Since the function Ṽm(S) is smooth for S ∈ (K−
m,K+

m) (in fact for all S ∈ (0,∞), as
we will show below), the integral Fm−1(S) can be evaluated accurately and efficiently
using a high-order quadrature method such as Simpson’s rule. In contrast, the
integrand Vm(S) in the original recursion formula (3.2) is discontinuous on (0,∞)
(in either Vm itself or in its first derivative); this makes the accurate evaluation
of the expectation integral a difficult and challenging task. Although (3.5) applies
specifically to the Black-Scholes model, the same idea can be used for other asset
price models, as long as a suitable analytical formula (exact or approximate) can be
found for the probability density function ρm(y, S) and early-exercise part Em−1(S).

With ṼM−1(S) given in Proposition 3.3, Proposition 3.4 implies that we may

apply (3.5) successively to obtain ṼM−2(S), ṼM−3(S), . . . , Ṽ0(S). The value of the

option is equal to Ṽ0(S(t0)).

4. Details of Implementation

In (3.5), Ṽm−1(S) is written as a sum of explicit functions and an integral, namely

Ṽm−1(S) = a+mV a
m(S,K+

m, 1) + b+mV b
m(S,K+

m, 1)(4.1)

+ a−mV a
m(S,K−

m,−1) + b−mV b
m(S,K−

m,−1) + Fm−1(S),

where

Fm−1(S) = e−2rmτm/σ2
m

∫ K+
m

K−

m

Ṽm(y)ρm(y, S) dy.

We may truncate the integral by replacing its upper and lower bounds by

L+
m = min

{

K+
m, S(t0)C

}

, and L−
m = max

{

K−
m, S(t0)/C

}

,

respectively, where C > 1 is a suitable constant. In practice, the choice

logC = 10σ0

√
tM − t0 +

(

1 + 1
2σ

2
0

)

(tM − t0),

where σ0 = max1≤m≤M σm, is sufficient to reduce the truncation errors to round-
off level. Heuristically this is clear from (2.3), which suggests that the chance that
S(tm) move outside the range (S(t0)/C, S(t0)C) is negligibly small. The rigorous
derivation of the error bounds can be obtained using a recursive argument, as will
be explained in the Appendix.

Now we consider the truncated integral

F̃m−1(S) = e−2rmτm/σ2
m

∫ L+
m

L−

m

Ṽm(y)ρm(y, S) dy.

10 MIN HUANG AND GUO LUO

If K−
m ≥ S(t0)C or K+

m ≤ S(t0)/C, then by convention the integral is zero. Thus
in what follows we shall assume K−

m < S(t0)C and K+
m > S(t0)/C. Let

B±
m = log

L±
m

S(t0)
,

and denote

S = S(t0)e
x, y = S(t0)e

z ,

αm =
1

σ2
m

[

rm − qm − 1
2σ

2
m

]

, βm =
1

σ4
m

[

rm − qm − 1
2σ

2
m

]2
+

2rm
σ2
m

,

um(x) = Ṽm(S(t0)e
x), wm(x) = exp

{

− x2

4τm
− αmx

}

.

The truncated integral can be rewritten as

(4.2) F̃m−1(S(t0)e
x) =

e−βmτm

2
√
πτm

∫ B+
m

B−

m

wm(x − z)um(z) dz.

One can show by differentiating (4.2) that F̃m, and thus Ṽm and um, are smooth
functions in x. This means we can compute the integrals efficiently using a high-
order quadrature such as Simpson’s rule.

In general, B±
m are different for different values of m, so they cannot all be

placed on one grid. Now we choose a uniform grid x = {x1, x2, . . . , xN}, where
x1 = − logC and xN = logC. Let

h =
xN − x1

N − 1
=

2 logC

N − 1
.

For each m, let

p−m = min
{

i : xi ≥ B−
m

}

, p+m = max
{

i : xi < B+
m

}

,

where by definition p−m ≥ 1 and p+m < N . Since we will use Simpson’s rule which
requires an odd number of grid points, we define

p0 = (p+m − p−m) mod 2,

and rewrite (4.2) as

F̃m−1(S(t0)e
x) =

e−βmτm

2
√
πτm

(
∫ x

p
+
m+p0

x
p
−

m

wm(x− z)um(z) dz

(4.3)

+

∫ x
p
−

m

B−

m

wm(x− z)um(z) dz +

∫ B+
m

x
p
+
m+p0

wm(x− z)um(z) dz

)

.

For each 2 ≤ m ≤M − 1, we will compute F̃m−1(S(t0)e
x) for all

x ∈
{

x1, x2, . . . , xN , B−
m−1, B

+
m−1, ξ

−
m−1, ξ

+
m−1

}

,

where

ξ−m−1 =
1

2
(xp−

m−1

+B−
m−1), ξ+m−1 =

1

2
(xp+

m−1
+p0

+B+
m−1).

For m = 1 we only need to compute F̃m−1(S(t0)e
x) for x = 0, since the value of

the option is given by Ṽ0(S(t0)).

A SIMPLE AND EFFICIENT METHOD FOR OPTION PRICING 11

4.1. Computation of the first integral in (4.3). To compute the first integral
in (4.3) using Simpson’s rule, we let

Um(i) =











um(xi), i = p−m, p+m + p0

4um(xi), i = p−m + 1, p−m + 3, . . . , p+m + p0 − 1

2um(xi), i = p−m + 2, p−m + 4, . . . , p+m + p0 − 2

.

