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Abstract

In this paper we address the problem of constructing G2 planar Pythagorean–hodograph (PH) spline curves, that
interpolate points, tangent directions and curvatures, and have prescribed arc-length. The interpolation scheme is
completely local. Each spline segment is defined as a PH biarc curve of degree 7, which results in having a closed
form solution of the G2 interpolation equations depending on four free parameters. By fixing two of them to zero,
it is proven that the length constraint can be satisfied for any data and any chosen ratio between the two boundary
tangents. Length interpolation equation reduces to one algebraic equation with four solutions in general. To select
the best one, the value of the bending energy is observed. Several numerical examples are provided to illustrate the
obtained theoretical results and to numerically confirm that the approximation order is 5.

Keywords: Pythagorean–hodograph curves, biarc curves, geometric Hermite interpolation, arc–length constraint,
spline construction.

1. Introduction

One of the fundamental problems of computer-aided design is to pass a curve through a given sequence of points.
For example, in the design of cars and ships it is a standard practice to construct surfaces by first constructing networks
of curves. In addition to satisfy functional or aesthetic criteria, designed objects often have to exactly match not only
a series of points but also derivatives. The problem can be efficiently addressed by C1 or C2 Hermite interpolation. In
industrial design, fair parametric curves and surfaces are the most preferred representation to meet the requirements
of design and modeling. To this aim, it is sometimes preferable to consider a geometric continuity, that is simply
the continuity of unit tangents (G1 continuity), or even of the curvature function (G2 continuity), see for instance [1,
Chapter 8]. This kind of continuity is advantageous for many applications. For instance, in NC milling applications,
using spline curves with G2 continuity produces motions with continuous accelerations, hence continuous cutting
forces. This increases the possible speed of the manufacturing process, and/or the lifetime of the machinery.

On the other hand the possibility to construct curved paths satisfying given boundary conditions and with pre-
scribed arc lengths is a fundamental problem in geometric design. Indeed such problems may arise in robot path
planning, computer animation, path planning for unmanned or autonomous vehicles, and related applications. In this
context, it is well known that polynomial Pythagorean–hodograph curves possess polynomial cumulative arc length
functions, so they are perfectly suited for the construction of exact solutions to such problems. For instance the ef-
ficient use of PH curves in real-time control of CNC machines can be found in [2], where PH curves are used for
contour error computation of general free-form curved paths, while applications to robot motion path planning are
presented in [3, 4].

For planar PH curves, one of the first interpolation methods was given in [5], where the interpolation of first
order Hermite data was analysed. Later the problem was revisited in [6]. In [7] a characterization of the set of G1
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Hermite data for which planar PH cubic interpolants exist was given. The method of [5] was extended in [8] to
accommodate interpolation of C1 data together with end–point curvatures, using planar PH curves of degree 7, and
it was shown that up to eight distinct interpolants exist. For quintic planar PH curves, several results on first and
second order continuous spline interpolation can be found in the literature, see for instance [9, 10, 11, 12, 13]. In
[14] a local G2 interpolation with PH quintics that interpolate end points together with unit tangents and curvature
values is considered. Although multiple solutions exist, a method to obtain a “good” interpolant is suggested through
an asymptotic analysis. However, the problem is highly non-linear and any general existence results seems to be
unachievable.

The construction of curved paths with prescribed arc lengths satisfying given boundary conditions has received
relatively little attention in the past, but it has recently been exposed as an important problem. The imposition
of arc length constraints in the construction of PH curves was first considered in [15], where a numerical scheme
was employed to solve the system of non–linear equations that define a spatial C2 PH quintic spline interpolating a
sequence of nodal points with specified internodal arc lengths. A closed–form solution to the problem of interpolating
planar G1 Hermite data under arc length constraints was developed in [16], using planar PH quintics, and in [17] this
approach was generalized to the spatial case. In [18] rational PH curves are used to provide a closed-form solution to
the problem of interpolating spatial G1 data with prescribed arc lengths.

In this work we extend the interpolation problem analysed in [8], by adding the length interpolation condition,
while relaxing the C1 to G1 continuity conditions. In more detail, we consider the interpolation of two planar data
points, two tangent directions and two curvatures by degree 7 planar PH curves, that in addition have prescribed
length. The problem reduces to three non-linear equations with one free shape parameter. However, the analysis of
existence of solutions is still too involved, and there exist data for which no interpolants can be found. To make the
problem theoretically as well as numerically simpler, we propose to replace a single PH curve with a PH biarc curve.
Moreover, in order to reduce the number of free parameters coming from the splitting, we assume that the biarc is C3

continuous at the joint point. In this way we derive a closed form expression for theG2 interpolant, which still depends
on four free parameters. Then we fix two of them to zero by requiring that the first and the second order derivatives at
boundary points are orthogonal, and set the other two proportional to the lengths of boundary tangents. Eventually we
are able to prove that the length interpolation condition, that reduces to one simple algebraic equation, has a solution
for any data and any value of the remaining shape parameter. Beside of being easy to implement and simple to use in
practise, the proposed method can be directly applied to a (local) construction of G2 continuous interpolating splines.
To measure the fairness of the resulting interpolants, we observe the value of the curve bending energy. To visualize
the results, we use the porcupine plot of the curvature (see for instance [19]). The porcupine curvature plot consists
of lines emanating from points on the curve in the direction of sign (κ)n (where n is a unit normal) with lengths
proportional to the magnitude of the curvature κ. In this way it is possible also to see immediately the curvature
continuity and its sign changes.

