
A Modified Orthogonal Matching Pursuit for

Construction of Sparse Probabilistic Boolean

Networks

Guiyun Xiao∗ Zheng-Jian Bai† Wai-Ki Ching‡

October 20, 2021

Abstract

Probabilistic Boolean Networks play a remarkable role in the modelling and control of
gene regulatory networks. In this paper, we consider the inverse problem of constructing a
sparse probabilistic Boolean network from the prescribed transition probability matrix. We
propose a modified orthogonal matching pursuit for solving the inverse problem. We pro-
vide some conditions under which the proposed algorithm can recover a sparse probabilistic
Boolean network. We also report some numerical results to illustrate the effectiveness of the
proposed algorithm.

Keywords. Probabilistic Boolean network, inverse problem, sparse, modified orthogonal
matching pursuit

1 Introduction

1.1 Boolean Networks and probabilistic Boolean networks

Boolean Network (BN) and Probabilistic Boolean Network (PBN) arise in a wide variety of
applications. The BN model was originally proposed by Kauffmann in 1969 for exploring dy-
namical properties of gene regulatory networks [14] (see also [15, 16]). The BN model has been
used in different biological systems, including apoptosis, the yeast cell-cycle network, and T Cell
Signaling, and so on (see for instance [1, 17, 25, 26]).

∗School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China (xia-
ogy999@163.com).

†Corresponding author. School of Mathematical Sciences and Fujian Provincial Key Laboratory on Mathemat-
ical Modeling & High Performance Scientific Computing, Xiamen University, Xiamen 361005, People’s Republic of
China (zjbai@xmu.edu.cn). The research of this author was partially supported by the National Natural Science
Foundation of China (No. 11671337).

‡Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of
Hong Kong, Pokfulam Road, Hong Kong (wching@hku.hk). Research supported in part by Hong Kong RGC
GRF Grant no. 17301519, IMR and RAE Research fund from Faculty of Science, HKU.

1

ar
X

iv
:2

00
8.

09
76

7v
2

 [
m

at
h.

N
A

]
 1

9
O

ct
 2

02
1

As an extension of the BN, the PBN has gained much attention since it introduces uncertainty
principles into a rule-based BN modelling [27, 28, 29]. The PBN model was originally proposed
by Shmulevich et al. in 2002 for modelling genetic regulatory networks [29]. The PBN has been
used in many applications such as biological systems (see for instance [19, 27]), biomedicine [31],
credit defaults [13], and industrial machine systems [23, 24], etc.

In the following, we give the basic framework of BNs and PBNs. As noted in [28, 29], a
BN includes a set of nodes (genes) V = {v1, v2, . . . , vn} and a list of Boolean functions F =
{f1, f2, . . . , fn}. Here, for any 1 ≤ i ≤ n, vi(t) ∈ {0, 1} is a binary variable, which means the
state (off/on) of gene i at time t, and fi : {0, 1}n → {0, 1} is a Boolean function. The state of
gene vi at time t+ 1 is determined by

vi(t+ 1) = fi(vi1(t), . . . , viw(i)
(t)) ≡ fi(v(t)),

where w(i) is the number of essential variables of fi and v(t) = (v1(t), . . . , vn(t))T ∈ Rn. There-
fore, there are 2n possible global states in a BN with n genes.

In a PBN with a set of nodes (genes) V = {v1, v2, . . . , vn}, for each gene vi, there exist l(i)

possible functions: Fi = {f (i)1 , . . . , f
(i)
l(i)}, where each f

(i)
p is a possible function determining the

value of gene vi. A realization of the PBN consists of N different possible realizations, which is
determined by N vector functions f1, . . . , fN of the form

fj = (f
(1)
j1
, f

(2)
j2
, . . . , f

(n)
jn

)T , j = 1, . . . , N, 1 ≤ pi ≤ l(i) (1.1)

where f
(i)
ji
∈ Fi for i = 1, . . . , n.

Suppose f = (f (1), . . . , f (n))T is a random vector with f (i) ∈ Fi. Then, the selection proba-

bility of function f (i) = f
(i)
j for gene vi is given by

c
(i)
j = Prob{f (i) = f

(i)
j }

for j = 1, . . . , l(i) and
∑l(i)

j=1 c
(i)
j = 1. Assume that the random variables f (1), . . . , f (n) are

independent. Then, the PBN is called independent. In this case, the probability of choosing the
vector function fj in the form of (1.1) is given by

xj = Prob{f = fj} =

n∏
i=1

Prob{f (i) = f
(i)
ji
} ≡

n∏
i=1

c
(i)
ji
.

Therefore, an independent PBN includes a set of nodes V and a list F = {F1, . . . , Fn}, which
has N =

∏n
i=1 l(i) possible realizations. We note that the independent PBN still has 2n

possible global states and the transition probability from state a = (a1, . . . , an)T to state
b = (b1, . . . , bn)T is determined by

Prob{v(t+ 1) = b | v(t) = a}

=

N∑
j=1

Prob {v(t+ 1) = b | v(t) = a, the jth vector function (1.1) is selected} · xj .

2

Then we obtain the transition probability matrix P ∈ R2n×2n of the PBN [8]:

P =
N∑
j=1

xjAj ,

where Aj ∈ R2n×2n is the transition probability matrix corresponding to the jth constituent
vector function fj . Here, Rn1×n2 is the set of all n1 × n2 real matrices (Rn = Rn×1) and each
column of Aj has only one nonzero entry and each column adds up to one.

1.2 Construction of probabilistic Boolean network

The inverse problem of constructing a PBN aims to identify all the constituent BNs and cor-
responding selection probabilities such that the constructed PBN has the prescribed transition
probability matrix. Suppose a PBN consists of N possible constituent BNs with the transition
probability matrices {Aj}Nj=1. The inverse problem of constructing a PBN aims to find the prob-

ability distribution vector x = (x1, . . . , xN)T from the prescribed transition probability matrix
P and the constituent BN matrices {Aj}Nj=1 such that

P =
N∑
j=1

xjAj , 1Tx = 1, x ≥ 0, (1.2)

where 1 is a column vector of an appropriate dimension whose entries are all ones and for any
two vectors f ,g ∈ RN , g ≥ f means that gj ≥ fj for j = 1, . . . , N .

One may solve (1.2) by the solution of the following minimization problem:

min
x∈RN

1

2
‖P −

N∑
j=1

xjAj‖2F

subject to (s.t.) 1Tx = 1, x ≥ 0,

(1.3)

where ‖ · ‖F denotes the Frobenius norm. Let

A = [vec(A1), vec(A2), . . . , vec(AN)] ∈ Rm×N and b = vec(P) ∈ Rm, (1.4)

where m = 22n � N and vec(·) generates a column vector from a matrix by stacking its column
vectors below one another. Then the minimization problem (1.3) takes the form of

min
x∈RN

1

2
‖Ax− b‖22

s.t. 1Tx = 1, x ≥ 0.
(1.5)

where ‖ · ‖2 denotes the Euclidean vector norm or its induced matrix norm.