The integral is discretized as

(4.4)

∫ x
p
+
m+p0

x
p
−

m

wm(x− z)um(z) dz =
h

3

p+
m+p0
∑

i=p−

m

wm(x− xi)Um(i) +O(h4),

since Simpson’s rule is of order 4 [8]. Note that Um(i) is known from the pre-
vious step (or by Proposition 3.3 for m = M − 1) for all i = 1, 2, . . . , N . For
x ∈ {B±

m−1, ξ
±
m−1, 0}, the sum (4.4) can be computed directly with complexity

O(N). For all grid points x ∈ {x1, x2, . . . , xN}, on the other hand, the sum (4.4)
can be computed altogether using FFT with complexity O(N logN). This latter
fact is crucial to the efficient implementation of our quadrature method and is a
consequence of the following simple observation.

Proposition 4.1. Define (2N − 1)-periodic grid functions ẑ, Ûm, and F̂m by

ẑ(i) = zi = −2 logC + (i − 1)h, 1 ≤ i ≤ 2N − 1,

Ûm(i) =











0, 1 ≤ i < p−m
Um(i), p−m ≤ i ≤ p+m + p0

0, p+m + p0 < i ≤ 2N − 1

,

F̂m = F−1
{

F
(

wm(ẑ)
)

F(Ûm)
}

,

where F and F−1 denote the discrete Fourier transform and the inverse discrete
Fourier transform of size 2N − 1, respectively. Then

∫ x
p
+
m+p0

x
p
−

m

wm(xj − z)um(z) dz =
h

3
F̂m(j +N) +O(h4),

for all 1 ≤ j ≤ N . The above discrete Fourier transforms and inverse discrete
Fourier transform can be calculated using FFT, and the total computational com-
plexity is O(N logN).

Proof. We consider the discrete convolution

Gm(j) =

2N−1
∑

i=1

wm(zj−i)Ûm(i),

for j ∈ Z. Note that by definition,

zj+N−i = −2 logC + (j − i+N − 1)h = (j − i)h = xj − xi,

12 MIN HUANG AND GUO LUO

for all 1−N ≤ j − i ≤ N − 1. Thus for 1 ≤ j ≤ N , we have

Gm(j +N) =

2N−1
∑

i=1

wm(zj+N−i)Ûm(i)

=

p+
m+p0
∑

i=p−

m

wm(zj+N−i)Um(i) =

p+
m+p0
∑

i=p−

m

wm(xj − xi)Um(i).

Therefore (4.4) with x = xj can be written as

(4.5)

∫ x
p
+
m+p0

x
p
−

m

wm(xj − z)um(z) dz =
h

3
Gm(j +N) +O(h4).

The discrete convolution Gm can be calculated using FFT as

Gm = F−1
{

F
(

wm(ẑ)
)

F(Ûm)
}

= F̂m,

with a complexity of O(N logN) [8]. �

Remark 4.2. Our method differs from other well-known FFT-based methods (such
as [21, 22]) in that we express the discrete quadrature rule (4.4) directly in terms
of discrete Fourier transforms, instead of applying continuous Fourier transform
to the integral and then discretizing the Fourier integrals (in other words, we have
exchanged the order of Fourier transform and discretization). The direct applica-
tion of the discrete Fourier transform (to the discrete quadrature rule) not only
eliminates the need for artificially-introduced damping factors, which are required
for the existence of the continuous Fourier transforms, but also eliminates the need
for additional specially-designed computational grids which are required to satisfy
Nyquist relations. This enables us to carry out the main recursion (3.5) on a fixed
uniform grid, without any additional artificial parameters.

4.2. Computation of the last two integrals in (4.3). The last two integrals in
(4.3) are calculated in similar ways using Simpson’s rule. First, note that we may

use Proposition 3.3 to calculate ṼM−1(S(t0)e
x) for x ∈ {B±

M−1, ξ
±
M−1}. Generally

all four points are needed if the option has two barriers, and only two are needed if
the option has one barrier. For each 2 ≤ m ≤M − 1, assume um(x) = Ṽm(S(t0)e

x)
has been calculated for x ∈ {B±

m, ξ±m}. The last two integrals in (4.3) are calculated
using Simpson’s rule as follows:

∫ x
p
−

m

B−

m

wm(x − z)um(z) dz =
1

6
(xp−

m
−B−

m)
[

wm(x−B−
m)um(B−

m)

(4.6)

+ 4wm(x− ξ−m)um(ξ−m) + wm(x − xp−

m
)um(xp−

m
)
]

+O(h4),

∫ B+
m

x
p
+
m+p0

wm(x− z)um(z) dz =
1

6
(B+

m − xp+
m+p0

)
[

wm(x −B+
m)um(B+

m)

(4.7)

+ 4wm(x− ξ+m)um(ξ+m) + wm(x − xp+
m+p0

)um(xp+
m+p0

)
]

+O(h4).

A SIMPLE AND EFFICIENT METHOD FOR OPTION PRICING 13

5. Finding Optimal Exercise Prices for Bermudan options

Unlike autocallable products and barrier options, Bermudan options do not have
pre-specified exercise levels. Instead, one needs to solve for K±

m from the equations

Ṽm(K+
m) = K+

m −K,

for call options and

Ṽm(K−
m) = K −K−

m,

for put options, where Ṽm is determined by (3.5). For simplicity we assume the
yield rates qm ≥ 0, which is almost always the case in practice. We will demonstrate
how to find K−

m, as the same procedure applies to K+
m. Let

p = min
{

i : Ṽm(S(t0)e
xi) > K − S(t0)e

xi
}

.