The remainder of this paper is organized as follows. In the next section we introduce the notation and give some
basic definitions. Then in Section 3 we present the problem and propose a possible approach to solve it. We show in
particular that a solution could not exist for some given data with a single PH curve of degree 7. Section 4 presents
a biarc construction and its theoretical analysis. In Section 5 some numerical examples are given to illustrate the
performance of the proposed method. Finally, Section 6 briefly summarizes the contributions of the present study,
and identifies possible directions for further investigation.

2. Preliminaries

The distinctive property of a polynomial planar PH curve r(t) = (r1(t), r2(t)) is that its hodograph r′(t) =
(r′1(t), r′2(t)) satisfies the Pythagorean condition

r′ 21 (t) + r′ 22 (t) = σ2(t) (1)

for some polynomial σ(t), which specifies the parametric speed of r(t), i.e. the derivative of the arc length s with re-
spect to the curve parameter t. This feature provides planar PH curves with many attractive computational properties:
they have rational unit tangents and normals, curvatures, and offset curves. Moreover their arc lengths are exactly
computable so that they are ideally suited to real-time precision motion control applications, [20]. In the complex
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representation, [21], a planar PH curve segment is constructed from a complex polynomial w(t) = u(t) + i v(t) by
integrating the expression

r′(t) = w2(t). (2)

We use bold characters to interchangeably denote planar points/vectors and complex numbers, while real (scalar)
quantities are denoted by italic characters. Note also that we identify complex numbers with points/vectors in R2.
Thus, the curve r(t) is further expressed as r(t) = r1(t) + i r2(t), and similarly, all the interpolation points/vectors
will be given as complex numbers.

If w(t) is of degree m, it may be defined by its complex Bernstein coefficients w0, . . . ,wm,

w(t) =

m∑
i=0

wiB
m
i (t), Bmi (t) =

(
m

i

)
(1− t)m−i ti. (3)

The above expression is also called complex preimage curve of r. Integrating (2) yields a planar PH curve of degree
n = 2m+ 1. Denoting the hodograph (2) with h(t), it can be written in Bézier form as

h(t) =

2m∑
i=0

hiB
2m
i (t), (4)

where the coefficients are related to the complex polynomial w(t) as

hi =

min(m,i)∑
j=max(0,i−m)

(
m
j

)(
m
i−j
)(

2m
i

) wj wi−j , i = 0, . . . , 2m. (5)

The planar PH curve of degree n can be also expressed in the Bézier representation

r(t) =

n∑
i=0

piB
n
i (t), (6)

and taking into account that h(t) = r′(t) we have

h(t) = n

n−1∑
i=0

∆piB
n−1
i (t), ∆pi := pi+1 − pi, (7)

and
pi = pi−1 +

1

n
hi−1, i = 1, . . . , n, (8)

where p0 is a free integration constant. From (2) the parametric speed σ(t), unit tangent t(t) and curvature κ(t) of
the curve r(t) may be formulated in terms of w(t) as, see [21],

σ(t) = |w(t)|2, t(t) =
w(t)2

σ(t)
, κ(t) = 2

Im(w(t) w′(t))

σ2(t)
, (9)

where | · | denotes the absolute value of a complex number, and w is a conjugate of w. Since σ(t) is a polynomial of
degree 2m, the cumulative arc length function

s(t) =

∫ t

0

σ(λ) dλ

is likewise just a polynomial of degree 2m+ 1.

Remark 1. A normal vector at each point on the curve r is perpendicular to the unit tangent t. It can be computed
by a 90◦ clockwise or counterclockwise rotation of t. In what follows we choose the later one, i.e. n = t⊥, where
(x, y)⊥ := (−y, x).
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The quintics, obtained by integrating r′(t) = w2(t) with a complex quadratic w(t), are the lowest–order PH
curves with sufficient shape flexibility for free–form design. However, for our purposes they do not possess enough
degrees of freedom to fulfil the G2 interpolation at the boundary, and the arc-length interpolation. Hence in this paper
we shall focus on PH curves of degree 7.
In this case, by choosing a cubic polynomial w(t) with Bernstein coefficients w0, w1, w2, w3, the expression (5)
reduces to

h0 = w2
0, h1 = w0w1, h2 =

1

5
(2w0w2 + 3w2

1), h3 =
1

10
(w0w3 + 9w1w2),

h4 =
1

5
(2w1w3 + 3w2

2), h5 = w2w3, h6 = w2
3.

(10)

The parametric speed is a polynomial of degree 6, which can be expressed in the Bézier form as

σ(t) =

6∑
i=0

σiB
6
i (t) (11)

with coefficients

σ0 = |w0|2 , σ1 = Re (w0 w1) , σ2 =
1

5

(
2Re(w0 w2) + 3 |w1|2

)
,

σ3 =
1

10
Re (w0 w3 + 9w1 w2) ,

σ4 =
1

5

(
2Re(w1 w3) + 3 |w2|2

)
, σ5 = Re (w2 w3) , σ6 = |w3|2 .

(12)

The total arc length is

Lr = s(1) =
σ0 + σ1 + . . .+ σ6

7
. (13)

3. The interpolation problem

Given two data points P0 and P1, two associated tangent directions t0 and t1 (with |t0| = |t1| = 1) and two
signed curvatures κ0, κ1, the problem we want to address is to find a PH curve r : [0, 1] → C of degree 7 that
interpolates the data

r(i) = Pi,
r′(i)

|r′(i)|
= ti κ(i) = κi, i = 0, 1, (14)

and has the length equal to a given L, such that L > |∆P0|. It is easy to verify that these G2 interpolation conditions
are satisfied if the control points are equal to (see [22])

p0 = P0, p1 = P0 +
α2
0

7
t0, p2 = P0 +

(
2α2

0

7
+
β0
42

)
t0 + κ0

α4
0

42
n0,

p7 = P1, p6 = P1 −
α2
1

7
t1, p5 = P1 +

(
−2α2

1

7
+
β1
42

)
t1 + κ1

α4
1

42
n1,

(15)

for some α0, α1 and β0, β1, where n0 = i t0, n1 = i t1 are the unit normals at the end-points (see Remark 1). Of
course, these parameters need to be computed so that r satisfies the PH condition.

