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Abstract

Many physical, biological, and economical systems exhibit various memory effects due to
which their present state depends on the history of the whole evolution. Combined with the
nonlinearity of the process these phenomena pose serious difficulties in both analytical and nu-
merical treatment. We investigate a time-fractional porous medium equation that has proved to
be important in many applications, notably in hydrology and material sciences. We show that
solutions of the free boundary Dirichlet, Neumann, and Robin problems on the half-line satisfy
a Volterra integral equation with a non-Lipschitz nonlinearity. Based on this result we prove
existence, uniqueness, and construct a family of numerical methods that solve these equations
outperforming the usual finite difference approach. Moreover, we prove the convergence of these
methods and support the theory with several numerical examples.
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1 Introduction
During the last few decades experimentalists, modellers, theoreticians, and numerical analysts have
been investigating many aspects of nonlocality in mathematical objects. These inquiries have cer-
tainly been motivated by an increasingly rich experimental evidence for anomalous behaviour, math-
ematically nontrivial models, and professional curiosity. Apart from many applications, probably
the one that is most researched is the so-called anomalous diffusion that arises when the transport
is slower or faster than in the classical case [1, 2]. Probabilistically, this can be characterised with a
deviation from the linear mean-square displacement for a randomly walking particle [3]. There is a
broad experimental evidence of such dynamics in quantum optics [4], physics of plasma [5], movement
of bacteria and amoeba [6], G-protein on cell surface [7], hydrology [8, 9, 10, 11, 12], and motion of
dislocations in crystal lattice [13].

The nonlocality in the anomalous diffusion in usually modelled with a use of the fractional deriva-
tive [1]. There are many definitions of such operators and it depends on the situation which one is
the most suited for a specific model. For example, temporal nonlocality (memory) can be described
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with Riemann-Liouville or Caputo derivatives while nonlocality in space requires „symmetric” op-
erator such as the fractional Laplacian [14, 15, 16]. Physical derivations of the fractional porous
media equation have been given for example in [17, 18]. We have argued there that the emergence
of the time-fractional derivative is a manifestation of the waiting-time phenomenon happening in
the medium, i.e. the fluid can be trapped in certain regions for prolonged periods of time which
leads to the so-called subdiffusion. Recently, some experimental evidence has been given in [19] that
supports this hypothesis. On the other hand, the spatial nonlocality in the porous medium equation
is a consequence of the long jump phenomenon (for a physical derivation see [18]). That is to say, due
to medium’s complex geometry and heterogeneity fluid parcels can traverse relatively long distances
in short amounts of time what in the literature is called superdiffusion. Mathematically this leads
to the fractional gradient operator which is closely related to the fractional Laplacian [15, 20, 21]. A
thorough summary of the theory of the fractional porous medium equation can be found [16].

Our previous studies investigated the time-fractional porous medium equation applied as a model
for moisture transport in construction materials

∂αt u = (umux)x , 0 < α < 1, m > 1, (1)

where the fractional derivative is of the Riemann-Liouville type

∂αt u(x, t) =
1

Γ(1− α)

∂

∂t

∫ t

0

(t− s)−αu(x, s)ds. (2)

with the vanishing initial condition and dry medium at infinity

u(x, 0) = 0, u(∞, t) = 0, x > 0, t > 0. (3)

The natural function space in which the weak solution of a fractional diffusion equation should be
sought is

C
(
[0, 1];H1(R+)

)
, (4)

where H1 is the usual Sobolev space. Below, by the use of integral equation techniques, we show
that the self-similar solution of the above problem is indeed continuous and differentiable almost
everywhere with respect to space and time. Moreover, in physical derivation of the time-fractional
porous medium equation (1) one arrives at the Caputo derivative on the left-hand side (see for
ex. [17]). However, due to the zero initial condition this derivative coincides with the Riemann-
Liouville one [14] and hence the present form of (1). Additionally, motivated by the modelling using
continuous time random walk it is interesting to consider some general fractional operators that
govern the evolution in time (for some interesting examples and analyses see [22, 23]). We leave this
topic for future studies.

The parameters α and m are associated with a specific experiment and are subject to fitting with
the data. Based on [12] we can think that usually α ∈ [0.6, 1] while m ≈ 7 − 8. The parameter
α denotes the level of nonlocality of the model with α = 1 being the classical case. Since, as will
be seen below, our model (1) describes a slower evolution than in the classical case we speak about
subdiffusion.

In previous works we have proved existence and uniqueness of a self-similar solution to the Dirich-
let problem [24], provided some approximations [10], solved inverse problem of diffusivity identifica-
tion [25], and constructed a numerical scheme [26]. This numerical method, although only first order
accurate, provided a superior performance over the finite difference method applied to the govern-
ing PDE. The idea was to use a series of transformations leading to a nonlinear Volterra equation
and then to discretize it. In this work we follow a similar route but now we introduce several im-
provements. First of all, we sketch how to construct an arbitrarily high order scheme and explicitly
devise the second order accurate linear method. Then, we prove its convergence under some mild
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assumptions. The difference from our previous work is that we use the general theory of Volterra
equations in order to anticipate the behaviour of its solution. This lets us to conduct yet another
transformation which facilitates the crucial step in the convergence proof yielding a stronger result.
Moreover, our method is constructed in a way that it gives exact results for power functions which
are the leading-order approximations to the solution of the time-fractional porous medium equation.
This further improves the accuracy within the second order. For example, as will be shown below,
computing the wetting front to several decimal places requires using only moderate step sizes.

There is a vast literature concerning numerical methods for fractional differential equations. For
general surveys one can refer to [27, 28]. The linear fractional diffusion either with temporal or
spatial nonlocality has been solved for example in [29, 30, 31]. The usual approach to constructing a
numerical scheme for the time-fractional diffusion is based on discretizing nonlocal derivative by, for
example, L1 scheme [32, 33], Grünwald-Letnikov [31], or Convolution quadrature [34]. This provides
the quasi-discrete scheme that can be fully discretized by introducing a finite difference [35], finite
element [36] or other spatial discretization [30].

On the other hand, the case of nonlinear anomalous diffusion has been rigorously treated only
in relatively few papers (especially when the diffusivity is a function of the solution). Some recent
examples include time-fractional reaction-diffusion equations [37]. One of the very useful tools in
proving convergence for a nonlinear problem is the discrete fractional Grönwall inequality that was
developed and applied to nonlinear time-fractional diffusion problems in [38, 39] (note that probably
the first account of fractional Grönwall inequality has been given in [40] but see also [41] and references
therein). Numerical methods for equations with non-smooth data have been also analysed in [42].
On the other hand, the space-fractional porous medium has been discretized in [43] with the use of
finite difference method applied to the extension problem [44]. Furthermore, in [45] some very robust
numerical methods have been devised, thoroughly analysed, and applied to a very broad classes
of nonlocal equations. Moreover, authors of [46] used a multi-grid waveform method for the time-
fractional case. The nonlinear source terms have been considered in [47]. The main difficulty in the
analysis of the porous medium equation (even in the classical case) is the degeneracy of diffusivity, i.e.
the coefficient of ux can vanish. This fact makes both theoretical and numerical studies interesting
and non-trivial. For several years many approaches of numerical treatment of the classical porous
medium equation have been proposed. To paint the background we mention only a few papers.
For example, in [48] authors used a finite difference method with an interface tracking algorithm.
This feature is crucial since due to degeneracy in many circumstances the solution is characterized
with a finite speed of propagation what translates into a free-boundary problem [49]. Also, a finite
element method for the classical porous medium equation has been analysed in [50, 51]. This topic
is still vigorously investigated and mathematicians constantly develop some new approaches (for ex.
[52, 53, 54]).

The root of our method lies in appropriate discretization of a nonlinear Volterra equation (for
a thorough treatment see [55]). A survey of numerical methods for such problems can be found in
[56, 57]. Notice that the majority of the theory concerns Lipschitz nonlinearity while our model
fails to satisfy this condition. There are only a few papers that developed rigorous methods for
nonlipschitzian case [58]. Notably, in [59] an iterative scheme has been proposed. We also mention
our previous work [60] where an idea for a proof similar to the one used in the present paper originated.
Finally, in [61, 62] a highly readable theoretical summaries about non-Lipschitz problems have been
published.

As we mentioned before, this paper concerns a high order numerical method for finding self-similar
solutions of (1). In Section 2 we perform a series of transformations that reduce the main nonlocal
nonlinear PDE into an ordinary Volterra equation with non-Lipschitz nonlinearity. As a side result
we prove a existence and uniqueness result about self-similar solutions on the half-line with Dirichlet,
Neumann, and Robin conditions. Next, in Section 3 we present a general scheme of numerical method
construction along with explicit formulas for a second order linear interpolation scheme (trapezoidal).
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We also prove that it is convergent provided that the parameter m is sufficiently large. In Section
4 we illustrate our theory with numerical examples concerning some exemplary equations and the
time-fractional porous medium equation itself. We close the paper with some concluding remarks.