If p = 1 there is no early exercise, so K−
m = 0. Otherwise we have S(t0)e

xp−1 ≤
K−

m < S(t0)e
xp by Corollary 8.3. The value of K−

m can be found using classical
root-finding methods such as the bisecting method or the secant method. Note
that the bisecting method is guaranteed to converge by Corollary 8.3, and it takes
O(logN) steps to reduce the error of the approximate root to an order of O(h4).

Since the cost for calculating Ṽm at one point using (4.1) is O(N), the total cost for
finding the optimal exercise price is O(N logN). The secant method is superlinear
and converges faster than the bisecting method, though its error estimates are not
as straightforward.

6. Summary of the Algorithm

We summarize our algorithm as follows:

1: Define the functions V a
m, V b

m as in Lemma 3.1

2: Define the function ṼM−1 as in Proposition 3.3
3: if option style is Bermudan then

4: Calculate K±
M−1 as in Section 5

5: end if

6: Calculate p±M−1 and p0 to find the bounds of integration in (4.3)

7: Use Proposition 3.3 to compute ṼM−1(S(t0)e
x) for x ∈ {B±

M−1, ξ
±
M−1}, and

assign their values to v±1 , v±2 respectively
8: Define a vector S as S(i)← S(t0)e

xi for i = 1, 2, . . . , N

9: Define a vector y as y(i)← ṼM−1(S(i)) for i = 1, 2, . . . , N
10: for m = M − 1 downto 2 do

11: Let ẑ and Ûm be as defined in Proposition 4.1

12: F̂m ← F−1
{

F
(

wm(ẑ)
)

F(Ûm)
}

13: Define (or redefine) the vector Y1 as Y1(j)← h
3 F̂m(j+N) for j = 1, 2, . . . , N

14: Use (4.6), (4.7), and the values of v±1 , v±2 , y(p
−
m), y(p+m + p0) to compute the

last two integrals in (4.3) at xi for i = 1, 2, . . . , N , and assign their values to
Y2 and Y3

15: if option style is Bermudan then

16: Calculate K±
m−1 as in Section 5

17: end if

18: Calculate p±m−1 and p0 to find the bounds of integration in (4.3)

14 MIN HUANG AND GUO LUO

19: Compute Ṽm−1(S(t0)e
x) for x ∈ {B±

m−1, ξ
±
m−1} using (4.1) (where the first

integral in (4.3) is computed using (4.4), and the last two integrals using
(4.6), (4.7), and the existing values of v±1 , v

±
2 , y(p

−
m), y(p+m + p0)), and assign

their values to v±1 , v
±
2 respectively

20:

y← Y1 +Y2 +Y3 + a+mV a
m(S,K+

m, 1) + b+mV b
m(S,K+

m, 1)

+ a−mV a
m(S,K−

m,−1) + b−mV b
m(S,K−

m,−1),

as in (4.1) (note that y now stores Ṽm−1(S(i)) for i = 1, 2, . . . , N)
21: end for

22: Compute Ṽ0(S(t0)) using (4.1), where the first integral in (4.3) is computed
using (4.4), and the last two integrals using (4.6), (4.7), and the existing values
of v±1 , v±2 , y(p

−
1), y(p

+
1 + p0)

Since the computational complexity of each step of the loop is O(N logN), the
total complexity is O(MN logN).

Remark 6.1. While other quadrature methods typically employ multiple uniform
grids or specially-designed (nonuniform or shifted) grids, our method utilizes only
a fixed one-dimensional uniform grid, which not only eliminates the need for com-
plicated inter-grid data transfer procedures, but also eliminates the need for special
subroutines that are often required to interpolate data across discontinuities. This
makes our method particularly easy to implement.

7. Numerical Examples

We will demonstrate the accuracy and efficiency of the proposed method using
two examples, in which the value of an autocallable structured product and that of
a double barrier option with time-dependent barriers are found.

7.1. Example 1: Autocallable Structured Product. We consider a knock-out
autocallable structured product maturing in one year. The price of the underlying
asset is 3000, the nominal amount is 1, and the volatility is 20%. The observation
dates (in years from now), barrier levels, and risk-free rates (in %) are given below
in Table 1.

Table 1. An autocallable structured product.

Observation date Barrier level Risk-free rate

0.2 3050 2
0.4 3100 2.1
0.6 3150 2.2
0.8 3200 2.3
1 3250 2.4

If the asset price reaches or goes above the barrier level at some observation
date t, the investor receives a payment of 4% × t. If the asset price is below the
barrier at every observation date, the investor will have to pay a premium of 1%.
The relative errors of the computed option values with varying grid sizes are shown

A SIMPLE AND EFFICIENT METHOD FOR OPTION PRICING 15

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−6

Grid Size

R
el

at
iv

e
E

rr
or

 o
f O

pt
io

n
V

al
ue

(a)

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3
x 10

−3

Number of Paths (Millions)

R
el

at
iv

e
E

rr
or

 o
f O

pt
io

n
V

al
ue

(b)

Figure 1. Errors for the autocallable structured product, com-
puted using (a) the proposed method and (b) Monte-Carlo simu-
lations.

below in Figure 1(a), where the exact option value is taken to be the one computed
on the grid of size 70,001.