From the expressions for p1 and p6 of (15) and relations (8) and (10) we get the following complex quadratic
equations

w2
0 = α2

0 t0, w2
3 = α2

1 t1. (16)

The next lemma follows by the elementary computations.
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Lemma 1. Let c := c1 + i c2 ∈ C, with c 6= 0. Then the equation z2 = c has two solutions

z = ζ χ(c), χ(c) :=

√
2

2

(√
|c|+ c1 + i

c2√
|c|+ c1

)
, ζ ∈ {−1, 1}.

Using Lemma 1 we can solve the equations (16) in terms of the preimage coefficients:

w0 = α0 ζ0 χ(t0) w3 = α1 ζ1 χ(t1), ζ0, ζ1 ∈ {−1, 1}. (17)

Without loosing generality we set ζ0 = ζ1 = 1 and observe positive as well as negative values for α0 and α1. Now,
considering the expressions for p2 and p5 of (15), the relations in (10) for h1 and h5, and (8) we obtain

w1 =
1

w0

((
α2
0 +

β0
6

)
t0 + κ0

α4
0

6
n0

)
, w2 =

1

w3

((
α2
1 −

β1
6

)
t1 − κ1

α4
1

6
n1

)
. (18)

From (17) and (18) we see that using the end tangents and end curvature conditions we have been able to express all
the coefficients of the preimage function w(t) in terms of the free parameters α0, α1, β0 and β1. To complete the
interpolation conditions (14) we have to impose the end point interpolation:

7 ∆P0 =

6∑
i=0

hi, ∆P0 = P1 −P0.

From (10), this results in the following quadratic equation

10(w2
0 + w2

3) + 6(w2
1 + w2

2) + 10(w0 w1 + w2 w3) + w0 w3+ (19)
4(w0 w2 + w1 w3) + 9w1 w2 = 70∆P0.

At last, from (12) and (13), requiring the interpolant to have a specified length L yields the condition

10(|w0|2 + |w3|2) + 6(|w1|2 + |w2|2)+Re (10(w0 w1 + w2 w3) + w0 w3 (20)
4(w0 w2 + w1 w3) + 9w1 w2) = 70L.

Equations (19) and (20) give three (highly) non-linear scalar equations for four unknowns α0, α1, β0 and β1, thus the
solutions depend on one extra parameter. This one degree of freedom can be fixed by prescribing the ratio between
lengths of boundary tangents.

We note that if we omit the length constraint (20) and fix the parameters α0 and α1 by assigning the lengths of
both boundary tangent vectors, we obtain a different interpolation problem, which has been studied by Jüttler in [8],
resulting with C1/G2 PH interpolants. More precisely, it is shown in [8] that for fixed α0 and α1, there exist up to
eight possible solutions of equations (19) that come as roots of two bivariate quartic polynomials. Thus, any general
result on the existence of solutions seems to be impossible, so a comprehensive asymptotic analysis is provided
instead and it is shown that for data taken from a smooth parametric curve, defined on some small interval, there exist
solutions having the approximation order 6.

Relaxing the C1 boundary conditions toG1, as done in (14), and adding the equation (20) makes the interpolation
problem even more non-linear and more difficult to analyse. In addition, it is easy to come up with examples for which
no solutions exist or the solutions are not visually pleasing, as demonstrated in the next example. To numerically solve
the nonlinear equations in this example we have used the program package Mathematica and its function Solve,
that gives all the solutions (including the complex ones) of the polynomial system of equations.

Example 3.1. Let the interpolation data be chosen as

P 0 = 0 + 0 i, P 1 = 1 + 0 i, t0 = cos θ0 + i sin θ0, t1 = cos θ1 + i sin θ1 (21)

for θ0 = −π4 and θ1 = −π8 . Moreover, let κ0 = 1, κ1 = −1, L = 1.1, and let us additionally require that
|r′(0)| = |r′(1)|. Then there exist two PH interpolants shown in Fig. 1 together with control polygons and porcupine
curvature plots. If we decrease L to 1.05 (or less), no real solutions of (19) and (20) exist. Furthermore, changing
the sign of θ1 and κ1, we get convex data for which there exist four different PH interpolants, but none of them has a
nice shape, as shown in Fig. 2.
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P0 P1

P0 P1

Figure 1: Two PH interpolants of degree 7 from Example 3.1 together with the control polygons and porcupine curvature plots (with proportional
factor equal to 0.03).

P0 P1 P0 P1
P0 P1

P0 P1

Figure 2: Four PH interpolants r of degree 7 for the data (21) with θ0 = −π
4

, θ1 = π
8

, κ0 = κ1 = 1, L = 1.1, and |r′(0)| = |r′(1)|.

The main difficulty in analysing equation (19) is that the unknowns are not the coefficients of the preimage curve,
but they are parameters that come from G2 conditions. One way to overcome this problem would be to raise the
degree of the PH curve to 9, which would provide us with one additional free preimage coefficient and much simpler
solution of G2 continuity equations. An alternative approach, examined in this paper, is to leave the degree equal to
7, but replace the polynomial curve with a biarc one. As a consequence, the solution of the G2 continuity equations
can be derived in a closed form. Furthermore, by an appropriate choice of the additional free parameters, it can be
proven that the length constraint (20) can always be fulfilled. Details are given in the following section.