In general, there are many solutions to the inverse problem. However, in practice, it is
desired to find only a few major constituent BNs with associated selection probabilities. That
is, a sparse solution to the inverse problem gives a simple approximate PBN, which may provide

3

a good control design for gene regulatory networks. To find a sparse solution to problem (1.5),
one may solve the following `0 regularization problem:

min
x∈RN

1

2
‖Ax− b‖22 + λ‖x‖0

s.t. 1Tx = 1, x ≥ 0,
(1.6)

where λ > 0 is a regularization parameter and ‖ · ‖0 means the number of nonzero entries of a
vector. However, this is a NP-hard problem [20]. It is natural to consider the following `1-norm
relaxed version of problem (1.6):

min
x∈RN

1

2
‖Ax− b‖22 + λ‖x‖1

s.t. 1Tx = 1, x ≥ 0,
(1.7)

There is a large literature on the solution of such convex minimization problem. However,
it seems invalid to adopt the `1 regularization for problem (1.5) since the equality constraint
1Tx = 1 is equivalent to the `1-norm regularization term ‖x‖1 = 1 due to x ≥ 0.

There exists many methods for finding a sparse solution to the inverse problem. For instance,
a heuristic algorithm was proposed in [6]. A dominant modified algorithm was proposed in [9].
A maximum entropy rate approach and its modified version were proposed in [4, 5, 7]. A
projection-based gradient descent method was presented in [33].

Recently, an alternating direction method of multipliers was given in [18] for solving the
following non-convex minimization problem with the `1/2 regularization:

min
x∈RN

1

2
µ‖Ax− b‖22 +

N∑
j=1

xj log xj + λ‖x‖1/21/2

s.t. 1Tx = 1, x ≥ 0,

where µ and λ are two positive constants. In [11], a partial proximal-type operator splitting
method was proposed for solving the `1/2 regularization version of problem (1.6):

min
x∈RN

1

2
‖Ax− b‖22 + λ‖x‖1/21/2

s.t. 1Tx = 1, x ≥ 0,

where λ > 0 is a constant.

1.3 Our contribution

The orthogonal matching pursuit (OMP) is a greedy algorithm for solving the sparse approx-
imation problem over a redundant dictionary, which was introduced independently in many
references (see for instance [3, 10, 22]). The sparse recovery of the OMP was analyzed by Tropp
in [32] and was extended to the noise case [2]. The OMP aims to find a sparse solution to an
underdetermined linear system of linear equations y = Φw, where Φ is a q × Q matrix with
q < Q. However, the OMP can not be directly applied to finding a sparse solution to problem
(1.5) since there exist additional nonnegative constraint x ≥ 0 and equality constraint 1Tx = 1.

4

In this paper, we propose a modified orthogonal matching pursuit (MOMP) for finding a
sparse solution to problem (1.5). By exploring the properties of the m × N matrix A and the
vector b ∈ Rm defined by (1.4), we give some conditions to guarantee that our method can find
a sparse solution to problem (1.5). We also present some numerical examples to illustrate the
efficiency of our method for constructing a sparse PBN.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we review the OMP and then propose
a MOMP for constructing a sparse PBN. In Section 3, we discuss the convergence analysis of
our method. In Section 4, we present some numerical examples to show the efficiency of the
proposed method. Finally, we give some concluding remarks in Section 5.

1.5 Notation

Throughout this paper, we use the following notation. Let I be the identity matrix of an
appropriate dimension. Denote by ej the j-th column of I. The superscripts “·T ” denotes the
transpose of a matrix. For any A ∈ Rm×N , let A = [a1, . . . ,aN]. For a complex number a, |a|
denotes the modulus of a. Let [N] = {1, 2, . . . , N} and for any set S ⊂ [N], let |S| and [N]\S
be the cardinality of S and the complement of S in [N], respectively. For any set S ⊂ [N], AS
is the submatrix of a matrix A with columns indexed by S. A vector z is called d-sparse if at
most d entries of z are nonzero. Finally, denote by supp(z) := {j ∈ [N] | zj 6= 0} the support of
a vector z ∈ RN .

2 A modified orthogonal matching pursuit

In this section, we first recall the OMP for solving underdetermined linear systems. Then we
propose a MOMP for solving problem (1.5).

2.1 Orthogonal matching pursuit

The OMP aims to find a sparse solution to the following underdetermined linear system:

y = Φw, (2.1)

where Φ ∈ Rq×Q is a measurement matrix with q < Q and y ∈ Rq is the observation vector.
Then the OMP algorithm is stated as in Algorithm 2.1.

We see that the OMP algorithm is simple and easy to implement. For more details on the
OMP, one may refer to [3, 10, 22, 32]. In particular, one may refer to [12, Proposition 3.5] for
the exact recovery condition for the OMP.

2.2 A modified orthogonal matching pursuit

In this subsection, we propose a MOMP for solving problem (1.5). It is natural to extend the
OMP (i.e., Algorithm 2.1) to the solution of problem (1.5). Compared with problem (2.1), we

5

Algorithm 2.1 OMP for problem (2.1)

Step 0. Choose an initial point w0 = 0 and S0 = ∅. Let k := 0.

Step 1. Find jk+1 ∈ [N] such that

jk+1 ∈ argmax
j∈[N]

|eTj ΦT (y − Φwk)|.

Set Sk+1 = Sk ∪ {jk+1}.

Step 2. Find

wk+1 = argmin
w∈RQ supp(x)⊂Sk+1

1

2
‖y − Φw‖22.

Step 3. Replace k by k + 1 and go to Step 1.

have additional equality constraint 1Tx = 1 and nonnegative constraint x ≥ 0. Hence, we
cannot solve problem (1.5) by the OMP directly. We also note that, for any 1 ≤ j ≤ N , each
column of the j-th constituent BN matrix Aj ∈ R2n×2n has only one nonzero entry and each
column adds up to one. Thus the matrix A defined by (1.4) is entrywise nonnegative, sparse,
and satisfies the property

1 ≥ Ax, ∀x ∈M, (2.2)

where M is the feasible domain of problem (1.5), which is defined by

M :=
{
x ∈ RN | 1Tx = 1, x ≥ 0

}
.

In addition, we see that the prescribed transition probability matrix P ∈ R2n×2n is usually
sparse. Hence, the vector b ∈ Rm defined by (1.4) satisfies the following property

1 ≥ b ≥ 0. (2.3)

From the above analysis, sparked by the OMP (i.e., Algorithm 2.1), we propose a MOMP
for solving problem (1.5). The algorithm is described in Algorithm 2.2.