As a comparison, the relative errors of the option values computed using Monte-
Carlo simulations with antithetic variates technique are shown in Figure 1(b). As
is clear from the figures, the error of the option value computed using the proposed
method is well within 10−5 with just 501 points in the grid, and drops very quickly
as the grid size increases. In contrast, it takes more than ten million paths for
Monte-Carlo simulations to reduce the error of the computed option value to within
10−3, and the error decays very slowly as the number of paths increases.

Figure 2 below shows the CPU time used by the proposed method to price the
autocallable structured product, where the code is developed in Matlab and is run
on a personal computer. As is clear from the figure, the CPU time required by

500 1000 1500 2000 2500
2.5

3

3.5

4

4.5

5
x 10

−3

Grid Size

C
P

U
 T

im
e

(S
ec

on
ds

)

Figure 2. CPU time for autocallable structured product valua-
tion, using the proposed method.

the proposed method is well within 0.01 seconds, and it increases approximately
linearly as grid size increases. It is difficult to compare the speed of the proposed

16 MIN HUANG AND GUO LUO

method with that of Monte-Carlo simulations directly, since the CPU time required
by the latter depends largely on specific implementations. Nevertheless, the typical
CPU time consumed by a Monte-Carlo simulation with tens of millions of paths
ranges from tens of seconds to a few minutes.

7.2. Example 2: Double Barrier Option. As another example, consider a
knock-out double barrier put option with time-dependent barrier levels. The price
of the underlying asset is 2500, the strike price is 2600, the nominal amount is 1,
and the volatility is 25%. The option matures in two years. The observation dates
(in years from now), barrier levels, and risk-free rates (in %) are given below in
Table 2.

Table 2. A double barrier option.

Observation date Barrier level 1 Barrier level 2 Risk-free rate

0.25 2200 2800 1
0.50 2100 2900 1.1
0.75 2000 3000 1.2
1 1900 3100 1.3

1.25 1800 3200 1.2
1.50 1700 3300 1.3
1.75 1600 3400 1.4
2 − − 1.5

If the asset price falls below barrier level 1 or rises above barrier level 2 at any
observation date, the option ceases to exist. If the option is still valid at maturity,
the payoff is the same as that of a vanilla put option. The relative errors of the
computed option values with varying grid sizes are shown below in Figure 3(a),
where the exact option value is taken to be the one computed on the grid of size
50,001.

700 900 1100 1300 1500 1700 1900 2100 2300 2500
0

1

2

3

4

5

6

7

8
x 10

−6

Grid Size

R
el

at
iv

e
E

rr
or

 o
f O

pt
io

n
V

al
ue

(a)

0 10 20 30 40 50 60 70
2

4

6

8

10

12

14

16
x 10

−4

Number of Paths (Millions)

R
el

at
iv

e
E

rr
or

 o
f O

pt
io

n
V

al
ue

(b)

Figure 3. Errors for the double barrier option, computed using
(a) the proposed method and (b) Monte-Carlo simulations.

A SIMPLE AND EFFICIENT METHOD FOR OPTION PRICING 17

As a comparison, the relative errors of the option values computed using Monte-
Carlo simulations with antithetic variates technique are shown in Figure 3(b). As
is clear from the figures, the error of the option value computed using the proposed
method is within 10−5 with just 701 points in the grid, and drops very quickly as
the grid size increases. In contrast, it takes more than ten million paths for Monte-
Carlo simulations to reduce the error of the computed option value to within 10−3,
and the error decays very slowly as the number of paths increases.

Figure 4 below shows the CPU time used by the proposed method to price
the double barrier option, where the code is developed in Matlab and is run on
a personal computer. As is clear from the figure, the CPU time required by the

700 900 1100 1300 1500 1700 1900 2100 2300 2500
5.5

6

6.5

7

7.5

8

8.5

9

9.5
x 10

−3

Grid Size

C
P

U
 T

im
e

(S
ec

on
ds

)

Figure 4. CPU time for double barrier option valuation, using
the proposed method.

proposed method is within 0.01 seconds, and it increases approximately linearly
as grid size increases. In contrast, the typical CPU time consumed by a Monte-
Carlo simulation with tens of millions of paths ranges from tens of seconds to a few
minutes.

Remark 7.1. Although the designed order of the proposed method is 4, in the above
numerical examples, a lower order of convergence (close to 3) is actually observed
for the grid sizes considered. It is interesting to note that this apparent “loss” of
order of accuracy is not a defect of our method; rather, it is a manifestation of the
subtle influences that barrier levels can have on option pricing algorithms. These
influences can be understood from two perspectives. First, in the above examples,
the barrier levels K±

m are close to the spot price S(t0). This gives rise to a relatively
small integration domain [B−

m, B+
m] compared with the entire computational domain

[− logC, logC] (recall that

B+
m −B−

m = log
L+
m

S(t0)
− log

L−
m

S(t0)
= log

L+
m

L−
m

≤ min
{

log
K+

m

K−
m

, log
K+

m

C−1

}

), which means that the set of grid points that are available for the discrete quad-
rature rule (4.4) represents only a relatively small fraction of the set of grid points
introduced on the entire computational domain. Secondly, in the above examples the
option prices Vm+1(S) contain discontinuities at each observation date tm+1. These
discontinuities necessarily show up in the form of large gradients in the (smooth)

functions Ṽm(S) (via the expectation integrals E
[

Vm+1(·)|S
]

), which means that the

18 MIN HUANG AND GUO LUO

discrete quadrature rule (4.4) is being applied to fast-varying functions with only
a relatively small number of grid points, leaving the integrands only marginally re-
solved and hence explaining the degeneracy observed in the convergence rate. If the
barrier levels K±

m are pushed farther away from the spot price S(t0), so that the
option becomes increasingly like a vanilla option, then the discrete quadrature rule
(4.4) effectively applies to slow-varying functions with a relatively large number of
grid points, which improves the resolution of the integrands and hence the conver-
gence rate (to close to 4). Despite these caveats on convergence rate, we emphasize
that our method is capable of pricing a sophisticated discretely monitored option
and obtaining five to six significant digits within a fraction of a second, while at the
same time being very easy to understand and to implement. Thus the (relatively
technical) issue of convergence rate should pose no real concerns in practice.