4. Biarc construction

In order to address the Hermite interpolation constraints as well as to match the prescribed length for any arbitrary
set of data, we consider the construction of a PH biarc segment.

A PH biarc of degree 7 can be defined as a piecewise curve

r(t) =

{
rA(t), t ∈

[
0, 12
)

rB(t), t ∈
[
1
2 , 1
] , (22a)

having each segment expressed in the Bézier form as

rA(t) =

7∑
i=0

pA,iB
7
i (2t), rB(t) =

7∑
i=0

pB,iB
7
i (2t− 1). (22b)

Considering their hodographs

hA(t) =

6∑
i=0

hA,iB
6
i (2t), hB(t) =

6∑
i=0

hB,iB
6
i (2t− 1), (23)
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it holds that hA(t) = w2
A(t) and hB(t) = w2

B(t), where the preimages are expressed in terms of cubic complex
polynomials

wA(t) =

3∑
i=0

wA,iB
3
i (t), wB(t) =

3∑
i=0

wB,iB
3
i (t). (24)

Hence, from (4) and (10), the hodograph of the PH biarc curve of degree 7 is completely defined once the complex
coefficients wA,i, wB,i, i = 0, 1, 2, 3, are determined. Then, by integrating (23), we obtain the control points of each
PH segment (22b). Choosing the free integration constants as rA,0 = P0 and rB,7 = P1, we have

pA,i+1 = P0 +
1

14

i∑
j=0

hA,j , i = 0, 1, . . . , 6, pB,i = P1 −
1

14

6∑
j=i

hB,j , i = 6, 5, . . . , 0.

Thus, the interpolation conditions r(0) = P0 and r(1) = P1 are already achieved. Let us now impose the G1

conditions. Similarly to (17), we can determine

wA,0 = α0 ζ0 χ(t0), wB,3 = α1 ζ1 χ(t1) (25a)

for four different sign choices (ζ0, ζ1) ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)}. Again, we can fix ζ0 = ζ1 = 1 and
further observe positive as well as negative values of parameters α0 and α1. Analogously to (18), we obtain from the
G2 conditions that

wA,1 =
1

wA,0

((
α2
0 +

β0
12

)
t0 + κ0

α4
0

12
n0

)
,

(25b)

wB,2 =
1

wB,3

((
α2
1 −

β1
12

)
t1 − κ1

α4
1

12
n1

)
,

where we should note that, in comparison to (18), the different coefficients are due to the fact that the biarc segments
are defined over halved intervals.

What is left is to assure that r is G2 continuous at the joint parameter t = 1
2 . As in the case of macro-elements,

the usual approach to reduce the number of free parameters, coming from splitting, to the number of free parameters
needed to get a simple interpolation construction, is to require additional smoothness at the joint point. In our case,
requiring C3 continuity of wA and wB at t = 1

2 would lead to a polynomial curve r, i.e. the curve examined in the
previous section. Thus, to obtain the additional freedom needed while keeping the interpolation scheme as simple
as possible, we require that the preimage biarc is C2 continuous, which implies the biarc (22) to be C3 continuous
provided rA( 1

2 ) = rB( 1
2 ) holds true.

Recalling the geometrical construction in terms of control points for achieving C2 continuity of wA and wB at
t = 1

2 , we introduce a new control point, expressed with a complex number d ∈ C, and define

wA,2 =
1

2
(wA,1 + d), wB,1 =

1

2
(wB,2 + d) (25c)

and
wA,3 = wB,0 =

1

2
(wA,2 + wB,1) =

1

4
wA,1 +

1

2
d +

1

4
wB,2. (25d)

It remains to impose the C0 continuity at the joint point, rA( 1
2 ) = rB( 1

2 ). Hence we must choose d so that

∆P0 =
1

14

6∑
i=0

(hA,i + hB,i). (26)

Now considering the relations, given in (10), between the coefficients of the hodograph and those of the preimage
for each subsegment, after some computation, we can rewrite the equation (26) in terms of d, wA,0, wA,1, wB,2 and
wB,3 as

d2 + 2 U d + V = 0 (27)
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with

52 U = 5 (wA,0 + wB,3) + 39 (wA,1 + wB,2),

52 V = 40 (w2
A,0 + w2

B,3) + 49 (wA,0wA,1 + wB,2wB,3) + 62 (w2
A,1 + w2

B,2) (28)

+ wA,0wB,2 + wA,1wB,3 + 28wA,1wB,2 − 560 ∆P0.

The quadratic complex equation (27) can be rewritten as (d + U)
2

= U2 −V, and so using Lemma 1, we obtain an
explicit solution for d,

d = ζd χ
(
U2 −V

)
−U, ζd ∈ {−1, 1}, (29)

in terms of wA,0, wA,1, wB,2 and wB,3, which depend on the free parameters α0, α1, β0 and β1 (see (25a), (25b)).
The results are summarized in the next theorem.

Theorem 1. A planar PH biarc (22) of degree 7 that interpolates G2 data (14) is given in a closed form, that follows
from the preimage, given by (25) and (29), and depends on four free parameters α0, α1, β0, β1 and the sign choice
ζd ∈ {−1, 1}.