We point out that the major work of Algorithm 2.2 is to solve a small linear least square
problem (2.4), which can be solved via the standard solvers for constrained linear least square
problems, e.g., the interior point algorithm or the active-set algorithm (see for instance [21]).

3 Convergence analysis

In this section, we show that Algorithm 2.2 converges in finite steps under some conditions.
For the iterate jk+1 generated by Algorithm 2.2, we have the following lemma.

Lemma 3.1 Let xk be the current iterate generated by Algorithm 2.2 with k ≥ 1. If

Aejk+1
= Axk,

6

Algorithm 2.2 MOMP for problem (1.5)

Step 0. Choose an initial guess x0 ∈M and S0 = ∅. Let k := 0.

Step 1. Find jk+1 ∈ [N] such that

jk+1 ∈ argmax
j∈[N]

eTj A
T (b−Axk).

Set Sk+1 = Sk ∪ {jk+1}.

Step 2. Find

xk+1 = argmin
x∈M, supp(x)⊂Sk+1

1

2
‖b−Ax‖22. (2.4)

Step 3. Replace k by k + 1 and go to Step 1.

then jk+1 ∈ Sk+1 is such that xk+1 ∈M with supp(xk+1) ⊂ Sk+1 but

‖b−Axk+1‖2 = ‖b−Axk‖2.

Moreover, if xk+1 = xk, then jk+1 ∈ Sk.

Proof: We note that Sk+1 = Sk ∪ {jk+1}, where Sk 6= ∅ since k ≥ 1. By hypothesis, Aejk+1
=

Axk. Then, without loss of generality, we have

ASk+1 = [ASk , Aejk+1
] = [ASk , Ax

k] = [ASk , ASkx
k
Sk]. (3.1)

This means that the last column of ASk+1 is a convex combination of the columns of ASk . From
(3.1) we have for all x ∈M with supp(x) ⊂ Sk+1,

‖b−Ax‖2 = ‖b−ASk+1xSk+1‖2 = ‖b− [ASk , ASkx
k
Sk]xSk+1‖2

= ‖b−ASk(xSk + xjk+1
xkSk)‖2. (3.2)

For any x ∈M with supp(x) ⊂ Sk+1, it is easy to see that xSk +xjk+1
xkSk ≥ 0,

∑
i∈Sk

(
(xSk)i+

xjk+1
(xkSk)i

)
= 1, and supp(xSk + xjk+1

xkSk) ⊂ Sk. Notice

xk = argmin
x∈M, supp(x)⊂Sk

1

2
‖b−Ax‖22.

It follows from (3.2) that

‖b−Axk+1‖2 = min
x∈M, supp(x)⊂Sk+1

‖b−Ax‖22

= min
x∈M, supp(x)⊂Sk+1

‖b−ASk(xSk + xjk+1
xkSk)‖2

= ‖b−Axk‖2, (3.3)

7

where the last equality holds by setting xSk = (1− xjk+1
)xkSk for all 0 ≤ xjk+1

≤ 1.

Moreover, it is easy to see that xk+1 = xk is a special solution to (3.3). In this case, we have
jk+1 ∈ Sk.

The following result shows that the choice of the index jk+1 is reasonable in the sense that
the residual is nonincreasing.

Theorem 3.2 Let {xk} be the sequence generated by Algorithm 2.2. Then we have, for all
k ≥ 1,

‖b−Axk+1‖22

= ‖b−Axk‖22, if Aejk+1

= Axk,

≤ ‖b−Axk‖22 −

(
eTjk+1

AT (b−Axk)−(xk)TAT (b−Axk)

)2

‖A(ejk+1
−xk)‖22

, otherwise.

Proof: For any 0 ≤ t ≤ 1, let
x̃k := (1− t)xk + tejk+1

.

It is easy to verify that x̃k ∈M and supp(x̃k) ⊂ Sk+1. Thus, for any 0 ≤ t ≤ 1,

‖b−Axk+1‖22 = min
x∈M, supp(x)⊂Sk+1

‖b−Ax‖22

≤ ‖b−Ax̃k‖22 = ‖b−A
(
(1− t)xk + tejk+1

)
‖22

= ‖(b−Axk)− tA(ejk+1
− xk)‖22

= ‖b−Axk‖22 + t2‖A(ejk+1
− xk)‖22 − 2t〈A(ejk+1

− xk),b−Axk〉. (3.4)

If Aejk+1
= Axk, then using Lemma 3.1 we have

‖b−Axk+1‖2 = ‖b−Axk‖2.

We now assume that A(ejk+1
− xk) 6= 0. From (3.4) we have

‖b−Axk+1‖22 ≤ ‖b−Axk‖22 + ‖A(ejk+1
− xk)‖22

(
t2 − 2tσk

)
,

for all 0 ≤ t ≤ 1, where

σk :=
〈A(ejk+1

− xk),b−Axk〉
‖A(ejk+1

− xk)‖22
=

eTjk+1
AT (b−Axk)− (xk)TAT (b−Axk)

‖A(ejk+1
− xk)‖22

.

Thus,
‖b−Axk+1‖22 ≤ ‖b−Axk‖22 + ‖A(ejk+1

− xk)‖22 min
0≤t≤1

(t2 − 2tσk).

We now show that 0 ≤ σk ≤ 1. We first derive that σk ≥ 0. Using the definition of jk+1 and
xk ∈M and supp(xk) ⊂ Sk we have

(xk)TAT (b−Axk) ≤ eTjk+1
AT (b−Axk)

∑
j∈Sk

xkj = eTjk+1
AT (b−Axk).

8

This shows that σk ≥ 0. On the other hand, we note that, if eTi Aejk+1
6= 0 for some 1 ≤ i ≤ m,

then eTi Aejk+1
= 1. Thus,

‖A(ejk+1
− xk)‖22 − 〈A(ejk+1

− xk),b−Axk〉 = 〈A(ejk+1
− xk), Aejk+1

− b〉 ≥ 0,

where the last inequality uses the fact that eTi A(ejk+1
− xk) ≥ 0 and eTi (Aejk+1

− b) ≥ 0 for all
i ∈ supp(Aejk+1

) and eTi A(ejk+1
− xk) ≤ 0 and eTi (Aejk+1

− b) ≤ 0 for all i /∈ supp(Aejk+1
) by

using the properties (2.2) and (2.3). Therefore, we have 0 ≤ σk ≤ 1. Substituting t = σk yields

‖b−Axk+1‖22 ≤ ‖b−Axk‖22 − σ2k‖A(ejk+1
− xk)‖22

= ‖b−Axk‖22 −

(
eTjk+1

AT (b−Axk)− (xk)TAT (b−Axk)
)2

‖A(ejk+1
− xk)‖22

.