Remark 7.2. Although a relative error of the order 10−5 or 10−6 may not always
seem necessary for option pricing problems considered in the real financial world,
this extra accuracy is actually needed in the calculation of the Greeks, which are typ-
ically approximated by finite difference formulas and which are much more sensitive
to numerical errors incurred in the calculation of option prices.

8. Appendix

8.1. Estimate of Truncation Errors. To estimate the truncation error for the
integral in (4.1), we first introduce

Lemma 8.1. Let

A = max
{

|a±1 |, . . . , |a±M |, |aM |
}

, B = max
{

|b±1 |, . . . , |b±M |, |bM |
}

,

R = min
{

r1, . . . , rM , 0
}

, Q = min
{

q1, . . . , qM , 0
}

.

Then

|Ṽm(S)| ≤ eQ(tm−tM)AS + eR(tm−tM)B, ∀0 ≤ m ≤M, ∀S ∈ (K−
m,K+

m),

and

|Vm(S)| ≤ eQ(tm−tM)AS + eR(tm−tM)B, ∀0 ≤ m ≤M, ∀S ∈ (0,∞).

Proof. Clearly, by assumption (cf. (3.4)),

|ṼM (S)| = |VM (S)| ≤ AS +B, ∀S ∈ (0,∞).

Now assume

|Ṽm(S)| ≤ eQ(tm−tM)AS + eR(tm−tM)B, ∀S ∈ (K−
m,K+

m),

and

|Vm(S)| ≤ eQ(tm−tM)AS + eR(tm−tM)B, ∀S ∈ (0,∞),

for some 1 ≤ m ≤M . By (3.2) and Proposition 3.4, we have

Ṽm−1(S) = e−2rmτm/σ2
m

∫ ∞

0

Vm(y)ρm(y, S) dy,

A SIMPLE AND EFFICIENT METHOD FOR OPTION PRICING 19

forK−
m−1 < S < K+

m−1. By definition (3.1), it is clear that ρm(y, S) = ρm(y/S, 1)/S.
Thus a simple change of variable z = y/S yields

|Ṽm−1(S)| = e−2rmτm/σ2
m

∣

∣

∣

∫ ∞

0

Vm(Sz)ρm(z, 1) dz
∣

∣

∣

≤ e−2rmτm/σ2
m

∫ ∞

0

[

eQ(tm−tM)ASz + eR(tm−tM)B
]

ρm(z, 1) dz

= e−2rmτm/σ2
m

(

eQ(tm−tM)AS

∫ ∞

0

zρm(z, 1) dz + eR(tm−tM)B

)

.

The integral
∫∞

0 zρm(z, 1) dz is the expectation of the lognormal distribution, which

is simply exp{2(rm − qm)τm/σ2
m} [19]. Thus we have (observe R ≤ 0 and Q ≤ 0)

|Ṽm−1(S)| ≤ e−2qmτm/σ2
m+Q(tm−tM)AS + e−2rmτm/σ2

m+R(tm−tM)B

≤ eQ(tm−1−tM)AS + eR(tm−1−tM)B,

for all S ∈ (K−
m−1,K

+
m−1). By (3.3) and Proposition 3.4, we then deduce

|Vm−1(S)| ≤ eQ(tm−1−tM)AS + eR(tm−1−tM)B,

for all S ∈ (0,∞). The result then follows from induction. �

The possibly infinite integral in (3.5) is approximated by a finite integral. To

be specific, let C > 1, S0 = S(t0), and G̃M−1(S) = ṼM−1(S). We consider G̃m−1

(1 ≤ m ≤M − 1) defined recursively by

G̃m−1(S) = e−2rmτm/σ2
mE

[

G̃m(·)|S
]

= e−2rmτm/σ2
m

∫ L+
m

L−

m

G̃m(y)ρm(y, S) dy + a+mV a
m(S,K+

m, 1)

+ b+mV b
m(S,K+

m, 1) + a−mV a
m(S,K−

m,−1) + b−mV b
m(S,K−

m,−1).

A direct calculation shows that the errors R̃m = Ṽm − G̃m satisfy the recursion

R̃m−1(S) = e−2rmτm/σ2
m

(
∫ L+

m

L−

m

R̃m(y)ρm(y, S) dy

+

∫ L−

m

K−

m

Ṽm(y)ρm(y, S) dy +

∫ K+
m

L+
m

Ṽm(y)ρm(y, S) dy

)

.

We use the operator notation

Tm(f)(S) = e−2rmτm/σ2
m

∫ ∞

0

f(y)ρm(y, S) dy,

to write the recursion of R̃m as

R̃m−1 = Tm(R̃mχ(L−

m,L+
m)) + Tm(Ṽmχ(K−

m,L−

m]∪[L+
m,K+

m)),

for 1 ≤ m ≤M − 1. Note also that R̃M−1(S) = 0.