The last step is to require that the resulting biarc curve has the prescribed length L. Taking into account (13), in
the biarc case, this constraint leads to the equation

L =
1

14

6∑
i=0

(σA,i + σB,i),

where σA,i and σB,i are the Bézier ordinates of σA(t) = wA(t)wA(t) and σB(t) = wB(t)wB(t), respectively. By
using (12), (25) and (29), we obtain, with some computation, the equation

|d|2 + 2 Re
(
dU

)
+ v = 0,

where

52 v =40 |wA,0|2 + 40 |wB,3|2 + 62 |wA,1|2 + 62 |wB,2|2

+ Re (49wA,0wA,1 + 49wB,2wB,3 + 28wA,1wB,2 + wA,0wB,2 + wA,1wB,3)− 560 L.
(30)

If we denote K = ζd χ
(
U2 −V

)
, then |K|2 =

∣∣U2 −V
∣∣ and

|d|2 + 2 Re
(
dU

)
= (K−U)

(
K−U

)
+ 2 Re

(
KU

)
− 2 |U|2

= |K|2 − 2 Re
(
KU

)
+ |U|2 + 2 Re

(
KU

)
− 2 |U|2 = |K|2 − |U|2 =

∣∣U2 −V
∣∣− |U|2 .

This expression is clearly independent of ζd and the same is true for v. The equation for the length interpolation thus
simplifies to ∣∣U2 −V

∣∣− |U|2 + v = 0.

Observing (28) and (30) together with (25) we see that U, V and v depend only on the given data and free parameters
α0, α1, β0 and β1. To emphasize the dependence of the final equation on these parameters, we write it as

e(α0, α1, β0, β1) = 0 where e :=
∣∣U2 −V

∣∣− |U|2 + v. (31)

Again, we have one scalar equation for four unknown parameters α0, α1, β0 and β1. To further simplify the solvability
analysis, we additionally assume that β0 = β1 = 0. Since

r′(0) = α2
0t0, r

′′(0) =
1

2

(
β0t0 + κ0α

4
0n0

)
and r′(1) = α2

1t1, r
′′(1) =

1

2

(
β1t1 + κ1α

4
1n1

)
this assumption implies that the first and the second order derivative at boundary points are orthogonal; the property
that holds for all the points in the case of an arc-length parameterization. Moreover, by introducing a new parameter
λ := |α1|

|α0| , such that λ2 prescribes the ratio between lengths of boundary tangents r′(1) and r′(0), we formulate the
next theorem.
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Theorem 2. Suppose r is the interpolating planar PH biarc (22) of degree 7, given in Theorem 1 with β0 = β1 =

0. For any chosen L > |∆P0| and any positive λ ∈ R, there exist at least one positive α(1)
0 ∈ R, such that

e(±α(1)
0 ,±λα(1)

0 , 0, 0) = 0 and at least one positive α(2)
0 ∈ R, such that e(±α(2)

0 ,∓λα(2)
0 , 0, 0) = 0.

Proof : Since t0 and t1 are normalized, we can express them as t` = cos θ` + i sin θ`, ` = 0, 1, for some angles
θ` ∈ [0, 2π). Under the assumption β0 = β1 = 0 and α1 = ±λα0, it is easy to see from (25) that e(α0,±λα0, 0, 0) in-
cludes only even terms of α0, i.e. it is an even function of the unknown α0. Moreover, expression e1(α0,±λα0, 0, 0),
e1 := − |U|2 + v, is an even polynomial of degree 6 in a variable α0, and e2(α0,±λα0, 0, 0), e2 := |U2 − V|2,
is an even polynomial of degree 12 in a variable α0. We further compute that the free and the leading coefficient of
e1(α0,±λα0, 0, 0) are equal to

c0 = −140

13
L, c1 =

1

29952

(
131κ20 ± 61Θλ3κ0κ1 + 131λ6κ21

)
where

Θ =
√

cos (θ0) + 1
√

cos (θ1) + 1

(
tan

(
θ0
2

)
tan

(
θ1
2

)
+ 1

)
,

and that c2 = ( 140
13 )2 |∆P0|2 is the free coefficient of e2(α0,±λα0, 0, 0) Thus, as e =

√
e2 + e1, we get

e(0, 0, 0, 0) =
140

13
(|∆P0| − L) < 0.

If we prove that c1 is always positive, then the limit lim
α0→∞

e(α0,±λα0, 0, 0) is also positive. Thus there exist

at least one positive zero α(1)
0 of the function e(α0, λα0, 0, 0), and at least one positive zero α(2)

0 of the function
e(α0,−λα0, 0, 0). Since these two functions are even, the statement of the theorem follows.

It remains to show that c1 > 0 independently of the chosen λ, κ` and θ`, ` = 0, 1. From trigonometric identities
it follows that |Θ| = 2

∣∣cos
(
1
2 (θ0 − θ1)

)∣∣ ≤ 2, and this implies

29952c1 =131κ20 ± 61Θλ3κ0κ1 + 131λ6κ21 ≥ 131κ20 − 122λ3 |κ0κ1|+ 131λ6κ21

> 131κ20 − 262λ3 |κ0κ1|+ 131λ6κ21 =
(√

131 |κ0| −
√

131λ3 |κ1|
)2
≥ 0,

which concludes the proof. �
From Theorem 2 it follows that there exist at least four solutions of the equation (31) for β0 = β1 = 0 and a

fixed parameter λ. Since this equation is independent of the sign ζd, this would imply at least eight biarc solutions,
obtained for two different choices of ζd ∈ {−1, 1}. However, simultaneously changing the signs of α0, α1 and ζd
does not change the control points of the biarc. Therefore, we fix the sign ζd = 1, and in general we have four
solution interpolants.