The proof is complete.

On the optimality conditions of problem (2.4), we have the following result from [21, Theorem
16.4].

Lemma 3.3 Let xk+1 be the current iterate of Algorithm 2.2. Then xk+1 ∈M with supp(xk+1) ⊂
Sk+1 is a global solution to problem (2.4) if and only if

(
ATSk+1

(
b−Axk+1

))
l

 =
(
xk+1

)T
AT
(
b−Axk+1

)
, if l ∈ supp(xk+1),

≤
(
xk+1

)T
AT
(
b−Axk+1

)
, if l ∈ Sk+1 \ supp(xk+1).

Moreover, if ASk+1 : ZSk+1 → Rm is injective, then xk+1 ∈ M with supp(xk+1) ⊂ Sk+1 is the

unique global solution to problem (2.4), where ZSk+1 := {z ∈ R|Sk+1| | 1T z = 1, z ≥ 0}.

We now discuss the convergence conditions for the MOMP. We first give some necessary
conditions for Algorithm 2.2 to recover a sparse solution to the linear system b = Ax. The
proof can be seen as a generalization of [12, Proposition 3.5].

Theorem 3.4 Let A ∈ Rm×N and b ∈ Rm be defined by (1.4). Suppose every nonzero vector
x∗ ∈ M supported on a set S of size d is recovered from b = Ax∗ via Algorithm 2.2 with any
fixed starting point x0 ∈M after at most d iterations. Then the linear operator AS : ZS → Rm
is injective,

max
j∈S

(
AT (b−Ax0)

)
j
> max

l∈[N]\S

(
AT (b−Ax0)

)
l
, (3.5)

for all b ∈ {Ax | x ∈M, supp(x) ⊂ S}, where ZS := {z ∈ R|S| | 1T z = 1, z ≥ 0}.

Proof: Suppose Algorithm 2.2 recovers all vectors supported on a set S of size d at most d
iterations. Then, for any two vectors x1,x2 ∈ M supported on S with Ax1 = b = Ax2, we
must have x1 = x2. This shows that the linear operator AS : ZS → Rm is injective. On
the other hand, if there exists a vector x∗ ∈ M with supp(x∗) ⊂ S such that b = Ax∗, then
the index j1 generated by Algorithm 2.2 at the first iteration should not belong to [N]\S, i.e.,
maxj∈S

(
AT (b − Ax0)

)
j
> maxl∈[N]\S

(
AT (b − Ax0)

)
l
. Therefore, we have maxj∈S(AT (b −

9

Ax0))j > maxl∈[N]\S(AT (b − Ax0))l for all b ∈ {Ax | x ∈ M, supp(x) ⊂ S}. This completes
the proof.

Next, we provide some sufficient conditions to guarantee Algorithm 2.2 recovers all sparse
solutions of the linear system b = Ax exactly. The proof can be seen as a generalization of [12,
Proposition 3.5].

Theorem 3.5 Let A ∈ Rm×N and b ∈ Rm be defined by (1.4). Then every nonzero vector
x∗ ∈ M supported on a set S of size d is recovered from b = Ax∗ via Algorithm 2.2 with any
fixed starting point x0 ∈ M after at most d iterations if the linear operator AS : ZS → Rm is
injective,

max
j∈S

(
AT (b−Ax0)

)
j
> max

l∈[N]\S

(
AT (b−Ax0)

)
l
, (3.6)

and

max
j∈S

(
AT (b−Ax)

)
j
> max

l∈[N]\S

(
AT (b−Ax)

)
l
, (3.7)

for all x ∈MS := {x ∈M | supp(x) ⊂ S}\{x∗}, where ZS := {z ∈ R|S| | 1T z = 1, z ≥ 0}.

Proof: Suppose the starting point x0 ∈ M with supp(x0) 6⊂ S is such that b = Ax0. This
contradicts (3.6). We now assume that b 6= Axk for k = 1, . . . , d− 1 (otherwise, we have found
the solution). We claim that, for any 1 ≤ k ≤ d, Sk ⊂ S is of size k. Therefore S = Sd and
x∗ = xd since the linear operator AS : ZS → Rm is injective. In the following, we show the claim
by the induction. We first show that, for any 1 ≤ k ≤ d, Sk ⊂ S (which implies that xk ∈ M
with supp(xk) ⊂ Sk). Using (3.6), we know that the first index j1 must belong to S and thus
S1 = S0 ∪{j1} = {j1} ⊂ S. Now, suppose Sk ⊂ S for some 1 ≤ k ≤ d− 1. Then, using (3.7) we
have the index jk+1 ∈ S and thus Sk+1 = Sk ∪ {jk+1} ⊂ S. By the induction, we have Sk ⊂ S
for all 1 ≤ k ≤ d. Next, we show that Sk is of size k for all 1 ≤ k ≤ d. For any 1 ≤ k ≤ d, using
Lemma 3.3 we have

(
ATSk

(
b−Axk

))
l

 =
(
xk
)T
AT
(
b−Axk

)
, if l ∈ supp(xk),

≤
(
xk
)T
AT
(
b−Axk

)
, if l ∈ Sk \ supp(xk).

By definition, jk+1 = argmaxj∈[N] e
T
j A

T (b−Axk) /∈ Sk. Otherwise, if jk+1 ∈ Sk, then it follows
from (3.7) that

max
j∈Sk

(
AT (b−Axk)

)
j

= max
j∈S

(
AT (b−Axk)

)
j
> max

l∈[N]\S

(
AT (b−Axk)

)
l
.

Thus,

(
AT
(
b−Axk

))
l

=
(
xk
)T
AT
(
b−Axk

)
, if l ∈ supp(xk),

≤
(
xk
)T
AT
(
b−Axk

)
, if l ∈ Sk \ supp(xk),

≤
(
xk
)T
AT
(
b−Axk

)
, if l ∈ S \ Sk,

<
(
xk
)T
AT
(
b−Axk

)
, ∀ l ∈ [N]\S.

10

Using Lemma 3.3 and the injectivity of the linear operator AS : ZS → Rm, we know that xk

is the unique global solution to problem (1.5). By assumption, x∗ ∈ M with supp(x∗) ⊂ S
is such that b = Ax∗, which is a global solution to problem (1.5). Thus x∗ = xk. This is a
contradiction. Therefore, Sk is of size k. The proof is complete.