Now we consider Q̃m defined by the recursion

(8.1) Q̃m−1 = Tm(Q̃m) + Tm
(

(eQ(t0−tM)Ay + eR(t0−tM)B)χ(0,S0/C]∪[S0C,∞)

)

,

20 MIN HUANG AND GUO LUO

and Q̃M−1 = 0. It is easy to show using Lemma 8.1 and induction that |R̃m| ≤ Q̃m

for all 0 ≤ m ≤ M − 1. We can also apply the recursion formula (8.1) to get the
expansion

Q̃0 =

M−1
∑

m=1

T1 ◦ · · · ◦ Tm
(

(eQ(t0−tM)Ay + eR(t0−tM)B)χ(0,S0/C]∪[S0C,∞)

)

.

Since Tm is the risk-neutral expectation operator discounted from tm to tm−1,
T1 ◦ · · ·◦Tm(f) is simply the value of a European option whose payoff at tm is given

by f . Thus Q̃0 is equal to the value of a sum of 2(M − 1) binary call options with
strike S0C and 2(M − 1) binary put options with strike S0/C. As a result,

Q̃0(S0) = eQ(t0−tM)A

M−1
∑

m=1

[

Ca(S0, S0C, tm) + Pa(S0, S0/C, tm)
]

(8.2)

+ eR(t0−tM)B
M−1
∑

m=1

[

Cb(S0, S0C, tm) + Pb(S0, S0/C, tm)
]

,

where Ca, Pa, Cb, Pb denote values of asset-or-nothing call, asset-or-nothing put,
cash-or-nothing call, and cash-or-nothing put respectively. According to Lemma
3.1, the values of these binary options are given by

Ca(S0, S0C, tm) = S0e
−q̄m(tm−t0)N(d3), Pa(S0, S0/C, tm) = S0e

−q̄m(tm−t0)N(d4),

Cb(S0, S0C, tm) = e−r̄m(tm−t0)N(d5), Pb(S0, S0/C, tm) = e−r̄m(tm−t0)N(d6),

where

d3 =
1

σ̄m

√
tm − t0

[

− logC + (r̄m − q̄m + 1
2 σ̄

2
m)(tm − t0)

]

,

d4 =
1

σ̄m

√
tm − t0

[

− logC − (r̄m − q̄m + 1
2 σ̄

2
m)(tm − t0)

]

,

d5 =
1

σ̄m

√
tm − t0

[

− logC + (r̄m − q̄m − 1
2 σ̄

2
m)(tm − t0)

]

,

d6 =
1

σ̄m

√
tm − t0

[

− logC − (r̄m − q̄m − 1
2 σ̄

2
m)(tm − t0)

]

,

and r̄m, q̄m, σ̄m represent the time-weighted averages of {rn, qn, σn}mn=1 respectively.
Generally, in practice, the absolute values of annual interest and yield rates will not
exceed 50%, tM − t0 will not exceed 10 years, and A will not exceed 1. For general
autocallable structured products, B will not exceed tM − t0, and for Bermudan
options B will not exceedK, which is not much larger than S0. We may also assume
M ≤ 120, which corresponds to products that are not too frequently monitored,
say monthly (for more frequently monitored products, such as daily monitored
products, continuity correction methods [4, 5] are usually more appropriate). Let
σ0 = max1≤m≤M σm. If we choose

logC = 10σ0

√
tM − t0 +

(

1 + 1
2σ

2
0

)

(tM − t0),

we can make sure that

d3,4,5,6 ≤ −10, and thus N(d3,4,5,6) < 10−23.

A SIMPLE AND EFFICIENT METHOD FOR OPTION PRICING 21

A crude estimate using (8.2) then shows that the error bound Q̃0(S0) does not
exceed 10−15(S0 + 1). This means the relative truncation error is negligible for all
practical purposes.

8.2. Analysis of K±
m for Bermudan Options. The proper application of Propo-

sition 3.4 requires the uniqueness of the exercise prices K±
m, which we now establish

for Bermudan options.
To begin with, observe that the risk-neutral pricing formulas (3.2)–(3.3) applied

to Bermudan options can be written in an alternative form as

(8.3) Vm−1(S) = max
{

Ṽm−1(S), ǫ(S −K)
}

, ∀1 ≤ m ≤M, ∀S ∈ (0,∞),

where

ǫ =

{

1, if the option is a Bermudan call

−1, if the option is a Bermudan put
,

and

Ṽm−1(S) = e−2rmτm/σ2
m

∫ ∞

0

Vm(y)ρm(y, S) dy(8.4)

= e−2rmτm/σ2
m

∫ ∞

0

Vm(Sz)ρm(z, 1) dz.

Since, by definition,
VM (S) = max

{

0, ǫ(S −K)
}

,

(8.3) and (8.4) define Vm and Ṽm recursively for all 0 ≤ m ≤ M − 1. It is easy to

see that Vm(S) ≥ Ṽm(S) > 0 for all 0 ≤ m ≤M − 1 and S ∈ (0,∞).

Proposition 8.2. Assume qm ≥ 0 for all 1 ≤ m ≤M . For a Bermudan call option
with strike K, the equation Ṽm(K+

m) = K+
m − K has at most one finite solution,

and

0 < Ṽm(S2)− Ṽm(S1) < S2 − S1, ∀1 ≤ m ≤M − 1, ∀S2 > S1 > 0.