2 Self-similar solutions and Volterra equations
In applications one is frequently interested in finding self-similar solutions of (1) in the form

u(x, t) = taU(η), η = xt−b, (5)

where a, b ≥ 0 are constants to be found and the similarity variable is denoted by η. Our main
motivation for looking for such solutions lies in the fact that in the real-world experiments of moisture
percolation in porous media one observes the self-similar profile (see [11, 19, 9, 12]). On the other
hand, in a large generality Lie group methods can be used to look for many families of self-similar
solutions in a systematic way [63, 64, 65]. When we plug the above into the original PDE (1) we
transform the spatial

(um(x, t)ux(x, t))x = ta(m+1)−2b d

dη

(
Um(η)

d

dη
U(η)

)
. (6)

and the temporal derivatives

∂αt u(x, t) =
∂

∂t

(
I1−αt

(
taU(xt−b)

))
=

1

Γ(1− α)

∂

∂t

∫ t

0

(t− z)−αzaU(xz−b)dz

=
1

Γ(1− α)

∂

∂t

(
ta−α+1

∫ 1

0

(1− s)−αsaU(ηs−b)ds

)
,

(7)

If we further introduce the Erdélyi-Kober fractional integral operator (see [66])

Iβ,γδ U(η) =
1

Γ(γ)

∫ 1

0

(1− z)γ−1zβU(ηz
1
δ )dz, (8)

we can write (1) as

tα+am−2b
d

dη

(
UmdU

dη

)
=

[
(1− α + a)− bη d

dη

]
Ia,1−α− 1

b

U, 0 < α < 1, (9)

Now, the self-similar solution is possible only if

2b−ma = α, (10)

which is the consistency condition. Since there are two unknowns: a = a(α,m) and b = b(α,m)
we need yet another equation. This comes from the initial-boundary conditions and we assume that
initially the medium is dry (3) which expressed in the self-similar variables (5) yields

U(∞) = 0. (11)

Furthermore, for the boundary conditions we have several self-similar physically relevant choices. For
example, we can consider the Dirichlet

u(0, t) = 1, t > 0, (12)

which describes constant concentration, Neumann

um(0, t)ux(0, t) = −1, t > 0, (13)
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Condition a A b = B η∗

Dirichlet (12) 0 1− α α

2

1√
y(1)m

Neumann (13)
α

m+ 2
1− m+ 1

m+ 2

m+ 1

m+ 2
α

(
m+ 1

(ym+1)′(1)

) m
m+2

Robin (14)
α

m
1− m− 1

m
α α

m

(ym)′(1)

Table 1: Values of a, b in (5), A = A(α,m), B = B(α,m) as in (15), and the wetting front η∗ defined
in (17) for different types of boundary conditions.

describing constant flux, or Robin problem

um(0, t)ux(0, t) = −u(0, t), t > 0, (14)

which translates into requirement that the flux is proportional to the concentration at the interface
x = 0. For a physical account of these models see [17]. Boundary conditions provide us with the
second equation for a and b and eventually we are able to write (1) as

d

dη

(
UmdU

dη

)
= AIa,1−α− 1

b

U −Bη d
dη
Ia,1−α− 1

b

U, 0 < α < 1, (15)

for some A = A(α,m) and B = B(α,m). The exact values of these constants for different boundary
conditions are summarized in Tab. 1. Note that always A,B ≥ 0.

To motivate our further reasoning let us focus on the Robin problem (14) for which

a =
α

m
, b = α. (16)

Other conditions have been considered in [17, 24] and lead to a similar final integral equation. In
any of the considered boundary conditions the support of the solution will be compact (for a proof
see [67] and for the classical case [68]). Physically, this fact is equivalent to a finite speed of wetting
front propagation and arises in the degeneracy of the equation (1). Having that in mind, let η∗ > 0
be such that

U(η) = 0 for η > η∗. (17)

Moreover, by integrating (15) one can show that there is no flux through the support’s boundary
(see [24])

U(η)m
dU

dη
(η) = 0 for η > η∗. (18)

Note that η∗ is a-priori unknown and has to be determined as a part of the solution since we are
dealing with a free-boundary problem. A standard way of proceeding is to introduce yet another
transformation

U(η) = Cy(z), z = 1− η

η∗
, z ≥ 0, (19)

where C has to be determined. The conditions (17)-(18) now become

y(0) = 0, ym(0)y′(0) = 0, (20)

where prime denotes the differentiation with respect to z. The Robin condition (14) now yields

Um(0)
dU

dη
(0) = −U(0)→ (ym)′(1) =

mη∗

Cm
, (21)
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which gives us one equation to determine η∗ and C.
When we plug (19) into (15) we obtain

Cm

(η∗)2
(ymy′)

′
= AGαy +B(1− z)(Gαy)′, (22)

where for a and b as in (16) we have defined

Gαy(z) =
1

Γ(1− α)

∫ 1

(1−z)1/b
(1− s)−αsay(1− s−b(1− z))ds

=
1

b

1

Γ(1− α)
(1− z)

a+1
b

∫ z

0

(
1−

(
1− z
1− w

) 1
b

)−α
y(w)

(1− w)1+
a+1
b

dw.

(23)

The second equality above follows from the change of variables w = 1− s−a(1− z). We can thus see
that

C = (η∗)
2
m , (24)

which together with (21) closes the system and gives us an equation for η∗ provided we know the
solution y, that is η∗ can be found from

η∗ =
m

(ym)′(1)
. (25)

Now, (22) can be transformed into a nonlinear integral Volterra equation. First, with an integra-
tion and using the condition (20) we obtain

y(z)my′(z) = A

∫ z

0

Gαy(s)ds+B

∫ z

0

(1− z)(Gαy(s))′ ds

= B(1− z)Gαy(z) + (A+B)

∫ z

0

Gαy(s)ds,

(26)

where we have integrated by parts. A second integration finally yields

y(z)m+1 = (m+ 1)

∫ z

0

(B(1− s) + (A+B) (z − s))Gαy(s)ds

=:

∫ z

0

F (z, s)Gαy(s)ds.

(27)

Next, we use the definition of Gα operator (23) and change the order of integration (Fubini’s theorem)

y(z)m+1 =
1

b

1

Γ(1− α)

∫ z

0

∫ z

u

F (z, s)(1− s)
a+1
b

(
1−

(
1− s
1− u

) 1
b

)−α
ds

 y(u)du

(1− u)1+
a+1
b

. (28)

We can now substitute back v = ((1− s)/(1− u))1/b inside the inner integral to obtain

y(z)m+1 =
1

Γ(1− α)

∫ z

0

[∫ 1

( 1−z
1−u)

1/b
F (z, 1− sb(1− u))(1− s)−αsa+bds

]
y(u)du

=:

∫ z

0

K(z, u)y(u)du,

(29)

where we have defined the kernel K. Observe that it can be written as a combination of incomplete
beta functions (and we use this fact later). Moreover, the kernel is a continuous function since
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(1 − s)−α is integrable near s = 1 and a > 0. We can also obtain some simple bounds on K due
to the fact that F (z, s) is a linear function in its both variables. Assume that 0 ≤ z ≤ X for some
0 < X < 1. Then,

B(1−X) ≤ F (z, s) ≤ A+ 2B, (30)

and hence

K(z, u) ≤ m+ 1

Γ(1− α)
(A+2B)

∫ 1

( 1−z
1−u)

1/b
(1−s)−αds =

m+ 1

Γ(2− α)
(A+2B)

(
1−

(
1− z
1− u

)1/b
)1−α

. (31)

Now, we have
1− z
1− s

= 1− z − s
1− s

, (32)

what together with elementary estimate (1− x)γ ≥ 1− γx for γ ≥ 1 leads to

K(z, u) ≤ m+ 1

Γ(2− α)
(A+ 2B)

(
1

b

z − u
1−X

)1−α

≤ K+(z − u)1−α, (33)

because 0 ≤ u ≤ z ≤ X. Similarly, we can obtain bounds from below. To this end, notice that

K(z, u) ≥ m+ 1

Γ(1− α)
B(1−X)

(
1− z
1− u

)a/b+1 ∫ 1

( 1−z
1−u)

1/b
(1− s)−αds

=
m+ 1

Γ(2− α)
B(1−X)

(
1− z
1− u

)a/b+1
(

1−
(

1− z
1− u

)1/b
)1−α

.

(34)

Using the convexity bound (1− x)γ ≤ 1− x for γ ≥ 1 we now have

K(z, u) ≥ m+ 1

Γ(2− α)
B(1−X)

(
1− z
1− u

)a/b+1(
z − u
1− u

)1−α

≥ K−(z − u)1−α, (35)

since 0 ≤ u ≤ z ≤ X. Whence, we have found the behaviour of the kernel yielding

K−(z − u)1−α ≤ K(z, u) ≤ K+(z − u)1−α, (36)

where K± are known constants. These kernel bounds have important consequence for the form of
the solution and are crucial for our subsequent construction of the numerical method. For example,
as was shown in [69] (for a further account see also [70, 71, 72]) the equation (29) has only one
non-trivial solution which satisfies

C
1
m
− z

2−α
m ≤ y(z) ≤ C

1
m
+ z

2−α
m , (37)

where C± > 0 can be found explicitly, however, their exact values are not relevant for our reason-
ing. The calculations for other boundary conditions presented in Tab. 1 are essentially identical.
Therefore, we have shown the following result.

Theorem 1. Let
u(x, t) = (η∗)

2
m tay

(
1− 1

η∗
x

tb

)
, (38)

where y = y(z) is a unique nontrivial solution of the Volterra equation (29) while a, b, and η∗ are
given in Tab. 1. Then, u is a unique self-similar solution of (1) with vanishing initial condition
along with one of the self-similar boundary conditions (12)-(14). Moreover, we have the following
estimates

U−

(
1− 1

η∗
x

tb

) 2−α
m

≤ u(x, t) ≤ U+

(
1− 1

η∗
x

tb

) 2−α
m

, (39)

with suitable constants U± > 0 that can be found explicitly.