Remark 3.6 We observe that the necessary conditions in Theorem 3.4 are not equivalent to the
sufficient conditions in Theorem 3.5. This may be caused by the additional constraints: 1Tx = 1
and x ≥ 0. By assumptions, b = Ax∗ for every exact recovery x∗ ∈M supported on a set S of
size d. Then b belongs to the set {Ax | x ∈ M, supp(x) ⊂ S}. While, for any 1 ≤ k ≤ d − 1,
we have Sk ⊂ S but the residual rk := b−Axk = A(x∗−xk +x0)−Ax0, where A(x∗−xk +x0)
is not guaranteed to belong to the set {Ax | x ∈M, supp(x) ⊂ S} since the support of x0 is not
necessary on S and the entrywise nonnegativity of the vector (x∗ − xk + x0) is not guaranteed.

By following the similar proof of Theorem 3.5, we have the following sufficient conditions on
the sparse recovery of Algorithm 2.2 for problem (1.5).

Theorem 3.7 Let A ∈ Rm×N and b ∈ Rm be defined by (1.4). Then every nonzero vector
x∗ ∈ M supported on a set S of size d solve problem (1.5) via Algorithm 2.2 after at most d
iterations if the linear operator AS : ZS → Rm is injective,

max
j∈S

(
AT (b−Ax0)

)
j
> max

l∈[N]\S

(
AT (b−Ax0)

)
l
,

and

max
j∈S

(
AT (b−Ax)

)
j
> max

l∈[N]\S

(
AT (b−Ax)

)
l
,

for all x ∈MS , where MS and ZS are defined as in Theorem 3.5.

Remark 3.8 In Theorems 3.4–3.7, we require that the injectivity of the linear operator AS :
ZS → Rm, which is guaranteed if AS : R|S| → Rm is injective i.e., AS is full column rank. We
note that ZS is a closed convex subset of R|S|. It is easy to see that if |S| > m, then the linear
operator AS : R|S| → Rm cannot be injective. This shows that, if Algorithm 2.2 generates a
sparse solution to problem (1.5), then the sparsity is no more than m.

Based on Theorems 3.5–3.7 and Remark 3.8, for Algorithm 2.2, we have the following results
on the recovery with a given support for problem (1.5) exactly or in the least square sense.

Corollary 3.9 Let A ∈ Rm×N and b ∈ Rm be defined by (1.4). Let S ⊂ [N] with d = |S|. Then
every nonzero vector x∗ ∈ M with supp(x∗) ⊂ S is recovered from b = Ax∗ via Algorithm 2.2
after at most d iterations if AS has full column rank and

max
j∈S

(
AT (b−Axk)

)
j
> max

l∈[N]\S

(
AT (b−Axk)

)
l
,

for k = 0, 1, . . . , d− 1.

11

Corollary 3.10 Let A ∈ Rm×N and b ∈ Rm be defined by (1.4). Let S ⊂ [N] with d = |S|.
Then every nonzero vector x∗ ∈ M with supp(x∗) ⊂ S solve problem (1.5) in the least square
sense via Algorithm 2.2 after at most d iterations if AS has full column rank and

max
j∈S

(
AT (b−Axk)

)
j
> max

l∈[N]\S

(
AT (b−Axk)

)
l
,

for k = 0, 1, . . . , d− 1.

Remark 3.11 If one chooses the starting point x0 = 0 in Algorithm 2.2, then, in Theorems
3.5–3.7 and Corollaries 3.9–3.10, the condition

max
j∈S

(
AT (b−Ax0)

)
j
> max

l∈[N]\S

(
AT (b−Ax0)

)
l
.

is replaced by

max
j∈S

(ATb)j > max
l∈[N]\S

(ATb)l.

From the latter numerical examples, we can see that different sparse solutions to problem (1.5)
can be obtained via Algorithm 2.2 with different choices of sparse x0 ∈M or x0 = 0.

4 Numerical experiments

In this section, we present the numerical performance of Algorithm 2.2 for solving problem (1.5).
To illustrate the efficiency of our method, we compare the proposed algorithm with the maximum
entropy rate approach (MEM) in [4] and the projection-based gradient descent method (PG) in
[33]. All numerical tests were carried out using MATLAB R2020a on a personal laptop with an
Intel(R) Core(TM) i7–5500U CPU at 2.4 GHz and 8GB of RAM.

In our numerical experiments, the initial point x0 is chosen to be (a) x0 = 0 and (b) x0 ∈M
is a random sparse N -vector with s uniformly distributed nonzero entries, where s = 1, 2. The
stopping criterion for Algorithm 2.2 is given by

‖ATsupp(xk)r
k − (xk)TAT rk‖2 + ‖max(AT[N]\supp(xk)r

k − (xk)TAT rk,0)‖2 ≤ 10−7

with rk = b−Axk and the largest number of iterations for Algorithm 2.2 is set to be m.

We consider the following numerical examples.

Example 4.1 Consider another example in [5] with two genes (n = 2), where the observed
transition probability matrix is given by

P1 =

0.1 0.3 0.2 0.1
0.2 0.3 0.2 0.0
0.0 0.0 0.6 0.4
0.7 0.4 0.0 0.5

 .
In this PBN, there are N = 81 BNs.

12

Example 4.2 We consider a network in [33] where the prescribed transition probability matrix
of the PBN is given by

P2 =

[
P1 0
0 P1

]
.

In this PBN, there are 6561 BNs.

The numerical results for Examples 4.1–4.2 are displayed in Figures 4.1–4.2 and Tables 4.1–
4.2. Here, x# denotes the computed solution to problem (1.5) obtained via MEM, PG, and
Algorithm 2.2 accordingly, the symbols ‘Obj.’ and ‘CT.’ mean the total computing time in
seconds and the objective function value 1

2‖Ax
− b‖22 at the final iterate of the corresponding

algorithm, respectively, ‘sum(j)’ is the sum of the j largest components of the computed solution
x# for different j and ‘Obj(j)’ is the corresponding reconstructed objective function value
1
2‖b−Aπ(1:j)x

#(π(1 : j))‖22, where π = {π(1), . . . , π(N)} is a permutation such that

x#π(1) ≥ x
#
π(2) ≥ · · · ≥ x

#
π(N) and x#(π(1 : j)) = (x#π(1), . . . , x

#
π(j))

T ∈ Rj .

We observe from Figures 4.1–4.2 that the solution obtained by Algorithm 2.2 are much
sparser than MEM and PG. We also see from Tables 4.1–4.2 that the identified major BNs by
Algorithm 2.2 with various initial guesses leads to much less residual than MEM and PG.

Figure 4.1: The probability distribution x# for Example 4.1.