For a Bermudan put option with strike K, the equation Ṽm(K−
m) = K −K−

m has at
most one finite solution, and

0 < Ṽm(S1)− Ṽm(S2) < S2 − S1, ∀1 ≤ m ≤M − 1, ∀S2 > S1 > 0.

Proof. Clearly Q = 0 since qm ≥ 0. The proofs for call and put options are very
similar, and we will present the argument for put options only which proceeds by
induction. Since ṼM−1 is the value of a European vanilla put option and qm ≥ 0,
its delta is between −1 and 0 [18]. Thus

0 < ṼM−1(S1)− ṼM−1(S2) = −
∫ S2

S1

Ṽ ′
M−1(S) dS < S2 − S1,

for all S2 > S1 > 0. Now suppose ṼM−1(S3) = K − S3 and ṼM−1(S4) = K − S4

for some S4 > S3 > 0. This means

S4 − S3 = ṼM−1(S3)− ṼM−1(S4) < S4 − S3,

which is a contradiction. So the proposition is true for m = M − 1.
Suppose now the results hold for some 2 ≤ m ≤ M − 1, which implies that the

function S − K + Ṽm(S) is strictly increasing. Since Ṽm(S) > 0, for sufficiently

large S we have S −K + Ṽm(S) > 0, or Ṽm(S) > K − S. This means that

K−
m = inf

{

S > 0: Ṽm(S) > K − S
}

22 MIN HUANG AND GUO LUO

is well-defined and satisfies K−
m <∞. Consider now (cf. (8.3))

(8.5) Vm(S) =

{

Ṽm(S), S ≥ K−
m

K − S, S < K−
m

,

and any S2 > S1 > 0. If S2 < K−
m (and hence S1 < K−

m), we have

Vm(S1)− Vm(S2) = (K − S1)− (K − S2) = S2 − S1,

by (8.5). If S1 ≥ K−
m (and hence S2 ≥ K−

m), we have

Vm(S1)− Vm(S2) = Ṽm(S1)− Ṽm(S2) ∈ (0, S2 − S1),

by (8.5) and inductive hypothesis. If S1 < K−
m ≤ S2, we have

Vm(S1)− Vm(S2) = (K − S1)− Ṽm(S2)

< (K − S1)− (K − S2) = S2 − S1,

Vm(S1)− Vm(S2) > (K − S1)− Ṽm(S1) ≥ 0,

by (8.5), inductive hypothesis, and the definition of K−
m. In conclusion, we have

shown that

0 < Vm(S1)− Vm(S2) = S2 − S1, ∀K−
m > S2 > S1 > 0,(8.6a)

0 < Vm(S1)− Vm(S2) < S2 − S1, otherwise.(8.6b)

With the aid of (8.4) and (8.6), we write

Ṽm−1(S1)− Ṽm−1(S2) = e−2rmτm/σ2
m(I1 + I2),

where

0 < I1 =

∫ K−

m/S2

0

[

Vm(S1z)− Vm(S2z)
]

ρm(z, 1) dz

= (S2 − S1)

∫ K−

m/S2

0

zρm(z, 1) dz,

0 < I2 =

∫ ∞

K−

m/S2

[

Vm(S1z)− Vm(S2z)
]

ρm(z, 1) dz

< (S2 − S1)

∫ ∞

K−

m/S2

zρm(z, 1) dz.

As a result,

0 < Ṽm−1(S1)− Ṽm−1(S2)(8.7)

< e−2rmτm/σ2
m(S2 − S1)

∫ ∞

0

zρm(z, 1) dz ≤ S2 − S1,

since by elementary properties of lognormal distributions [19],

e−2rmτm/σ2
m

∫ ∞

0

zρm(z, 1) dz = e−2qmτm/σ2
m ≤ 1.

Now suppose Ṽm−1(S3) = K − S3 and Ṽm−1(S4) = K − S4. This means

Ṽm−1(S3)− Ṽm−1(S4) = S4 − S3,

so by (8.7) we must have S3 = S4. The proposition then follows from induction. �

A SIMPLE AND EFFICIENT METHOD FOR OPTION PRICING 23

Corollary 8.3. Assume a Bermudan put option with strike K has an optimal early-
exercise level K−

m > 0 for some 1 ≤ m ≤M − 1. Then we have Ṽm(S) > K −S for

S > K−
m and Ṽm(S) < K − S for S < K−

m. Similarly, for a Bermudan call option

we have Ṽm(S) < S −K for S > K+
m and Ṽm(S) > S −K for S < K+

m.

Proof. We will present the proof for put options only as the argument for call
options is similar. It follows from Proposition 8.2 that the function Ṽm(S)+S−K

is increasing in S. Since Ṽm(K−
m) + K−

m − K = 0, we have Ṽm(S) > K − S for

S > K−
m and Ṽm(S) < K − S for S < K−

m. �

Acknowledgements

We are very grateful to Qingshuo Song for his valuable insights and helpful
suggestions, as well as to Zhenan Sui for her careful reading and editing of the
manuscript.

References

[1] D.-H. Ahn, S. Figlewski, and B. Gao, Pricing discrete barrier options with an adaptive mesh
model, J. Deriv. 6(4), 33–43 (1999).

[2] T. Alm, B. Harrach, D. Harrach, and M. Keller, A Monte Carlo pricing algorithm for auto-
callables that allows for stable differentiation, J. Comput. Financ. 17(1), 43–70 (2013).