7



For example, when we consider the Dirichlet boundary condition and consult Tab. 1 we obtain

K− =
m+ 1

Γ(2− α)

α

2
(1−X)α−1, K+ =

m+ 1

Γ(2− α)

(α
2

(1−X)
)α−1

, (40)

which by results from [69] yield

C± = K±β

(
2− α, 1 +

2− α
m

)
, (41)

where β is the Euler beta function. Eventually, the solution of (1) can be bounded by

U± =
1

y(1)
C

1
m
± , (42)

where y(1) can be calculated from the solution of (29).

3 Numerical method
In the previous section we have shown that looking for solutions of (1) with self-similar boundary
conditions (12)-(14) is equivalent to solving (29). Therefore, in what follows we will devise a numerical
method for solving a general class of nonlinear Volterra equations of the form

y(z)m+1 =

∫ z

0

K(z, s)y(s)ds, 0 ≤ z ≤ 1, (43)

where we assume that the kernel is continuous and there exist constants K± such that

K−(z − s)γ ≤ K(z, s) ≤ K+(z − s)γ, γ ≥ 0. (44)

Note that in this section we use the same letters for y andK as before, however now we are considering
a general Volterra equation which may not have anything in common with anomalous diffusion. By
results from [69] the above equation has a unique non-trivial solution satisfying

C
1
m
− z

γ+1
m ≤ y(z) ≤ C

1
m
+ z

γ+1
m , (45)

for suitable constants C± > 0. Therefore, the behaviour of the solution is of power type and for
a numerical treatment it is reasonable to peel it off from the actual form of y. That is to say, we
substitute

y(z) = z
γ+1
m v(z), (46)

which leads to an equivalent integral equation

v(z) = z−
(m+1)(γ+1)

m

∫ z

0

K(z, s)s
γ+1
m v(s)ds. (47)

It is crucial to note that v is now bounded away from zero, that is

0 < C
1
m
− ≤ v(z) ≤ C

1
m
+ , (48)

what facilitates both the analysis and numerical computations. A particular choice of the kernel, i.e.
when K(z, s) = K+(z − s)γ clearly leads to a constant solution

v(z) =

(
K+β

(
γ + 1,

γ + 1

m
+ 1

)) 1
m

, (49)

where β is Euler beta function. This simple solution can serve as a benchmark of various numerical
methods.

8



3.1 Construction

Now we can proceed to the discretization. Introduce the grid

zn :=
n

N
, h :=

1

N
, n = 0, 1, ..., N, (50)

where the total number of grid points N is fixed. Further, we can discretize the integral in (47)∫ zn

0

K(zn, s)s
γ+1
m v(s)ds =

n−1∑
i=0

(wn,i(h)v(zi) + δi(h)) , (51)

where δi(h) is the local consistency error, and wn,i(h) are weights that depend on the form of the
kernel. When we use (51) in (47) and truncate the remainder we obtain the following numerical
scheme

vm+1
n = z

− (m+1)(γ+1)
m

n

n−1∑
i=0

wn,i(h)vi, (52)

where by vi we have denoted the numerical approximation to v(zi) while Kn,i = K(zn, zi). Note also
that in the quadrature (51) we have not included the last point of the interval [0, zn]. This leads
to a (half-)open quadrature and has been chosen in order to reduce the computational cost of the
method. For if the sum on the right-hand side of the above included vn term we would obtain an
implicit method that would require solving a nonlinear equation of the form xm+1 − a1x+ a0 = 0 in
each step. In order to keep the cost as low as possible we consider only explicit methods.

Different quadratures would yield different values of the weights wn,i(h). For example, the simplest
rectangular rule in which the whole integrand is approximated by its value at the lower terminal would
yield

wn,i(h) = hK(zn, zi)z
γ+1
m
i . (53)

This method could be proved to be convergent (see [26]), however, it does not solve the constant
case exactly, that is to say when K(z, s) = K+(z− s)γ the numerical solution vn is not equal to (49).
To see this suppose that v0 = v1 = v2 = C, then from (52) at n = 2 and (53)

Cm+1 = CK+h
− (m+1)(γ+1)

m
+1(2h− h)γh

γ+1
m = CK+, (54)

hence C = (K+)1/m. Then, the third step yields

vm+1
3 = K+h

− (m+1)(γ+1)
m

+1
(

(3h− h)γh
γ+1
m + (3h− 2h)γ(2h)

γ+1
m

)
= K+ (2γ + 1) 6= Cm+1, (55)

for γ > 0. Therefore, vn cannot be constant for all n ≥ 3. An ability of a numerical scheme to
be able to solve for a constant solution can be thought as a necessary requirement that we have to
make since it would accurately resolve the zero order Taylor series term. A family of such methods
can be devised by using an interpolating polynomial for the unknown vn in the integral (51). The
kernel, since it is known, is not approximated. Although in this work we will focus only on the first
degree interpolation, i.e. a linear reconstruction, it is instructive to see how does the zeroth order
approximation look like. To this end we write∫ zn

0

K(zn, s)s
γ+1
m v(s)ds =

n−1∑
i=0

∫ zi+1

zi

K(zn, s)s
γ+1
m v(s)ds, (56)

in which we expand v in its Taylor series v(s) = v(zi) + v′(ξ̂i)(s− zi), which leads to∫ zn

0

K(zn, s)s
γ+1
m v(s)ds =

n−1∑
i=0

[(∫ zi+1

zi

K(zn, s)s
γ+1
m ds

)
vi + δi(h)

]
, (57)

9



where by the mean value theorem the remainder is

δi(h) = v′(ξi)

∫ zi+1

zi

K(zn, s)s
γ+1
m (s− zi)ds. (58)

Therefore, going back to (47) gives

v(zn)m+1 = z
− (m+1)(γ+1)

m
n

n−1∑
i=0

(∫ zi+1

zi

K(zn, s)s
γ+1
m ds

)
vi + δn(h), (59)

where the remainder satisfies

|δn(h)| ≤ z−
(m+1)(γ+1)

m

n−1∑
i=0

|δi(h)| = z
− (m+1)(γ+1)

m
n |v′(ξ)|

n−1∑
i=0

∫ zi+1

zi

K(zn, s)s
γ+1
m (s− zi)ds

≤ z
− (m+1)(γ+1)

m
n K+|v′(ξ)|h

n−1∑
i=0

∫ zi+1

zi

(zn − s)γs
γ+1
m ds.

(60)

where, once again, we have used the mean value theorem and used (36). Further, with a substitution
s = nhσ we can evaluate the integral

|δn(h)| ≤ K+‖v′(ξ)‖β
(
γ + 1,

γ + 1

m

)
h = O(h), h→ 0+, (61)

uniformly for n ∈ N. Whence, the truncation error of the method is of the first order. Here, β(·, ·)
is the Euler beta function. Neglecting the remainder we obtain a rectangle method for solving (47)

vm+1
n = z

− (m+1)(γ+1)
m

n

n−1∑
i=0

(∫ zi+1

zi

K(zn, s)s
γ+1
m ds

)
vi. (62)

In contrast with (53) the above method solves for the constant solution exactly by the very construc-
tion (in that case v′ ≡ 0 and the remainder vanishes).

It is now a straightforward exercise to develop higher order methods with the use of the higher
degree of Lagrange’s interpolating polynomial. We will analyse only the second order method since
we are able to equip it with a suitable choice of initial conditions. As we shall see below, for higher
order methods a prescription of starting values is not a straightforward task. This situation is similar
to multistep methods for ODEs. Having that in mind we can use a linear approximation to v in
the integral in (51). The important point is to construct an explicit method by not including the
terminal point of the interval into the interpolation. That is to say, we have to partition the interval
[0, zn] into subintervals which contain exactly three nodes. Then, we construct a linear interpolation
based on first two nodes. Due to this construction we have to consider separately cases when n is
even or odd.

First, suppose that n is even. Then, we build linear approximations based on the first and second
points of a three node interval starting with z = 0. That is to say, we have the partition

∫ zn

0

K(zn, s)s
γ+1
m v(s)ds =

n
2
−1∑
i=0

∫ z2i+2

z2i

K(zn, s)s
γ+1
m v(s)ds, (63)

in which we use Lagrange’s interpolation

v(s) =

(
1− s− z2i

h

)
v(z2i) +

s− z2i
h

v(z2i+1) +
1

2
v′′(ξ̂i)(s− z2i)(s− z2i+1). (64)

10



Here, ξ̂i is the intermediate point needed in the remainder. If we use that in the integral we obtain

∫ zn

0

K(zn, s)s
γ+1
m v(s)ds =

n
2
−1∑
i=0

wn,2i(h)v(z2i) + wn,2i+1(h)v(z2i)

+
1

2
v′′(ξ)

n
2
−1∑
i=0

∫ z2i+2

z2i

K(zn, s)s
γ+1
m (s− z2i)(s− z2i+1)ds,

(65)

where we have utilized the mean value theorems for integrals and sums. The weights are given by

wn,i(h) =

∫ zi+2

zi

K(zn, s)s
γ+1
m

({
1− s−zi

h
, i even

s−zi
h
, i odd

)
ds for n even and 0 ≤ i ≤ n− 2. (66)

A similar calculation can be conducted for odd values of n. In that case, however, we first linearly
interpolate between z0 and z1 and then partition the rest of the interval [z1, zn] into three node
subintervals. We then have∫ zn

0

K(zn, s)s
γ+1
m v(s)ds =

∫ z1

0

K(zn, s)s
γ+1
m v(s)ds+

n−1
2∑
i=1

∫ z2i+1

z2i−1

K(zn, s)s
γ+1
m v(s)ds. (67)

Further, conducting analogous interpolation as in the even case leads to

∫ zn

0

K(zn, s)s
γ+1
m v(s)ds = wn,0(h)v(0) +

n−1
2∑
i=1

wn,2i−1(h)v(z2i−1) + wn,2i(h)v(z2i)

+
1

2
v′′(ξ1)

∫ z1

0

K(zn, s)s
1+ γ+1

m (s− z1)ds+

n−1
2∑
i=1

∫ z2i+1

z2i−1

K(zn, s)s
γ+1
m (s− z2i−1)(s− z2i)v′′(ξi(s))ds,

(68)

where ξs is an intermediate point. In that case, the weights are given by

wn,0(h) =

∫ z1

0

K(zn, s)s
γ+1
m

(
1− s

h

)
ds,

wn,1(h) =

∫ z1

0

K(zn, s)s
γ+1
m
s

h
ds+

∫ z3

z1

K(zn, s)s
γ+1
m

(
1− s− z1

h

)
ds,

wn,i(h) =

∫ zi+1

zi−1

K(zn, s)s
γ+1
m

({
s−zi−1

h
, i even

1− s−zi−1

h
, i odd

)
ds for n odd and 1 < i ≤ n− 1.