5. Examples

From what we have discussed in the previous section, the G2 interpolating PH biarc fulfilling also the prescribed
length constraint can be computed by solving the nonlinear equation e(α0, λα0, β0, β1) = 0, given in (31), for the
unknownα0. This equation depends on three free parameters β0, β1 and λ. By fixing β0, β1 and λ the problem reduces
to the solution of a non-linear (algebraic) equation in one unknown, which can be computed easily by a few Newton-
Raphson iterations. Examples in this section show that the choice β0 = β1 = 0 and λ = 1 leads to interpolants with
nice shape properties. More precisely, the fairness of the resulting curves is measured by considering the bending
energy

E =

∫ 1

0

κ2(s) ds (32)

associated to the biarc curve (see for instance [23]). For data far from being symmetric, we have also investigated
the case where λ is obtained by minimizing the bending energy under the length constraint given by (31) and the
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θ0 θ1 κ0 κ1 L α0 α1 Bending energy
I

−π4 −π8 1 −1 1.1

1.15932 1.15932 6.01964 · 100

II −1.15932 −1.15932 1.64506 · 106

III −0.96713 0.96713 1.03930 · 104

IV 0.96713 −0.96713 3.44494 · 104

I

−π4 −π8 1 −1 1.05

0.85919 0.85919 4.85785 · 100

II −0.85919 −0.85919 4.60342 · 106

III −0.72422 0.72422 3.81363 · 104

IV 0.72422 −0.72422 2.41983 · 105

I

−π4
π
8 1 1 1.1

1.31430 1.31430 5.15473 · 100

II −1.31430 −1.31430 1.70151 · 107

III −1.24343 1.24343 6.04317 · 104

IV 1.24343 −1.24343 1.40778 · 105

Table 1: Data values, resulting α0, α1, and the corresponding bending energy of the four PH biarcs from Example 5.1.

assumption β0 = β1 = 0. The optimization procedure has been implemented in Matlab by using the solver routines
in its Optimization toolbox. In more detail we have used fmincon which uses the Interior Point algorithm. We note
that, despite of the results of Theorem 2, a reasonable solution could be obtained also by minimizing (32) with respect
to all the free parameters β0, β1 and λ, as we have shown in the Example 5.1.

Without lack of generality, we assume in the first four examples that the G1 data - points and tangent directions
- are chosen as in (21). In the first example we give a comparison between the derived PH biarc interpolants and the
single PH curve interpolants, considered in Section 3.

Example 5.1. Let the data be chosen as in Example 3.1, i.e. with θ0 = −π4 , θ1 = −π8 , κ0 = 1 and κ1 = −1. For
both prescribed lengths, L = 1.1 and L = 1.05, and the free parameters chosen as β0 = β1 = 0, λ = 1, there exist
four different biarc solutions, described in Theorem 1, with ζd = 1 and α0, α1 given in Table 1. The last column of
this table shows values of the corresponding bending energy (32) for each solution, and the biarc having this minimal
value is shown in Figure 3 – left for L = 1.1, right for L = 1.05. Comparing this ‘best’ PH biarc (for L = 1.1) with
the two PH interpolants from Example 3.1 - shown in Figure 1, we see that the biarc construction provides visually
better results, comparing the shape of the control polygon as well as the porcupine curvature plot. It also performs
better regarding the bending energy that equals E = 184.113, for the left and E = 14.4481 for the right PH curve
from Figure 1.

P0 P1
P0 P1

Figure 3: The PH biarc interpolant with assigned length L of minimal bending energy, computed by choosing β0 = β1 = 0 and λ = 1, together
with the control polygon and the porcupine curvature plot (with proportional factor equal to 0.03). Left: L = 1.1; right:L = 1.05.

Figure 4 shows all four biarc solutions corresponding to the third set (rows 9–12) of Table 1. These curves
can be compared to the ones shown in Figure 2, where the single PH curve interpolants for the same data values are
considered. We note that in that case the bending energies equal to 1.02189 ·106, 183.06, 2.06226 ·106, 4.46632 ·105,
respectively. Again, the biarcs perform much better. We could further improve the solution by optimizing E with
respect to the parameter λ. Figure 5 (top left) shows values of E (in log10 scale) in dependence of λ = j

10 , j =
1, 2, . . . , 100 (with β0 = β1 = 0), where among different solutions (for fixed values of free parameters) we choose
the one with the minimal value of E. The minimum is attained at λ = 0.5 and equals E = 1.559197. On Figure 5
(top right), the PH biarcs are shown for λ ∈ {0.1, 0.5, 1, 1.5, 2, 3, 4, 5, 10}. Of course, this discrete optimization
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P0 P1 P0 P1

P0 P1
P0 P1

Figure 4: Four PH biarc interpolants of degree 7 for the data (21) with θ0 = −π
4

, θ1 = π
8

, κ0 = κ1 = 1, L = 1.1, and the free parameters
chosen as β0 = β1 = 0 and λ = 1. The graph of the biarc with the minimal bending energy is equipped with the porcupine curvature plot (with
proportional factor equal to 0.03).

can be replaced by the constrained optimization solver to compute the value of the optimal parameter λ even more
precisely. Namely, we get that the minimal value of E (for fixed β0 = β1 = 0) equals 1.553895 and it is attained
at λ = 0.521524. However, the difference between both minimal values is negligibly small. Using the constrained

1
10

1
2
1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

λ

lo
g 1
0
(E
)

P0 P1

P0 P1

λ=0.521524, β0 = β1= 0

P0 P1

λ=0.521524, β0=2.90509, β1=-1.51279

Figure 5: Top: The bending energy E and PH biarcs in dependence of the free parameter λ for the data (21) with θ0 = −π
4

, θ1 = π
8

,
κ0 = κ1 = 1, L = 1.1, and β0 = β1 = 0. Bottom: Two optimal PH biarcs.

optimization solver we can minimize also with respect to β0 and β1, although theoretically the existence of the solution
if these two parameters are non-zero is not guaranteed. Choosing λ = 0.521524 we have that the minimal value of E
is achieved for β0 = 2.90509 and β1 = −1.51279, with E = 1.543123. However, comparing this optimal PH biarc
with the one computed by λ = 0.521524, β0 = β1 = 0, we see that the difference in the value of E as well as on their
graphs (see Figure 5) is negligible.