0

0.02

0.04

0.06

0.08

0.1

V
a
lu

e

MEM

0 10 20 30 40 50 60 70 80

x
#
 (The number of nonzero entries is 81)

0

0.01

0.02

0.03

0.04

0.05

0.06

V
a
lu

e

PG

0 10 20 30 40 50 60 70 80

x
#
 (The number of nonzero entries is 54)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V
a

lu
e

Alg. 2.2 (a)

0 10 20 30 40 50 60 70 80

x# (The number of nonzero entries is 5)

0

0.05

0.1

0.15

0.2

V
a
lu

e

Alg. 2.2 (s=1)

0 10 20 30 40 50 60 70 80

x# (The number of nonzero entries is 7)

0

0.05

0.1

0.15

0.2

0.25

V
a

lu
e

Alg. 2.2 (s=2)

0 10 20 30 40 50 60 70 80

x# (The number of nonzero entries is 7)

To further illustrate the effectiveness of our method, in the following numerical example,
we only compare the performance of our method with that of PG for reconstructing a sparse
solution to problem (1.5) in the least square sense since the problem size is very large and the
MEM is not so effective as expected.

13

Table 4.1: Numerical results for Example 4.1.

MEM PG Alg. 2.2 (a) Alg. 2.2 (s=1) Alg. 2.2 (s=2)

Obj. 1.9035× 10−12 2.7759× 10−8 1.9324× 10−12 1.1331× 10−12 1.2651× 10−13

CT. 0.0039 0.0022 0.0274 0.0198 0.0273

‖x#‖0 81 54 5 7 7

j Obj(j) sum(j) Obj(j) sum(j) Obj(j) sum(j) Obj(j) sum(j) Obj(j) sum(j)

1 1.1826× 100 0.0840 1.2323× 100 0.0528 7.8740× 10−1 0.4000 1.1045× 100 0.2000 1.0296× 100 0.2000

2 1.0809× 100 0.1512 1.1578× 100 0.1011 5.4772× 10−1 0.6000 8.3666× 10−1 0.4000 8.8318× 10−1 0.4000

3 9.8401× 10−1 0.2142 1.0837× 100 0.1486 3.1623× 10−1 0.8000 5.4772× 10−1 0.6000 6.1644× 10−1 0.6000

4 8.8997× 10−1 0.2772 1.0108× 100 0.1960 2.0000× 10−1 0.9000 4.2426× 10−1 0.7000 4.8990× 10−1 0.7000

5 8.1831× 10−1 0.3276 9.4840× 10−1 0.2389 1.9324× 10−12 1.0000 2.8284× 10−1 0.8000 3.4641× 10−1 0.8000

6 7.4996× 10−1 0.3780 8.8778× 10−1 0.2818 2.0000× 10−1 0.9000 2.0000× 10−13 0.9000

7 7.1145× 10−1 0.4060 8.4215× 10−1 0.3146 1.1331× 10−12 1.0000 1.2651× 10−13 1.0000

8 6.7424× 10−1 0.4340 7.9794× 10−1 0.3474

9 6.4511× 10−1 0.4580 7.6017× 10−1 0.3775

10 6.1692× 10−1 0.4804 7.2474× 10−1 0.4057

11 5.8994× 10−1 0.5028 6.9094× 10−1 0.4339

12 5.6353× 10−1 0.5238 6.5929× 10−1 0.4615

13 5.3828× 10−1 0.5448 6.2431× 10−1 0.4889

14 5.1350× 10−1 0.5658 5.9108× 10−1 0.5163

15 4.9018× 10−1 0.5868 5.5855× 10−1 0.5437

16 4.6415× 10−1 0.6060 5.2830× 10−1 0.5711

Figure 4.2: The probability distribution x# for Example 4.2.

0

1

2

3

4

5

6

7

8

V
a

lu
e

10-3 MEM

0 1000 2000 3000 4000 5000 6000

x
#
 (The number of nonzero entries is 6561)

0

0.5

1

1.5

2

V
a

lu
e

10-3 PG

0 1000 2000 3000 4000 5000 6000

x
#
 (The number of nonzero entries is 3317)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V
a

lu
e

Alg. 2.2 (a)

0 1000 2000 3000 4000 5000 6000

x# (The number of nonzero entries is 5)

0

0.05

0.1

0.15

0.2

V
a
lu

e

Alg. 2.2 (s=1)

0 1000 2000 3000 4000 5000 6000

x# (The number of nonzero entries is 8)

0

0.05

0.1

0.15

0.2

0.25

V
a
lu

e

Alg. 2.2 (s=2)

0 1000 2000 3000 4000 5000 6000

x# (The number of nonzero entries is 10)

Example 4.3 We consider a network in [13] for modelling credit defaults, where the prescribed
transition probability matrix of the PBN is given by

P3 =

0.57 0.00 0.10 0.00 0.00 0.04 0.00 0.00
0.14 0.31 0.00 0.50 0.13 0.13 0.33 0.06
0.00 0.08 0.40 0.25 0.25 0.00 0.67 0.00
0.00 0.15 0.00 0.00 0.00 0.08 0.00 0.00
0.00 0.15 0.30 0.00 0.00 0.13 0.00 0.00
0.29 0.31 0.20 0.00 0.25 0.29 0.00 0.39
0.00 0.00 0.00 0.00 0.38 0.00 0.00 0.00
0.00 0.00 0.00 0.25 0.00 0.33 0.00 0.56

.

14

Table 4.2: Numerical results for Example 4.2.

MEM PG Alg. 2.2 (a) Alg. 2.2 (s=1) Alg. 2.2 (s=2)

Obj. 3.6129× 10−9 1.5072× 10−7 1.6574× 10−13 1.0598× 10−13 2.3896× 10−12

CT. 2.3761 1.6465 0.0286 0.0351 0.0407

‖x#‖0 6561 3317 5 8 10

j Obj(j) sum(j) Obj(j) sum(j) Obj(j) sum(j) Obj(j) sum(j) Obj(j) sum(j)

1 1.8489× 100 0.0071 1.8609× 100 0.0020 1.1136× 100 0.4000 1.6248× 100 0.2000 1.4832× 100 0.2000

2 1.8359× 100 0.0127 1.8566× 100 0.0038 7.7460× 10−1 0.6000 1.2166× 100 0.4000 1.1136× 100 0.4000

3 1.8230× 100 0.0183 1.8524× 100 0.0056 4.4721× 10−1 0.8000 1.0198× 100 0.5000 8.6152× 10−1 0.5333

4 1.8108× 100 0.0236 1.8482× 100 0.0075 2.8284× 10−1 0.9000 7.8740× 10−1 0.6000 6.9121× 10−1 0.6500

5 1.7988× 100 0.0289 1.8440× 100 0.0093 1.6574× 10−13 1.0000 6.1644× 10−1 0.7000 5.3229× 10−1 0.7333

6 1.7867× 100 0.0342 1.8399× 100 0.0111 4.6904× 10−1 0.8000 3.8006× 10−1 0.8167

7 1.7746× 100 0.0395 1.8357× 100 0.0129 2.8284× 10−1 0.9000 2.6667× 10−1 0.8833

8 1.7645× 100 0.0440 1.8318× 100 0.0146 1.0598× 10−13 1.0000 1.2472× 10−1 0.9500

9 1.7551× 100 0.0483 1.8280× 100 0.0163 4.7140× 10−2 0.9833

10 1.7456× 100 0.0525 1.8242× 100 0.0180 2.3896× 10−12 1.0000

11 1.7362× 100 0.0567 1.8204× 100 0.0197

12 1.7268× 100 0.0610 1.8166× 100 0.0214

13 1.7174× 100 0.0652 1.8127× 100 0.0231

14 1.7079× 100 0.0694 1.8089× 100 0.0248

15 1.6985× 100 0.0737 1.8051× 100 0.0265

16 1.6891× 100 0.0779 1.8013× 100 0.0282

In this PBN, there are 25920 BNs.