(69)

Therefore, the whole equation (47) using our linear reconstruction can be written as

v(zn)m+1 = z
− (m+1)(γ+1)

m
n

n−1∑
i=0

wn,i(h)v(zi) + δn(h), (70)

where the remainder can be estimated with the help of (65) and (68) to be

|δn(h)| ≤ K+‖v′′‖B
(
γ + 1,

γ + 1

m

)
h2 =: Ch2 = O(h2) as h→ 0+, (71)

uniformly for n ∈ N. Therefore, by truncating the remainder we obtain a consistent second order
method in the form (52) where weights are defined in (66) and (69).
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Having designed a method we can move to the important question about the initial conditions
for v. Since (43) always possesses a trivial solution y ≡ 0 we have to choose an appropriate starting
value for our numerical method in order to converge to a non-trivial one. One way of doing that
is to approximate the integral in (47) over the interval z ∈ [0, h] with some simple quadrature. For
example, we can use the rectangle rule in which we take the value of v at the right endpoint. That
is, we reconstruct v with a constant function

v(s) = v(h)− v′(ξh)(h− s), s ∈ (0, h), (72)

for some ξh ∈ (0, h). Then, from (47) we can write

v(h)m+1 = h−
(m+1)(γ+1)

m v(h)

∫ h

0

K(h, s)s
γ+1
m ds+R(h), (73)

where by the mean value theorem the remainder satisfies

|R(h)| = h−
(m+1)(γ+1)

m |v′(ξ̂h)|
∫ h

0

K(h, s)(h− s)s
γ+1
m ds ≤ K+|v′(ξ̂h)|B

(
γ + 2,

γ + 1

m
+ 1

)
h, (74)

where we have used the assumption of kernel boundedness (36). Therefore, after substitution s = zσ
in (73) we have

v(h)m+1 − v(h)h−γ
∫ 1

0

K(h, hσ)σ
γ+1
m dσ = R(h). (75)

Now, the left-hand side of the above is bounded from (36) while the right-hand side vanishes to zero
when h→ 0+. We can then propose that the starting step for the numerical method is

v0 = v(0) = lim
h→0+

(
h−γ

∫ 1

0

K(h, hσ)σ
γ+1
m dσ

) 1
m

, (76)

provided the above limit exists. We thus assume that it is the case since otherwise, the solution could
be unnecessarily difficult or even meaningless to solve numerically. Note that, taking the above as an
initial step in the scheme does not introduce any error apart from numerical rounding. In practice
we can use for example the Gaussian quadrature to compute the integral above with finite h fixed
to be the numerical method step.

The initial step (76) is sufficient to start the rectangle scheme (62) however, in order to initialize
the second order trapezoidal method we need a guess on the value of v(h). A straightforward idea
is to once again use the linear interpolation between v(0) and v(h) similarly as in the odd case of
method’s construction. But in present case it yields v(h) implicitly

v(h)m+1 = h−
(m+1)(γ+1)

m

∫ h

0

K(h, s)s
γ+1
m v(s)ds

= h−
(m+1)(γ+1)

m

[
v(0)

∫ h

0

K(h, s)s
γ+1
m

(
1− s

h

)
ds+ v(h)

∫ h

0

K(h, s)s
γ+1
m
s

h
ds

]
+R(h),

(77)

where, similarly as before, the remainder is R(h) = O(h2) as h → 0+. After truncation, the second
initial condition v1 can be found by solving the nonlinear equation

h
(m+1)(γ+1)

m vm+1
1 −

(∫ h

0

K(h, s)s
γ+1
m
s

h
ds

)
v1 −

(∫ h

0

K(h, s)s
γ+1
m

(
1− s

h

)
ds

)
v0 = 0. (78)

Observe that solving the above is required only once at the initialization phase of the second order
method. Similarly, as with the computation of v0 we can use Gaussian quadrature to approximate the
above integrals. Moreover, since the the above nonlinear equation is of the form axm+1 − bx− c = 0
with a known derivative, we can readily use Newton’s method to solve it. Therefore, (76) and (78)
supply us with at worst a second order approximation of the starting values for the scheme (52) along
with weights (66) and (69).
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3.2 Convergence

Before we proceed to the convergence proof of (52) with weights (66) and (69) we present two
auxiliary results that will be used later. The first one is a variation on a discrete version of the
classical Grönwall-Bellman’s lemma. These lemmas are essential in studying convergence of numerical
methods for partial differential equations in both the classical and fractional setting. In the literature
one can find many different versions of them tailored for specific needs. For example, they are an
essential tool in the important case of subdiffusion [73] when they are usually used to solve the
error inequality. In the cited work authors prove a general case of the discrete fractional Grönwall-
Bellman’s inequality where they allow for general weights present in the sum. This generality helps
to tackle convergence of a variety of numerical schemes based on, for example, nonuniform L1 method
or Alikhanov’s discretisations. Other interesting results can be found in [38, 40].

Lemma 1. Let {en}, n = 1, 2, ... be a sequence of positive numbers satisfying

en ≤
µ

n

n−1∑
i=1

ei + δ, n ≥ 1, (79)

where µ > 0 and δ > 0. Then, we have
en ≤ δfn, (80)

where

fn =
Γ(n+ µ)

n!

n−1∑
k=0

k!

Γ(k + 1 + µ)
. (81)

Moreover,

fn


≤ 1

1− µ
, 0 < µ < 1,

≤ lnn+ 1, µ = 1,

n→∞∼ 1

Γ(µ+ 1)

nµ−1

µ− 1
, µ > 1.

(82)

Proof. We proceed by mathematical induction. To begin, let us observe that e1 ≤ δ by the convention
that

∑0
i=1 = 0. Hence, f1 = 1. Suppose that ei ≤ δfi for 1 ≤ i ≤ n − 1. Due to this inductive

assumption we have

en ≤ δ

(
µ

n

n−1∑
i=1

fi + 1

)
. (83)

We claim that the sequence fi defined in (81) satisfies the following difference equation

µ

n

n−1∑
i=1

fi + 1 = fn, (84)

which combined with (83) proves the inductive assertion. When we subtract (84) written for n + 1
the equation for fn we can obtain a local equation

(n+ 1)fn+1 − (n+ µ)fn − 1 = 0. (85)

Switching back to fn and rearranging we arrive at the recurrence

fn =

(
1 +

µ− 1

n

)
fn−1 +

1

n
. (86)
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The above can be iterated to yield

fn =
n∏
i=2

(
1 +

µ− 1

i

)
+

n−2∑
i=0

1

n− 2

i∏
j=1

(
1 +

µ− 1

n− j + 1

)
. (87)

Further, the products can be simplified considerably when we notice that
n∏
i=2

(
1 +

µ− 1

i

)
=

(1 + µ)(2 + µ)...(n+ µ− 1)

n!
=

1

n!

Γ(n+ µ)

Γ(µ+ 1)
, (88)

and similarly for the second one. Consequently, we arrive at

fn =
Γ(n+ µ)

n!

(
1

Γ(µ+ 1)
+

n∑
k=2

1

k

k!

Γ(k + µ)

)
=

Γ(n+ µ)

n!

(
1

Γ(µ+ 1)
+

n−1∑
k=1

k!

Γ(k + 1 + µ)

)

=
Γ(n+ µ)

n!

n−1∑
k=0

k!

Γ(k + 1 + µ)
,

(89)

which is (81) and solves the recurrence.
In order to show (82) it suffices to consider the recurrence (84). Suppose that 0 < µ < 1, then

f1 = 1 < 1/(1− µ). Further, if fi ≤ 1/(µ− 1) then

fn ≤
µ

n

n−1∑
i=1

1

1− µ
+ 1 ≤ µ

1− µ
+ 1 =

1

1− µ
. (90)

Next, for µ = 1 we trivially have f1 = 1 = ln 1 + 1, and further by inductive assumption

fn ≤
1

n

n−1∑
i=1

(ln i+ 1) + 1 ≤ 1

n

∫ n

1

(lnx+ 1) dx+ 1, (91)

where we have used the fact that the sum is bounded by an appropriate integral. Evaluating, we
obtain

fn ≤
1

n
x lnx|n1 + 1 = lnn+ 1. (92)

Next, for the case µ > 1 it is convenient to use the exact formula for fn, that is (81). Then

fn ∼ nµ−1
∞∑
k=0

k!