The data in the following three examples are taken from [16]. In all the cases we fix β0 = β1 = 0.

Example 5.2. Let us consider an example of parallel end tangents, obtained by taking θ0 = θ1 = π/4. Let us then
assign κ0 = −0.5, κ1 = 0.5 and L = 1.5. In this case it is reasonable to set λ = 1. All four solutions are reported
in Table 2 and shown in Figure 6. The one with the minimal bending energy is equipped with the porcupine curvature
plot.

Example 5.3. In the third example we consider symmetric data, where θ0 = −θ1 = π/3, L = 1.35 and κ0 = κ1 =
−0.5. Also in this case, it is reasonable to set λ = 1. The resulting curve with the minimal bending energy is shown in
Figure 7, along with the porcupine curvature plot (with proportional factor equal to 0.03). The graph of the curvature
is also shown. We observe that the symmetry of the data is preserved and the length of both biarc segments is equal
to L/2. In this case we have α0 = α1 = 1.27991, while the bending energy is 3.51446.
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θ0 θ1 κ0 κ1 L α0 α1 Bending energy
I

π
4

π
4 −0.5 0.5 1.5

1.60884 1.60884 26.2939

II −1.60884 −1.60884 2928.06

III −1.31667 1.31667 239.358

IV 1.31667 −1.31667 239.358

Table 2: Data values, solutions α0, α1, and the bending energy of the PH biarcs from Example 5.2.

P0 P1 P0 P1

P0 P1

P0 P1

Figure 6: Four PH biarc interpolants of degree 7 for the data (21) with θ0 = θ1 = π
4

, κ0 = −κ1 = −0.5, L = 1.5, and the free parameters
chosen as β0 = β1 = 0 and λ = 1. The graph of the biarc with the minimal bending energy is equipped with the porcupine curvature plot.

Example 5.4. We now consider two sets of data: a convex one with θ0 = π/4 and θ1 = −π/3, and a non-convex
data set obtained by taking θ0 = −π/6, and θ1 = −π/3. In Figure 8 we show the resulting curves for different
lengths, ranging from L = 1.1 to L = 1.6. For simplicity the assigned curvatures κ0 and κ1 are always set to zero,
and the free parameter λ is set to one. Among all the solutions, we pick the one with the minimal bending energy,
obtained (in all the cases) from positive solutions for α0 and α1.

Next let us demonstrate the performance of the presented interpolation scheme for curve approximation and its
generalization to the spline construction.

Example 5.5. Suppose that we sample the data from a well known curve - the logarithmic spiral - given by the
parameterization (in the complex plane)

f(s) = −eωs cos (s) + i eωs sin (s), s ∈ [a, b], (33)

for some real number ω. It is straightforward to compute the tangents, the curvature κf and the length of this curve
from f(si) to f(sf ):

f ′(s) = esω(sin(s)− ω cos(s)) + i esω(cos(s) + ω sin(s)),

κf (s) = − e−sω√
1 + ω2

, Lf (si, sf ) =

√
1 + ω2

ω
(esf ω − esi ω) .

First, we choose a = 0 and b = h, for decreasing values h = 2−k, k = 0, 1, . . . , 8, and observe the error between f
and the PH biarc r, with interpolation data (14) chosen as

P0 = f(0), t0 = f ′(0), κ0 = κf (0), P1 = f(h), t1 = f ′(h), κ1 = κf (h), L = Lf (0, h). (34)
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Figure 7: Example 5.3. The resulting curve along with the porcupine curvature plot (left), and the graph of the curvature (right).

P0 P1

P0 P1

Figure 8: Example 5.4. The resulting curves with minimal bending energy for convex and non-convex data with lengths varying from L = 1.1 to
L = 1.6.

The free parameters are again set to β0 = β1 = 0, λ = 1, and among all the solutions we take the one with the
minimal bending energy. To measure the error we choose

Eerr(r, f) = max
t∈[0,1]

‖r(t)− (f ◦ ϕ)(t)‖ , (35)

which gives the upper bound for the parametric distance. Here ϕ : [0, 1]→ [a, b] is the (bijective) reparameterization
function, computed in such a way that ϕ′ > 0 and r(`)(j) = d`(f◦ϕ)

dt`
(j) for ` = 0, 1, 2 and j = 0, 1. For the choice

ω = 0.2 the computed errors are given in Table 3, together with the decay exponent, and graphically represented in
Figure 9. These results numerically confirm that the PH biarc approximates the given curve with the approximation
order 5. For the sake of comparison, the right part of Table 3 shows the errors of the single PH curve interpolant from
Section 3. In this case the order of approximation is 6, which is the expected optimal order when interpolating G2

data. As usual, the order of approximation decreases by one when the biarcs are used, but the interpolation scheme
becomes much simpler.

The presented interpolation scheme is completely local and yields G2 PH spline curves when applied to the
approximation of consecutive segments of the given curve f . In particular, we choose [a, b] = [0, 3π] and the uniform
splitting of this interval by sj = 3πj

10 for j = 0, 1, . . . , 10. Computing the PH biarcs that interpolate f on subintervals
[sj−1, sj ], j = 1, 2, . . . , 10, we obtain the G2 PH spline curve shown in Figure 10, together with the porcupine plot
of the curvature. The approximation error is computed as the maximum of errors (35) on each segment and equals
2.09879·10−5. To present it graphically (see Figure 10) we use an additional linear reparameterization of the interval
[0, 1] to [j − 1, j] for j-th segment, j = 1, 2, . . . , 10. In addition, we show the difference between curvatures of the
spline and the curve f , which indicates that also the curvatures are well approximated.