The numerical results for Example 4.3 are displayed in Figures 4.3 and Table 4.3. Figure
4.3 shows that the least square solution generated by our method is much sparse than PG. We
also see from Table 4.3 that the major BNs obtained by Algorithm 2.2 yields much less residual
than PG.

Figure 4.3: The probability distribution x# for Example 4.3.

0

1

2

3

4

5

V
a

lu
e

10-4 PG

0 0.5 1 1.5 2 2.5

x
#
 (The number of nonzero entries is 10577)104

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

V
a

lu
e

Alg. 2.2 (a)

0 0.5 1 1.5 2 2.5

x# (The number of nonzero entries is 22) 104

0

0.05

0.1

0.15

0.2

0.25

V
a

lu
e

Alg. 2.2 (s=1)

0 0.5 1 1.5 2 2.5

x# (The number of nonzero entries is 23) 104

0

0.05

0.1

0.15

0.2

V
a
lu

e

Alg. 2.2 (s=2)

0 0.5 1 1.5 2 2.5

x# (The number of nonzero entries is 23) 104

5 Concluding remarks

Several numerical methods have been developed for the construction of sparse probabilistic
Boolean networks. However, few greedy methods were explored. In this paper, we propose a
greedy-type method, a modified orthogonal matching pursuit, for solving the inverse problem.
We derive some conditions such that, given the transition probability matrix, our method can
recover a sparse probabilistic Boolean network exactly or in the least square sense. Numerical
experiments show that our method is very effective in terms of sparse recovery. An interesting
question is how to analyze the exact sparse recovery condition in terms of the coherence as in
[32]. This needs further study.

15

Table 4.3: Numerical results for Example 4.3.

PG Alg. 2.2 (a) Alg. 2.2 (s=1) Alg. 2.2 (s=2)

Obj. 7.6376× 10−3 7.6376× 10−3 7.6376× 10−3 7.6376× 10−3

CT. 2.9839 0.1392 0.2088 0.2310

‖x#‖0 10577 22 23 23

j Obj(j) sum(j) Obj(j) sum(j) Obj(j) sum(j) Obj(j) sum(j)

1 1.7007× 100 0.0004 1.1740× 100 0.3019 1.3997× 100 0.2377 1.3595× 100 0.1998

2 1.6998× 100 0.0008 8.5697× 10−1 0.5019 9.4187× 10−1 0.4747 1.1870× 100 0.3319

3 1.6990× 100 0.0012 7.2396× 10−1 0.5819 7.7130× 10−1 0.5746 1.0009× 100 0.4338

4 1.6982× 100 0.0016 6.1625× 10−1 0.6497 6.2345× 10−1 0.6545 8.6691× 10−1 0.5002

5 1.6974× 100 0.0019 5.2749× 10−1 0.7114 5.1882× 10−1 0.7155 7.5744× 10−1 0.5631

6 1.6966× 100 0.0023 4.3873× 10−1 0.7616 4.3079× 10−1 0.7657 6.5260× 10−1 0.6248

7 1.6958× 100 0.0027 3.5896× 10−1 0.8067 3.4471× 10−1 0.8119 5.4269× 10−1 0.6825

8 1.6950× 100 0.0031 2.7739× 10−1 0.8466 2.7640× 10−1 0.8490 4.4473× 10−1 0.7388

9 1.6943× 100 0.0034 2.1471× 10−1 0.8866 2.0859× 10−1 0.8852 3.6801× 10−1 0.7810

10 1.6935× 100 0.0038 1.5347× 10−1 0.9194 1.5972× 10−1 0.9172 3.0392× 10−1 0.8221

11 1.6928× 100 0.0041 1.0387× 10−1 0.9470 1.2150× 10−1 0.9414 2.3503× 10−1 0.8621

12 1.6920× 100 0.0045 6.6657× 10−2 0.9688 7.2729× 10−2 0.9642 1.9174× 10−1 0.8910

13 1.6912× 100 0.0049 3.6778× 10−2 0.9825 4.4031× 10−2 0.9791 1.4679× 10−1 0.9184

14 1.6905× 100 0.0052 2.6746× 10−2 0.9887 2.6876× 10−2 0.9885 1.0694× 10−1 0.9419

15 1.6898× 100 0.0056 1.8270× 10−2 0.9933 1.6651× 10−2 0.9939 8.5392× 10−2 0.9550

16 1.6890× 100 0.0059 1.2374× 10−2 0.9968 1.1768× 10−2 0.9967 7.1039× 10−2 0.9658

17 1.6883× 100 0.0063 8.3336× 10−3 0.9993 9.2747× 10−3 0.9985 5.1373× 10−2 0.9763

18 1.6876× 100 0.0066 7.8849× 10−3 0.9997 8.1940× 10−3 0.9994 3.4444× 10−2 0.9841

19 1.6869× 100 0.0070 7.7370× 10−3 0.9999 7.9249× 10−3 0.9997 2.5720× 10−2 0.9894

20 1.6862× 100 0.0073 7.6775× 10−3 0.99995 7.7959× 10−3 0.9998 1.8746× 10−2 0.9932

21 1.6855× 100 0.0076 7.6503× 10−3 0.99998 7.6777× 10−3 0.9999 1.2993× 10−2 0.9967

22 1.6848× 100 0.0080 7.6376× 10−3 1.0000 7.6563× 10−3 0.99998 8.4447× 10−3 0.9993

23 1.6841× 100 0.0083 7.6376× 10−3 1.0000 7.6376× 10−3 1.0000

References

[1] S. Bornholdt, Boolean network models of cellular regulation: prospects and limitations,
Journal of the Royal Society Interface, 5 (2008), pp. S85–S94.

[2] T. T. Cai, L. Wang, Orthogonal matching pursuit for sparse signal recovery with noise,
IEEE Trans. Inform. Theory, 57 (2011), pp. 4680–4688.