Γ(k + 1 + µ)
as n→∞, (93)

where we have used Stirling’s formula for the prefactor and to ascertain the series convergence:
k!/Γ(k + 1 + µ) ∼ kµ as k →∞. We can find the exact form of the above sum by using the relation
between beta and gamma functions

∞∑
k=0

k!

Γ(k + 1 + µ)
=

1

Γ(µ)

∞∑
k=0

Γ(k + 1)Γ(µ)

Γ(k + 1 + µ)
=

1

Γ(µ)

∞∑
k=0

∫ 1

0

(1− x)µ−1xkdx, (94)

and by Tonelli’s theorem we can exchange the order of summation and integration
∞∑
k=0

k!

Γ(k + 1 + µ)
=

1

Γ(µ)

∫ 1

0

(1− x)µ−1
∞∑
k=0

xkdx =
1

Γ(µ)

∫ 1

0

(1− x)µ−2dx =
1

(µ− 1)Γ(µ)
, (95)

which proves the last assertion.
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For a thorough presentation of similar results see [74]. Next, we prove boundedness of the
numerical approximation.

Lemma 2. Let vn be the numerical approximation of v(zn) calculated from (52). Fix sufficiently
small number ε > 0 and choose h > 0 small enough for (zn)−(m+1)(γ+1)/m

∑n−1
i=0 |δi(h)| < ε. Then, for

n ≥ 1 we have

0 <

(
K−

(
β

(
γ + 1,

γ + 1

m
+ 1

)
− ε
)) 1

m

≤ vn ≤
(
K−

(
β

(
γ + 1,

γ + 1

m
+ 1

)
+ ε

)) 1
m

, (96)

provided that the initial step v0 satisfies the same inequality. Here, β(·, ·) denotes the beta function.

Proof. We will proceed by induction. The first step is satisfied by the assumption. Suppose further
that vi satisfies (96) for all 0 ≤ i < n − 1. We will show that the same is true for vn. To this end,
write V 1/m

− ≤ vi ≤ V
1/m
+ where V± are defined in (96). By (52) and (36) we have

vm+1
n ≥ V

1
m
− K−z

− (m+1)(γ+1)
m

n h
n−1∑
i=0

wn,i(zn − zi)γz
γ+1
m
i . (97)

Now, according to (51) we have

h
n−1∑
i=0

wn,i(zn − zi)γz
γ+1
m
i =

∫ zn

0

(zn − s)γs
γ+1
m ds = z

(γ+1)(m+1)
m

n β

(
γ + 1,

γ + 1

m
+ 1

)
−

n1∑
i=0

δi(h). (98)

Combining the two above expressions we obtain

vn ≥ V
1

m(m+1)

−

(
K−

(
β

(
γ + 1,

γ + 1

m
+ 1

)
− z−

(m+1)(γ+1)
m

n δn(h)

)) 1
m+1

. (99)

Now, since by the assumption the remainder is smaller than ε we can write

vn ≥ V
1

m(m+1)

−

(
K−

(
B

(
γ + 1,

γ + 1

m
+ 1

)
− ε
)) 1

m+1

= V
1

m(m+1)

− V
1

m+1

− = V
1
m
− , (100)

what completes the induction. The proof of the upper bound proceeds identically.

As it will be seen in the following main results, the boundedness from below plays a crucial role
in the proof.

A remark concerning the nature of the nonlinearity in (43) can be revealing. Note that if we
substitute f = ym+1 then the equation transforms into

f(z) =

∫ z

0

K(z, s)f(s)
1

m+1ds, (101)

in which the nonlinearity is manifestly nonlipschitzian. Therefore, we cannot use the general theory
to conclude the convergence. To wit, for the Lipschitz nonlinearity we are always able to reduce the
analysis of the method’s error en to investigations of the following recurrence inequality (see [57])

|en| ≤ µh

n−1∑
i=1

|ei|+ δ(h), (102)

where µ and ν = ν(h) are independent of n. Using the well-known discrete version of the Grönwall-
Bellman’s lemma we can solve the above to yield (compare with our Lemma 1)

|en| ≤ δ(h)eµnh. (103)

15



The term δ(h) depends on the local consistency error and vanishes for h → 0. Moreover, since we
are comparing the numerical and exact solutions at a fixed point, we have nh → const.. Therefore,
en → 0 and the method is convergent. The lipschitzian character of the nonlinearity makes the
proof similar as in the linear equations. For the non-Lipschitz case we cannot in general write (102)
and thus the arguments have to be different and more subtle. Notice that this difficulty is the very
consequence of the degeneracy of the main equation (1). We summarize the result in the following
theorem.

Theorem 2. Fix z ∈ (0, 1] and chose the weights of the quadrature (51) according to (66) and (69)
while the starting values from (76) and (78). Then, if

µm :=
4K+

(m+ 1)V−
< 3, (104)

the scheme (52) is convergent to the nontrivial solution of (47) with an order at least equal to

min{2, 3− µm}. (105)

Here, V 1/m
− is the lower bound for both v = v(z) and vn.

Proof. Let us define the error of the numerical approximation by en = v(zn)− vn, where v(z) is the
solution of (47) while vn comes from (52). Now, the difference between these two equations is

v(zn)m+1 − vm+1
n = z

− (m+1)(γ+1)
m

n

(∫ z

0

K(z, s)s
γ+1
m v(s)ds−

n−1∑
i=0

wn,i(h)vi

)
. (106)

With the use of (51) and the construction leading to (70) we further obtain

v(zn)m+1 − vm+1
n = z

− (m+1)(γ+1)
m

n

n−1∑
i=1

wn,i(h)ei + δn(h), (107)

where the remainder δn(h) satisfies (71) and the zero term vanishes due to exact starting value (76).
On the other hand, by the mean value theorem we can write

v(zn)m+1 − vm+1
n = (m+ 1)ξmn en, (108)

where ξn lies between v(zn) and vn. Next, by combining the two above equations we have

(m+ 1)ξmn |en| ≤ z
− (m+1)(γ+1)

m
n

n−1∑
i=1

|wn,i(h)||ei|+ Ch2, (109)

where C is a constant explicitly defined in (71). The boundedness of both v(zn) and vn (see (48) and
Lemma 2)) implies that ξn ≥ V− for some constant and thus

|en| ≤
z
− (m+1)(γ+1)

m
n

(m+ 1)V−

n−1∑
i=1

|wn,i(h)||ei|+
Ch2

(m+ 1)V−
, (110)

which is a recurrence inequality which will eventually be solved with invoking Grönwall-Bellman’s
lemma. To see this observe that by (66) and (69) we have for example

|wn,i(h)| ≤ 4K+

n
z

(m+1)(γ+1)
m

n , (111)
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where the factor 4/n comes from the fact that |s − zi| ≤ 2h on each subinterval of length 2/n, K+

is the bound on the kernel (36), and the integrand is not larger than 1. This leads to

|en| ≤
4K+

(m+ 1)V−

1

n

n−1∑
i=1

|ei|+
Ch2

(m+ 1)V−
=:

µm
n

n−1∑
i=1

|ei|+ δ. (112)

Invoking Lemma 1 thus yields

|en| ≤
Ch2

(m+ 1)V−
fn, (113)

where fn is defined in (81). Now, if 0 < µm < 1, the error |en| is bounded for all n, i.e.

|en| ≤
Ch2

(m+ 1)V− − 4K+

(114)

Further, for µm > 1 we have

|en| ≤
Ch2

(m+ 1)V−
fn ∼

Ch2

(µm − 1)Γ(µm)(m+ 1)V−
nµm−1 ∼ Czµm−1

(µm − 1)Γ(µm)(m+ 1)V−
h3−µm , (115)

as n → ∞. Here, we have used the fact that nh → z. Similarly, the marginal case µ = 1 yields a
convergence of order −h2 lnh. The proof is complete.

According to (105) the method retains its order for sufficiently small µm. More specifically, when
µm < 1 the method is second order accurate. This estimate gradually becomes worse until µm = 3
when the theorem does not guarantee convergence. Note, however, that choosing sufficiently large
m we always can obtain a second order method. The fact that, according to the theorem, the
order of the method can be smaller than the order of the quadrature is probably the consequence
of severe nonlinearity of the equation. This, in turn, corresponds to the degeneracy of the original
PDE (1) what throughout the years has proved to lay significant difficulties for both theoretical and
numerical studies (see for ex. [48, 52]). The main difference between the classical case of Lipschitzian
nonlinearity is the occurrence of 1/n instead of h in the nonlocal recurrence (112). This forces us
to use Lemma 1) rather than the classical discrete Grönwall-Bellman’s lemma. Since 1/n changes
in each recurrence step the assertion is somewhat different yielding a loss in convergence order.
However, for 0 < µm < 1 the error is O(h2) as h → 0+ for any n > 0. A very thorough account of
numerical methods for integral equations with Lipschitzian nonlinearities can be found in [57].

4 Numerical examples
In this section we present several numerical examples. We start with a simple integral equation that
can be solved exactly in a closed form. Next, we consider a more complex equation and use it to
verify the order of convergence. Further, we proceed to solving the time-fractional diffusion problems
summarized in Tab. 1 and we end this section with temporal computational complexity estimates
and comparison with finite difference scheme. Numerical calculations have been conducted in Julia
programming language. Integrals appearing in weights (66) and (69) have been calculated with the
QuadGK package that utilizes Gauss-Kronrod adaptive quadrature.