As a final example let us consider the approximation of a circular arc, which is one of the most important objects
in computer aided geometric design and there exist several results on its approximation with polynomials, see e.g.
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biarc PH curve single PH curve
h Eerr Decay exp. Eerr Decay exp.
1 5.23963 · 10−6 / 1.02470 · 10−5 /
1
2 1.48263 · 10−7 5.14323 1.50891 · 10−7 6.08555
1
4 4.45464 · 10−9 5.05671 2.29413 · 10−9 6.03941
1
8 1.36921 · 10−10 5.02389 3.53800 · 10−11 6.01887
1
16 4.24693 · 10−12 5.01078 5.49288 · 10−13 6.00923
1
32 1.32248 · 10−13 5.00510 8.55554 · 10−15 6.00456
1
64 4.12567 · 10−15 5.00248 1.33470 · 10−16 6.00227
1

128 1.28733 · 10−16 5.00217 2.08384 · 10−18 6.00113
1

256 4.01726 · 10−18 5.00203 3.25473 · 10−20 6.00056

Table 3: Example 5.5. Errors Eerr of biarc interpolants (left part) and single PH curve interpolants (right part) for the curve f (with ω = 0.2) on
the interval [0, h], together with estimates of the decay exponent as h decreases to zero.
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Figure 9: Example 5.5. Errors Eerr of biarc interpolants (light blue) and single PH curve interpolants (dark blue) for the curve f (with ω = 0.2)
on the interval [0, 2−k] with respect to k (in log10 scale).

[24], [25], [26], and the references therein. Most of these papers propose methods which minimize the error and
produce high order approximants. The main advantage of our PH biarc interpolant is that, in addition to a high order
of approximation, the length of the circular arc is preserved while all the properties of PH curves can be applied, i.e.
offset curves are rational, arc-length reparameterization is simple, etc.

Example 5.6. One possible parameterization of the circular arc (of unit radius) follows from (33) with ω = 0.
Choosing a = 0, b = π, we obtain a semicircle and the corresponding PH biarc interpolants (the data are chosen by
(34) for h = π) is shown in Figure 11 (left), together with the porcupine curvature plot. It is obtained by β0 = β1 = 0,
λ = 1 and α0 = α1 = 1.77441, and approximates the semicircle with the error Eerr = 6.38889 · 10−4.

Clearly, we obtain the G2 spline interpolant of the whole circle by joining N rotated versions of the PH biarc that
approximates f over [0, φ] for φ = 2π

N . The approximation errors for increasing number of segments N = 2k, k =
1, 2, . . . , 9, i.e. φ = 21−kπ, are shown in Table 4 and illustrated in Figure 12, which indicates that the approximation
order is 5.
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Curvature error

Figure 10: Example 5.5. The resulting G2 PH spline interpolant equipped with the porcupine curvature plot (with no proportional factor), and
graphs of approximation and curvature error.

P0 P1 0 1
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0.001
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Figure 11: Example 5.6. The PH biarc that interpolates the semicircle, equipped with the porcupine curvature plot (with proportional factor equal
to 0.1), and graphs of approximation and curvature error.

N φ Eerr Decay exp.
2 π 6.38885 · 10−4 /
4 π

2 1.81754 · 10−5 5.1355

8 π
4 5.53785 · 10−7 5.03652

16 π
8 1.71943 · 10−8 5.00932

32 π
16 5.36452 · 10−10 5.00234

64 π
32 1.67573 · 10−11 5.00059

128 π
64 5.23612 · 10−13 5.00015

256 π
128 1.63625 · 10−14 5.00004

512 π
256 5.11313 · 10−16 5.00004

Table 4: Errors when interpolating the whole circle by the G2 PH
spline, composed of N = 2k biarc segments.

ϕ5

0 2 4 6 8

-15

-10

-5

k=log2(N)

lo
g 1
0
(E
er
r)

Figure 12: Graphical interpretation of the decay exponent.

6. Conclusions

Most methods to construct curves rely on the interpolation of discrete data, such as points, tangents or curvatures.
If, in addition, prescribed arc length is imposed, in general the use of iterative approximate methods is necessary.
Pythagorean–hodograph (PH) curves are polynomial curves with the distinctive property of possessing arc lengths
exactly determined by simple algebraic expressions in their coefficients. Hence the problem of constructing G2

planar curves, that interpolate points, tangent directions and curvatures, and in addition have prescribed arc-length,
can be exactly addressed. In this paper such problem is investigated considering PH curves of degree 7 and it is shown
that it reduces to three non-linear equations with one free shape parameter. However there exist data for which no
interpolants can be found. A way to overcome this drawback is to consider biarcs keeping the degree to 7. In this way
the solution of the G2 continuity equations can be derived in a closed form, depending on four free parameters. By
fixing two of them to zero, it is proven that the length constraint can be satisfied for any data. Beside of being easy to
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implement and simple to use in practice, the proposed method can be directly applied to a (local) construction of G2

continuous interpolating splines, as shown in the final examples.
As a matter of further research, we aim to extend the proposed approach to the spatial case. We believe the

extension is possible but not so straightforward. Another interesting issue would be to consider the described G2

interpolation problem using quintic PH biarcs. Counting the number of degrees of freedom, this could be possible,
but the theoretical analysis of the existence of the solution is expected to be much more complicated.
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[25] A. Vavpetič, Optimal parametric interpolants of circular arcs, Computer Aided Geometric Design 80 (2020)
101891.
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