[3] A. D. Andricopoulos, M. Widdicks, P. W. Duck, and D. P. Newton, Universal option valuation
using quadrature methods, J. Financ. Econ. 67(3), 447–471 (2003).

[4] M. Broadie, P. Glasserman, and S. Kou, A continuity correction for discrete barrier options,
Math. Financ. 7(4), 325–348 (1997).

[5] M. Broadie, P. Glasserman, and S. G. Kou, Connecting discrete and continuous path-
dependent options, Financ. Stoch. 3(1), 55–82 (1999).

[6] M. Broadie and Y. Yamamoto, A double-exponential fast Gauss transform algorithm for pricing
discrete path-dependent options, Oper. Res. 53(5), 764–779 (2005).

[7] P. Buchen and O. Konstandatos, A new approach to pricing double-barrier options with arbi-
trary payoffs and exponential boundaries, Appl. Math. Financ. 16(6), 497–515 (2009).

[8] R. L. Burden, J. D. Faires, and A. M. Burden, Numerical Analysis (10th Edition), Brooks
Cole (2015).

[9] G. Deng, J. Mallett, and C. McCann, Modeling autocallable structured products, J. Deriv.
Hedge Funds 17(4), 326–340 (2011).

[10] F. Fang and C. W. Oosterlee, Pricing early-exercise and discrete barrier options by Fourier-
cosine series expansions, Numer. Math. 114, 27–62 (2009).

[11] L. Feng and X. Lin, Pricing Bermudan options in Lévy process models, SIAM J. Finan. Math.
4(1), 474–493 (2013).

[12] L. Feng and V. Linetsky, Pricing discretely monitored barrier options and defaultable bonds
in Lévy process models: a fast Hilbert transform approach, Math. Financ. 18(3), 337–384
(2008).

[13] C. P. Fries and M. S. Joshi, Perturbation stable conditional analytic Monte-Carlo pricing
scheme for auto-callable products, Int. J. Theor. Appl. Finance 14(2), 197–219 (2011).

[14] G. Fusai, I. D. Abrahams, and C. Sgarra, An exact analytical solution for discrete barrier
options, Finance Stochast. 10(1), 1–26 (2006).

[15] J. Gatheral, The Volatility Surface: A Practitioner’s Guide, John Wiley & Sons (2006).
[16] A. Golbabai, L. V. Ballestra, and D. Ahmadian, A highly accurate finite element method to

price discrete double barrier options, Comput. Econ. 44(2), 153–173 (2014).
[17] A. Ibáñez and C. Velasco, The optimal method for pricing Bermudan options by simulation,

Math. Financ. 28(4), 1143–1180 (2018).

[18] J. C. Hull, Options, Futures, and Other Derivatives (9th Edition), Pearson (2014).
[19] N. L. Johnson, S. Kotz, and N. Balakrishnan, “14: Lognormal Distributions”, Continuous

Univariate Distributions (Volume 1, 2nd Edition), Wiley Series in Probability and Mathemat-
ical Statistics, John Wiley & Sons (1994).

24 MIN HUANG AND GUO LUO

[20] C. F. Lo, H. C. Lee, and C. H. Hui, A simple approach for pricing barrier options with
time-dependent parameters, Quant. Financ. 3(2), 98–107 (2003).

[21] R. Lord, F. Fang, F. Bervoets, and C. W. Oosterlee, A fast and accurate FFT-based method
for pricing early-exercise options under Lévy processes, SIAM J. Sci. Comput. 30(4), 1678–1705
(2008).

[22] C. O’Sullivan, Path dependant option pricing under Lévy processes, EFA 2005 Moscow Meet-
ings Paper (2005).

[23] E. Reiner, Convolution methods for path-dependent options, Financial Mathematics: Risk
Management, Modeling and Numerical Methods, IPAM UCLA (Jan. 3–12, 2001).

[24] S. E. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer-Verlag
(2004).

[25] T. Guillaume, Autocallable structured products, J. Deriv. 22(3), 73–94 (2015).
[26] T. Guillaume, Analytical valuation of autocallable notes, Int. J. Financ. Eng. 2(2), 1–23

(2015).
[27] J. Z. Wei, Valuation of discrete barrier options by interpolations, J. Deriv. 6(1), 51–73 (1998).

Min Huang

China Merchants Bank
7088 Shennan Boulevard, Shenzhen, Guangdong, China

Email: huang.479@osu.edu

Guo Luo

Department of Mathematics, City University of Hong Kong

Tat Chee Avenue, Kowloon, Hong Kong
Email: guoluo@cityu.edu.hk

	1. Introduction
	1.1. Autocallable Structured Products
	1.2. Discrete Barrier Options
	1.3. Bermudan Options
	1.4. Overview of the Quadrature Method
	1.5. Motivation of Our Work
	1.6. Organization of the Paper

	2. Basic Assumptions
	3. Outline of the method
	4. Details of Implementation
	4.1. Computation of the first integral in (??)
	4.2. Computation of the last two integrals in (??)

	5. Finding Optimal Exercise Prices for Bermudan options
	6. Summary of the Algorithm
	7. Numerical Examples
	7.1. Example 1: Autocallable Structured Product
	7.2. Example 2: Double Barrier Option

	8. Appendix
	8.1. Estimate of Truncation Errors
	8.2. Analysis of Km for Bermudan Options

	Acknowledgements
	References