4.1 Exact constant solution

We start with a simple illustration of the exactness of our numerical methods. Let K(z, s) = (z−s)γ
in (47). According to (49) the integral equation has then a constant solution (that is, a power function
is a solution of (43)). In Tab. 2 we have collected the maximal absolute error (first norm) of the
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γ = 0 γ = 0.5 γ =
√

2 γ = π

m = 1 1.11× 10−16 2.90× 10−11 8.94× 10−13 2.20× 10−14

m = 2 2.40× 10−10 1.18× 10−10 1.19× 10−11 1.60× 10−13

m = 10 1.90× 10−10 1.01× 10−10 4.26× 10−11 4.71× 10−11

m = 100 1.85× 10−11 2.03× 10−11 1.97× 10−11 1.01× 10−11

Table 2: Maximal absolute error for a numerical approximation of the solution of (47) with K(z, s) =
(z − s)γ for various γ and m. The number of interval divisions is N = 10.

m 1 5 10 15 20 50 100

order 2.02 2.00 1.96 1.92 1.90 1.86 1.84

Table 3: Numerically calculated order of convergence of the numerical method based on trapezoidal
approximation (66), (69). The base for Aitken’s estimation is N = 100.

numerical approximation (52) with second order weights (66) and (69). Note that in calculations we
have used N = 10 which is relatively small. Our experiments showed that increasing the number of
interval divisions does not improve the error. Notice also that the smallest error O(10−16) appears for
the case γ = 0 and m = 1 for which the exact solution is equal to 1/2. The majority of simulations
concluded that the error is of order of O(10−11) we can conclude that the method performs very well
and reproduces the exact solution with good accuracy.

4.2 Order of convergence

We will calculate the empirical order of convergence of our second order method and compare it with
the rectangle scheme (62). This illustration will be completed with the use of the integral equation
(47) with

K(z, s) =

√
z − s

1 + sin2 s
. (116)

Obviously, the kernel satisfies our assumptions on the boundedness (36) with K− = 1/2 and K+ = 1.
The order of convergence is estimated with the extrapolation technique known as Aitken’s method
(see [57])

order ≈ log2

∣∣∣v(2N)
2N − v(N)

N

∣∣∣∣∣∣v(4N)
4N − v(2N)

2N

∣∣∣ , (117)

which compares the numerical solution evaluated at z = 1 (the worst case) with calculations for N ,
2N , and 4N steps. The summary of obtained results is presented in Tab. 3. We can see that the
estimated order is near 2 however, for larger m it is somewhat lower. This fact probably originates
in the necessity of taking a very high order root in the equation. Moreover, for this example, we have
µm = 0.8 < 3 what satisfies the assumption of Theorem 2. We can thus see that, as anticipated, the
method is of second order. Moreover, similar calculations have been done for the rectangle method
(62) and the results were more uniform: the estimated order was equal to 0.99 for all considered m.
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Figure 1: Exemplary self-similar solutions of the time-fractional porous medium equation (1). Here,
α = 0.5 and m = 2.

4.3 Anomalous diffusion

Now, we proceed to the subject of the main interest - the time-fractional porous medium equation.
We use the kernel (29) which conveniently can be written with the help of incomplete beta functions

K(z, u) =
m+ 1

Γ(1− α)
[B(1− u)β(1− α, a+ 2b+ 1, 1− w)

+(A+B) ((1− u)β(1− α, a+ 2b+ 1, 1− w)− (1− z)β(1− α, a+ b+ 1, 1− w))] ,

(118)

where
β(a, b, z) =

∫ z

0

ta−1(1− t)b−1dt, (119)

and A, B, a, b are chosen according to the boundary conditions summarized in Tab. 1. Some
exemplary plots of the self-similar solutions of (1) are presented on Fig. 1.

First, we estimate the minimal value of parameter m, say m0, for which the assumption of the
Theorem 2 is satisfied for the most important - Dirichlet - boundary condition. According to (104)
it is equal to a zero of a function m 7→ µm − 3. In order to estimate that we have to find K+ which
can be a-priori calculated from (33). However, a more accurate bound comes from the estimate

K+ ≥ sup
0≤u≤z≤1

K(z, u)

(z − u)1−α
, (120)

which can be found numerically. Note also that when we compare the formulas (33) and (96) we
can expect that the ratio K+/V− is constant with respect to m. Whence µm should be O(m−1) as
m→∞. Results of numerical estimation are presented in Tab. 4. We can see that usually the value
of m0 is slightly larger than 1 and closes to 3 for very small α. In applications, one usually finds
m ≈ 7− 8 with α ∈ [0.6, 1] [12] and, for these important cases, we know that Theorem 2 guarantees
convergence.
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α 0.99 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.01

m0 1.10 1.14 1.19 1.25 1.28 1.35 1.66 1.98 2.31 2.62 2.84

Table 4: Estimated critical values of m for which the assumptions of Theorem 2 are satisfied for the
case of anomalous diffusion.

HH
HHHHm

α 0.1 0.3 0.5 0.7 0.9 0.99

1 1.99 2.00 2.00 1.98 2.08 2.07
3 1.96 1.99 1.99 1.98 1.97 1.96
5 1.93 1.96 1.96 1.95 2.01 1.92
7 1.90 1.93 1.93 1.93 1.95 1.88
10 1.87 1.91 1.91 1.91 1.92 1.85
15 1.86 1.89 1.90 1.90 1.91 1.81

Table 5: Order of convergence for the trapezoidal method applied to subdiffusion for different α and
m.

Similarly as above we can estimate the order of convergence of the trapezoid method. We again
use Aitken’s algorithm and present the results in Tab. 5. As can be seen the estimated order stays
near 2 especially for moderate values of m what has also been observed in the previous example.

As a further verification of our method we can compute the wetting front position η∗ for the
classical case α = 1 and compare it with results from [75]. In that work, the values of η∗ were
computed with a use of power series and we can treat them as exact (up to 9 decimal places). Our
calculations for m = 2 are summarized in Tab. 6. Results for other values of m are very similar.
Notice that even for a very small number of subdivisions we obtain an error of order O(10−5) which
is a consequence of the second order accuracy. Further, numerical simulations show that on a log-log
scale, the error |η∗ − η∗exact| behaves as a line with tangent −2. Therefore, we can expect that the
|η∗ − η∗exact| = O(N−2) as N →∞.

Wetting fronts for subdiffusive case cannot easily be compared with exact values. However, we
have some useful asymptotics. First, let us consider the Dirichlet boundary condition for which we
know that (see [26])

η∗ = O(m−1/2) m→∞. (121)

This relation can also be obtained by combining the value for η∗ taken from Tab. 1 with estimates
(37) and noting that K+ ∝ m + 1. Our numerical simulations are depicted on Fig. 2. Notice that
the above asymptotic behaviour is evident even for small values of m, i.e. in a log-log scale all lines
become parallel to m−1/2.

A similar reasoning can be applied to Neumann and Robin conditions. To this end we need an
asymptotic behaviour of the derivative y′(1) for m→∞. First, notice that due to (33) and (37) we
have ‖y‖ = O((1 +m)1/m) = O(1) for large m. Then, from (26) we obtain

‖y′‖ = O

(
1

m+ 1

)
as m→∞, (122)

N 10 20 50 100 200 500 1500

|η∗ − η∗exact| 1.1× 10−4 2.9× 10−5 4.6× 10−6 1.1× 10−6 2.8× 10−7 4.5× 10−8 5.4× 10−9

Table 6: The error in calculating wetting front position for α = 1 and m = 2. The exact value has
been taken from [76]. The error decays at a rate O(N−2) as N →∞.
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uniformly for α ∈ (0, 1). Next, using the value from Tab. 1 we can write

η∗ =

(
1

ym(1)y′(1)

) m
m+2

= O

(
m+ 1

m+ 1

) m
m+2

= O(1) m→∞. (123)

for Neumann condition. Similarly, the wetting front for the Robin case also is bounded for large m.
We can see on Fig. 2 that this observation is confirmed with numerical simulations, that is for large
m wetting fronts converge to fixed values.

4.4 Comparison with finite difference method

In order to compare our method with some other popular schemes we conduct a computation cost
estimates in terms of the temporal complexity. We will contrast the scheme based on the Volterra
integral equation (52) with the usual θ-weighted finite difference scheme with L1 discretization of the
fractional derivative [10, 38] (however, the comparison with finite element or spectral methods would
yield similar results). The diffusivity is linearized according to [77] and the method for solving (1) is
following

ui+1
j − (1− θ) hα

k2Γ(2− α)

(
Di+1
j−1/2u

i+1
j−1 +

(
Di+1
j−1/2 +Di+1

j+1/2

)
ui+1
j +Di+1

j+1/2u
i+1
j+1

)
= −

i∑
k=1

ak,iu
k
j + θ

hα

k2Γ(2− α)

(
Di
j−1/2u

i
j−1 +

(
Di
j−1/2 +Di

j+1/2

)
uij +Di

j+1/2u
i
j+1

)
,

(124)

where the weights are defined by

ak,i = (i− k + 2)1−α − 2(i− k + 1)1−α + (i− k)1−α. (125)

and Di
j±1/2 is the linearised value of the diffusion coefficient

Di
j±1/2 =

1

2

(
(um)ij +m(um−1)ij

(
uij − ui−1j

)
+

(um)ij±1/2 +m(um−1)ij±1/2

(
uij±1/2 − ui−1j±1/2

))
.