[3] S. Chen, S. A. Billings, W. Luo, Orthogonal least squares methods and their application to
nonlinear system identification, International Journal of Control, 50 (1989), pp. 1873–1896.

[4] X. Chen, W. K. Ching, X. S. Chen, Y. Cong and N. K. Tsing, Construction of probabilistic
Boolean networks from a prescribed transition probability matrix: A maximum entropy rate
approach, East Asian J. Appl. Math., 1 (2011), pp. 132–154.

[5] X. Chen, H. Jiang and W. K. Ching, On construction of sparse probabilistic Boolean net-
works, East Asian J. Appl. Math., 2 (2012), pp. 1–18.

[6] W. K. Ching, X. Chen, N. K. Tsing, H. Y. Leung, A heuristic method for generating
probabilistic Boolean networks from a prescribed transition probability matrix, In Proc. 2nd
Symposium on Optimization and Systems Biology (OSB’08), Ligiang, China, October 31–
November 3, 2008, pp. 271–278.

[7] W. K. Ching, X. Chen, N. K. Tsing, Generating probabilistic Boolean networks from a
prescribed transition probability matrix, IET Systems Biology, 3 (2009), pp. 453–464.

16

[8] W. K. Ching, S. Q. Zhang, M. K. Ng, T. Akutsu, An approximation method for solving
the steady-state probability distribution of probabilistic Boolean networks, Bioinformatics,
23 (2007), pp. 1511–1518.

[9] L. B. Cui, W. Li, W. K. Ching, On construction of sparse probabilistic Boolean networks
from a prescribed transition probability matrix, Lecture Notes in Operations Research, 13
(2010), pp. 227–234.

[10] G. Davis, S. Mallat, Z. Zhang, Adaptive time-frequency decompositions, Optical engineering,
33 (1994), pp. 2183–2191.

[11] K. K. Deng, Z. Peng, and J. L. Chen, Sparse probabilistic Boolean network problems: A
partial proximal-type operator splitting method, Journal of Industrial & Management Opti-
mization, 15 (2019), pp. 1881–1896.

[12] S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing, Springer,
New York, 2013.

[13] J. W. Gu, W. K. Ching, T. K. Siu, and H. Zheng, On modeling credit defaults: a probabilistic
Boolean network approach, Risk and Decision Analysis, 4 (2013), pp. 119–129.

[14] S. A. Kauffman, Metabolic stability and epigenesist in randomly constructed genetic nets,
J. Theoret. Biol., 22 (1969), pp. 437—467.

[15] S. A. Kauffman, Homeostasis and differentiation in random genetic control networks, Na-
ture, 224 (1969), pp. 177–178.

[16] S. A. Kauffman, The Origins of Order: Self Organization and Selection in Evolution, Oxford
University Press, New York, 1993.

[17] F. Li, T. Long, Y. Lu, Q. Ouyang, C. Tang, The yeast cell-cycle network is robustly designed,
Proc. Natl. Acad. Sci. USA, 101 (2004), pp. 4781–4786.

[18] X. M. Li, Z. Peng, W. X. Zhu, A new alternating direction method of multipliers for sparse
Probabilistic Boolean Networks, In Proceedings of the 10th International Conference on
Natural Computation, 2014.

[19] Z. Ma, Z. J. Wang, M. J. McKeown, Probabilistic Boolean network analysis of brain connec-
tivity in Parkinson’s disease, IEEE Journal of selected topics in signal processing, 2 (2008),
pp. 975–985.

[20] B. K. Natraajan, Sparse approximation to linear systems, SIAM J. Comput., 24 (1995), pp.
227–234.

[21] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd edition, Springer-Verlag, New
York, 2006.

[22] Y. C. Pati, R. Rezaiifar, P. S. Krishnaprasad, Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet decomposition, in Proc. 27th Annu.
Asilomar Conf. Signals, Systems and Computers, November, 1993.

17

[23] P. J. Rivera Torres, E. I. Serrano Mercado, L. Anido Rifón, Probabilistic Boolean network
modeling of an industrial machine, Journal of Intelligent Manufacturing, 29 (2018), pp.
875–890.

[24] P. J. Rivera Torres, E. I. Serrano Mercado, L. Anido Rifón, Probabilistic Boolean network
modeling and model checking as an approach for DFMEA for manufacturing systems, Jour-
nal of Intelligent Manufacturing, 29 (2018), pp. 1393–1413.

[25] J. Saez-Rodriguez, L. Simeoni, J. A. Lindquist, R. Hemenway, U. Bommhardt, et al., A
logical model provides insights into T cell receptor signaling, PLoS Computational Biology,
3 (2007) e163.

[26] R. Schlatter, K. Schmich, I. A. Vizcarra, P. Scheurich, T. Sauter, et al., On/off and beyond
– A Boolean model of apoptosis, PLoS Computational Biology, 5 (2009) e1000595.

[27] I. Shmulevich, E. R. Dougherty, Probabilistic Boolean Networks: The Modeling and Control
of Gene Regulatory Networks, SIAM, 2010.

[28] I. Shmulevich, E. R. Dougherty, S. Kim, W. Zhang, Probabilistic Boolean networks: a
rule-based uncertainty model for gene regulatory networks, Bioinformatics, 18 (2002), pp.
261–274.

[29] I. Shmulevich, E. R. Dougherty, W. Zhang, From Boolean networks to probabilistic Boolean
networks as models of genetic regulatory networks, Proceedings of IEEE, 90 (2002), pp.
1778–1792.

[30] J. G. Sun, Backward perturbation analysis of certain characteristic subspaces, Numer.
Math., 65 (1993), pp. 357–382.

[31] P. Trairatphisan, A. Mizera, J. Pang, A. A. Tantar, J. Schneider, T. Sauter, Recent devel-
opment and biomedical applications of probabilistic Boolean networks, Cell communication
and signaling, 11 (2013) 46.

[32] J. A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Trans.
Inform. Theory, 50 (2004), pp. 2231–2242.

[33] Y. W. Wen, M. Wang, Z. Y. Cao, X. Q. Cheng, W. K. Ching, V. S. Vassiliadis, Sparse
solution of nonnegative least squares problems with applications in the construction of prob-
abilistic Booelan networks, Numer. Linear Algebra Appl., 22 (2015), pp. 883–899.

18

	1 Introduction
	1.1 Boolean Networks and probabilistic Boolean networks
	1.2 Construction of probabilistic Boolean network
	1.3 Our contribution
	1.4 Organization
	1.5 Notation

	2 A modified orthogonal matching pursuit
	2.1 Orthogonal matching pursuit
	2.2 A modified orthogonal matching pursuit

	3 Convergence analysis
	4 Numerical experiments
	5 Concluding remarks