(126)

Here, uij is the numerical approximation of u(xj, ti), where xj = j∆x and ti = i∆t.
Suppose we would like to compute the wetting front position in the Dirichlet problem with

a tolerance ε > 0 (but any other value of u would serve the same purpose for this benchmark).
According to Tab. 1 this requires finding y(1) = v(1). Note that other boundary conditions would
need y′(1) which does not change our reasoning. Since the method is of second order, we would like
to choose N > 0 in order to satisfy

|VN − v(1)| ≤ C

N2
≤ ε, (127)

which immediately gives N = O(ε−1/2) as ε → 0+. Due to nonlocality of the problem (52), each
value yn arises from all previous ones with N(N + 1)/2 additions and multiplications with weights
wn,i(h). These, in turn have to be calculated by integration for which we assume a constant cost cI .
Finally, in each step of the iteration we take a m + 1-th root. The method is started with initial
values (76) and (78) which require 3 integrations, one root taking, and one solution of the nonlinear
algebraic equation which costs cE. Therefore, the total cost of the scheme can be estimated as

temporal complexity of (52) = (2 + cI)
N(N + 1)

2
+N + 1 + 3cI + cE = O(N2) = O(ε−1), (128)
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Figure 2: Wetting front position η∗ with respect to m for a Dirichlet (top), Neumann (middle), and
Robin (bottom) boundary conditions shown in a double logarithmic scale.
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as ε → 0+. Hence, we obtain a linear relationship between calculating the wetting front and the
prescribed tolerance.

As for the finite difference we assume that we can choose θ in order for the scheme to be uncon-
ditionally stable (this is not trivial since the equation we are solving is nonlinear and degenerate).
We are thus allowed to choose ∆x = O(∆t) with ∆t = T/N , where the final time is denoted by T .
The wetting front x∗(T ) is approximated by iterating the scheme up until the final time and then
finding j∗ such that uNj∗ > 0 and uNj+1 = 0. Since the fractional derivative in our finite differences is
discretized using the L1 scheme, the method will have temporal order at most equal to 2 − α (the
order depends on the regularity of the solution, see [78]), so that in the best case we have

|uNj∗ − u(x∗(T ), T )| = |uNj∗| ≤ C
(
∆t2−α + ∆x2

)
≤ C∆t2−α = C

(
T

N

)2−α

< ε, (129)

so that we should have at least N = O(ε−1/(2−α)) as ε→ 0+. Now, similarly as above we can estimate
the temporal complexity of the algorithm. Let cF denote the fixed cost of each time step of the finite
difference scheme (124), i.e. it contains all additions and multiplications needed to advance in time.
Because of the fractional derivative, in order to arrive at step N we have to evaluate dot products
of previous solutions ukj with the weights ak,i. This gives rise to 2 × N(N + 1)/2 floating point
operations. Moreover, since the method is implicit in the stable case, in each time step we have to
solve a tridiagonal system which costs O(N) operations. Therefore, we can estimate the total cost
of the method

temporal complexity of (124) = N(N + 1)cF +N ×O(N) = O(N2) = O(ε−
2

2−α ), (130)

as ε→ 0+. As we can see, the computational cost of calculating the wetting front is always higher for
the finite difference case than it is for our method. Note also that we have assumed the best case for
the former method, that is sufficient regularity of the solution guaranteeing 2−α temporal order, and
unconditional stability that allowed us to choose ∆x and ∆t of the same order. Thorough numerical
calculations supporting this claim has been conducted in [26] which indicate that the method based
on Volterra equation is superior.

5 Conclusion
We have constructed a convergent second order method for solving (43) which can encompass self-
similar solutions of a time-fractional porous medium equation on the half-line. This fact is a con-
sequence of a series of transformations that changed a nonlocal nonlinear PDE into an ordinary
Volterra integral equation. The interesting feature of the latter is a non-Lipschitz nonlinearity that
possess some difficulties in numerical analysis.

Our second order method is based on a linear (trapezoidal) reconstruction has been applied to
several examples. Numerical calculations confirmed convergence with desired accuracy. We have
observed that it suffices to use a relatively small number of interval subdivisions in order to obtain
a decent approximation of the exact solution. Moreover, the method reproduced the asymptotic
behaviour of the wetting front for large values of m in three considered boundary conditions. All
calculations have been conducted on a personal computer with a four core processor. Each simulation
took at most few tens of seconds. This can be compared with our previous observation made in
[26] stating that our numerical method is much faster that the implicit finite difference scheme
applied to (1). The Reader is refereed to that work for concrete computation times for these two
approaches. The nonlocality, nonlinearity, stiffness, and degeneracy of the governing equation require
much computing power to resolve. Transforming the original PDE into an ordinary Volterra equation
reduces one degree of freedom and simplifies the free-boundary problem which facilitates the method’s
construction and performance. Therefore, our trapezoidal method is an accurate and fast way of
computing self-similar solutions of the time-fractional porous medium equation on the half-line.

23



Acknowledgement
Ł.P. has been supported by the National Science Centre, Poland (NCN) under the grant Sonata Bis
with a number NCN 2020/38/E/ST1/00153.

References
[1] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach,

Physics reports 339 (1) (2000) 1–77.

[2] R. Klages, G. Radons, I. M. Sokolov, Anomalous transport: foundations and applications, John Wiley
& Sons, 2008.

[3] J. Klafter, S. Lim, R. Metzler, Fractional dynamics: recent advances, World Scientific, 2012.

[4] S. Schaufler, W. Schleich, V. Yakovlev, Scaling and asymptotic laws in subrecoil laser cooling, EPL
(Europhysics Letters) 39 (4) (1997) 383.

[5] D. del Castillo-Negrete, B. Carreras, V. Lynch, Nondiffusive transport in plasma turbulence: a fractional
diffusion approach, Physical Review Letters 94 (6) (2005) 065003.

[6] M. Levandowsky, B. White, F. Schuster, Random movements of soil amebas, Acta Protozoologica 36
(1997) 237–248.

[7] T. Sungkaworn, M.-L. Jobin, K. Burnecki, A. Weron, M. J. Lohse, D. Calebiro, Single-molecule imaging
reveals receptor–g protein interactions at cell surface hot spots, Nature 550 (7677) (2017) 543.

[8] A. de Pablo, F. Quiros, A. Rodriguez, J. L. Vazquez, A fractional porous medium equation, Advances
in Mathematics 226 (2) (2011) 1378–1409.

[9] Y. Pachepsky, D. Timlin, W. Rawls, Generalized richards’ equation to simulate water transport in
unsaturated soils, Journal of Hydrology 272 (1) (2003) 3–13.

[10] Ł. Płociniczak, Approximation of the Erdélyi–Kober operator with application to the time-fractional
porous medium equation, SIAM Journal on Applied Mathematics 74 (4) (2014) 1219–1237.

[11] A. E.-G. El Abd, J. J. Milczarek, Neutron radiography study of water absorption in porous building
materials: anomalous diffusion analysis, Journal of Physics D: Applied Physics 37 (16) (2004) 2305.

[12] H. Sun, M. M. Meerschaert, Y. Zhang, J. Zhu, W. Chen, A fractal Richards equation to capture the
non-boltzmann scaling of water transport in unsaturated media, Advances in Water Resources 52 (2013)
292–295.

[13] A. Head, Dislocation group dynamics iii. similarity solutions of the continuum approximation, Philo-
sophical Magazine 26 (1) (1972) 65–72.

[14] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differ-
ential equations, to methods of their solution and some of their applications, Vol. 198, Academic press,
1998.

[15] L. Caffarelli, J. L. Vazquez, Nonlinear porous medium flow with fractional potential pressure, Archive
for Rational Mechanics and Analysis 2 (202) (2011) 537–565.

[16] J. L. Vázquez, The mathematical theories of diffusion: Nonlinear and fractional diffusion, in: Nonlocal
and Nonlinear Diffusions and Interactions: New Methods and Directions, Springer, 2017, pp. 205–278.

[17] Ł. Płociniczak, Analytical studies of a time-fractional porous medium equation. derivation, approxima-
tion and applications, Communications in Nonlinear Science and Numerical Simulation 24 (1) (2015)
169–183.

24



[18] Ł. Płociniczak, Derivation of the nonlocal pressure form of the fractional porous medium equation in the
hydrological setting, Communications in Nonlinear Science and Numerical Simulation 76 (2019) 66–70.

[19] A. El Abd, S. Kichanov, M. Taman, K. Nazarov, D. Kozlenko, W. M. Badawy, Determination of moisture
distributions in porous building bricks by neutron radiography, Applied Radiation and Isotopes 156
(2020) 108970.

[20] P. Biler, C. Imbert, G. Karch, The nonlocal porous medium equation: Barenblatt profiles and other
weak solutions, Archive for Rational Mechanics and Analysis 215 (2) (2015) 497–529.

[21] J.-D. Djida, J. J. Nieto, I. Area, Nonlocal time porous medium equation with fractional time derivative,
Revista Matemática Complutense 32 (2) (2019) 273–304.

[22] Q. Fan, G.-C. Wu, H. Fu, A note on function space and boundedness of the general fractional integral
in continuous time random walk, Journal of Nonlinear Mathematical Physics (2021) 1–8.

[23] H. Fu, G.-C. Wu, G. Yang, L.-L. Huang, Continuous time random walk to a general fractional fokker–
planck equation on fractal media, The European Physical Journal Special Topics (2021) 1–7.

[24] Ł. Płociniczak, M. Świtała, Existence and uniqueness results for a time-fractional nonlinear diffusion
equation, Journal of Mathematical Analysis and Applications 462(2) (2018) 1425–1434.

[25] Ł. Płociniczak, Diffusivity identification in a nonlinear time-fractional diffusion equation, Fractional
Calculus and Applied Analysis 19 (2016) 883–866.

[26] Ł. Płociniczak, Numerical method for the time-fractional porous medium equation, SIAM Journal on
Numerical Analysis 57 (2) (2019) 638–656.

[27] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, Journal of Mathematical Analysis
and Applications 265 (2) (2002) 229–248.

[28] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: models and numerical methods,
Vol. 3, World Scientific, 2012.

[29] C. Tadjeran, M. M. Meerschaert, H.-P. Scheffler, A second-order accurate numerical approximation for
the fractional diffusion equation, Journal of Computational Physics 213 (1) (2006) 205–213.

[30] X. Li, C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM Journal
on Numerical Analysis 47 (3) (2009) 2108–2131.

[31] S. B. Yuste, L. Acedo, An explicit finite difference method and a new von neumann-type stability analysis
for fractional diffusion equations, SIAM Journal on Numerical Analysis 42 (5) (2005) 1862–1874.

[32] F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for
the space–time fractional advection–diffusion equation, Applied Mathematics and Computation 191 (1)
(2007) 12–20.

[33] T. Langlands, B. I. Henry, The accuracy and stability of an implicit solution method for the fractional
diffusion equation, Journal of Computational Physics 205 (2) (2005) 719–736.

[34] E. Cuesta, C. Lubich, C. Palencia, Convolution quadrature time discretization of fractional diffusion-
wave equations, Mathematics of Computation 75 (254) (2006) 673–696.

[35] Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation,
Journal of computational physics 225 (2) (2007) 1533–1552.

[36] P. Zhuang, F. Liu, I. Turner, V. Anh, Galerkin finite element method and error analysis for the fractional
cable equation, Numerical Algorithms 72 (2) (2016) 447–466.

[37] D. Li, C. Wu, Z. Zhang, Linearized Galerkin FEMs for nonlinear time fractional parabolic problems
with non-smooth solutions in time direction, Journal of Scientific Computing 80 (1) (2019) 403–419.

25



[38] D. Li, H.-L. Liao, W. Sun, J. Wang, J. Zhang, Analysis of L1-Galerkin FEMs for time-fractional
nonlinear parabolic problems, Communications in Computational Physics 24 (1) (2018) 86–103.

[39] H.-l. Liao, D. Li, J. Zhang, Sharp error estimate of the nonuniform L1 formula for linear reaction-
subdiffusion equations, SIAM Journal on Numerical Analysis 56 (2) (2018) 1112–1133.

[40] S. McKee, Generalised discrete gronwall lemmas, ZAMM-Journal of Applied Mathematics and Mechan-
ics/Zeitschrift für Angewandte Mathematik und Mechanik 62 (9) (1982) 429–434.

[41] J. R. Webb, Weakly singular gronwall inequalities and applications to fractional differential equations,
Journal of Mathematical Analysis and Applications 471 (1-2) (2019) 692–711.

[42] M. A. Zaky, A. S. Hendy, J. E. Macías-Díaz, Semi-implicit Galerkin–Legendre spectral schemes for non-
linear time-space fractional diffusion–reaction equations with smooth and nonsmooth solutions, Journal
of Scientific Computing 82 (1) (2020) 1–27.

[43] F. del Teso, Finite difference method for a fractional porous medium equation, Calcolo 51 (4) (2014)
615–638.

[44] L. Caffarelli, L. Silvestre, An extension problem related to the fractional laplacian, Communications in
Partial Differential Equations 32 (8) (2007) 1245–1260.

[45] F. del Teso, J. Endal, E. R. Jakobsen, Robust numerical methods for local and nonlocal equations of
porous medium type. part i: Theory, arXiv preprint arXiv:1801.07148 (2018).

[46] F. J. Gaspar, C. Rodrigo, Multigrid waveform relaxation for the time-fractional heat equation, SIAM
Journal on Scientific Computing 39 (4) (2017) A1201–A1224.

[47] A. Bhrawy, A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional
sub-diffusion equations, Numerical Algorithms 73 (1) (2016) 91–113.

[48] E. DiBenedetto, D. Hoff, An interface tracking algorithm for the porous medium equation, Transactions
of the American Mathematical Society 284 (2) (1984) 463–500.

[49] D. Stan, F. del Teso, J. L. Vázquez, Finite and infinite speed of propagation for porous medium equations
with fractional pressure, Comptes Rendus Mathematique 352 (2) (2014) 123–128.

[50] T. Arbogast, M. F. Wheeler, A nonlinear mixed finite element method for a degenerate parabolic
equation arising in flow in porous media, SIAM Journal on Numerical Analysis 33 (4) (1996) 1669–
1687.

[51] C. Ebmeyer, Error estimates for a class of degenerate parabolic equations, SIAM Journal on Numerical
Analysis 35 (3) (1998) 1095–1112.

[52] E. Etienne, D. Šiška, Full discretization of the porous medium/fast diffusion equation based on its very
weak formulation, Communications in Mathematical Sciences 10 (4) (2012) 1055–1080.

[53] I. S. Pop, W.-A. Yong, A numerical approach to degenerate parabolic equations, Numerische Mathe-
matik 92 (2) (2002) 357–381.

[54] M. Eisenmann, E. Hansen, Convergence analysis of domain decomposition based time integrators for
degenerate parabolic equations, Numerische mathematik 140 (4) (2018) 913–938.

[55] H. Brunner, Volterra Integral Equations: An Introduction to Theory and Applications, Vol. 30, Cam-
bridge University Press, 2017.

[56] C. T. Baker, A perspective on the numerical treatment of Volterra equations, Journal of computational
and applied mathematics 125 (1-2) (2000) 217–249.

[57] P. Linz, Analytical and numerical methods for Volterra equations, Vol. 7, SIAM, 1985.

26



[58] K. Frischmuth, N. J. Ford, J. T. Edwards, Volterra integral equations with non-lipschitz nonlinearity,
in: Rostocker Mathematisches Kolloquium, Vol. 51, 1997, pp. 65–82.

[59] E. Buckwar, Iterative Approximation of the Positive Solutions of a Class of Nonlinear Volterra-type
Integral Equations, Logos Verlag, 1997.

[60] Ł. Płociniczak, H. Okrasińska-Płociniczak, Numerical method for Volterra equation with a power-type
nonlinearity, Applied Mathematics and Computation 337 (2018) 452–460.

[61] E. Buckwar, On a nonlinear Volterra integral equation, in: Volterra equations and applications, CRC
Press, 2000, pp. 157–162.

[62] M. Arias, R. Benítez, V. Bolós, Non-lipschitz homogeneous Volterra integral equations, in: Modern
Mathematics and Mechanics, Springer, 2019, pp. 237–259.

[63] R. Gazizov, A. Kasatkin, S. Y. Lukashchuk, Symmetry properties of fractional diffusion equations,
Physica Scripta 2009 (T136) (2009) 014016.

[64] R. K. Gazizov, A. A. Kasatkin, Construction of exact solutions for fractional order differential equations
by the invariant subspace method, Computers & Mathematics with Applications 66 (5) (2013) 576–584.

[65] R. Gorenflo, Y. Luchko, F. Mainardi, Wright functions as scale-invariant solutions of the diffusion-wave
equation, Journal of Computational and Applied Mathematics 118 (1-2) (2000) 175–191.

[66] V. S. Kiryakova, Generalized fractional calculus and applications, CRC Press, 1993.

[67] J.-D. Djida, J. J. Nieto, I. Area, Nonlocal time-porous medium equation: weak solutions and finite
speed of propagation, Discrete Continuous Dyn. Syst. Ser. B (2018).

[68] F. Atkinson, L. Peletier, Similarity profiles of flows through porous media, Archive for Rational Me-
chanics and Analysis 42 (5) (1971) 369–379.

[69] E. Buckwar, Existence and uniqueness of solutions of Abel integral equations with power-law non-
linearities, Nonlinear Analysis: Theory, Methods & Applications 63 (1) (2005) 88–96.

[70] G. Gripenberg, Unique solutions of some Volterra integral equations, Mathematica Scandinavica 48 (1)
(1981) 59–67.

[71] P. Bushell, W. Okrasinski, Nonlinear Volterra integral equations with convolution kernel, Journal of the
London Mathematical Society 2 (3) (1990) 503–510.

[72] W. Okrasinski, On nontrivial solutions to some nonlinear ordinary differential equations, Journal of
Mathematical Analysis and Applications 190 (2) (1995) 578–583.

[73] H.-l. Liao, W. McLean, J. Zhang, A discrete gronwall inequality with applications to numerical schemes
for subdiffusion problems, SIAM Journal on Numerical Analysis 57 (1) (2019) 218–237.

[74] W. F. Ames, B. Pachpatte, Inequalities for differential and integral equations, Vol. 197, Academic press,
1997.

[75] W. Okrasiński, On approximate solutions to some nonlinear diffusion problems, Zeitschrift für ange-
wandte Mathematik und Physik ZAMP 44 (4) (1993) 722–731.

[76] W. Okrasiński, S. Vila, Power series solutions to some nonlinear diffusion problems, Zeitschrift für
angewandte Mathematik und Physik ZAMP 44 (6) (1993) 988–997.

[77] J. Crank, Free and moving boundary problems, Oxford University Press, 1987.

[78] N. Kopteva, Error analysis of the l1 method on graded and uniform meshes for a fractional-derivative
problem in two and three dimensions, Mathematics of Computation 88 (319) (2019) 2135–2155.

27


	1 Introduction
	2 Self-similar solutions and Volterra equations
	3 Numerical method
	3.1 Construction
	3.2 Convergence

	4 Numerical examples
	4.1 Exact constant solution
	4.2 Order of convergence
	4.3 Anomalous diffusion
	4.4 Comparison with finite difference method

	5 Conclusion

