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Abstract

Thomassen proved that all planar graphs are 5-choosable. Škrekovski strengthened the result by
showing that all K5-minor-free graphs are 5-choosable. Dvořák and Postle pointed out that all planar
graphs are DP-5-colorable. In this note, we first improve these results by showing that every K5-minor-
free or K3,3-minor-free graph is DP-5-colorable. In the final section, we further improve these results
under the term strictly f -degenerate transversal.

1 Introduction

Thomassen [6] proved that all planar graphs are 5-choosable. Škrekovski [9] (see also [3, 11]) extended the
result to the class of K5-minor-free graphs. Dvořák and Postle [2] gave a generalization of list coloring, under
the name correspondence coloring, which was called DP-coloring by Bernshteyn, Kostochka, and Pron [1].

Let G be a graph and L be a list assignment for G. For each vertex v ∈ V (G), we associate it with a set
Lv = {v} × L(v); for each edge uv ∈ E(G), we associate it with a matching Muv between Lu and Lv. Let
M =

⋃
uv∈E(G) Muv, and we call M the matching assignment over L. The matching assignment M is

called a k-matching assignment if L(v) = {1, 2, . . . , k} for every v ∈ V (G). A cover of G is a graph HL,M

(simply write H) meeting two conditions:

• the vertex set of H is the disjoint union of Lv for all v ∈ V (G); and

• the edge set of H is the matching assignment M .

Let G be a graph and H be a cover of G over a list assignment L. An (L,M )-coloring of G is an
independent set I of H such that |I ∩ Lv| = 1 for each v ∈ V (G). A graph G is DP-k-colorable if for any
list assignment L(v) ⊇ {1, 2, . . . , k} and any matching assignment M , it admits an (L,M )-coloring. Note
that every DP-k-colorable graph is k-choosable.

Dvořák and Postle [2] have pointed out that all planar graphs are DP-5-colorable. We improve the result
to the following Theorem 1.1, and we also extend the result for planar graphs to the class of K3,3-minor-free
graphs.

Theorem 1.1. All K5-minor-free graphs are DP-5-colorable.

Theorem 1.2. All K3,3-minor-free graphs are DP-5-colorable.

Let H be a cover of G, and let f be a function from V (H) to {0, 1, 2, . . . }. A subset T ⊆ V (H) is called
a transversal if |T ∩ Lv| = 1 for each v ∈ V (G). A transversal T of a cover H is strictly f-degenerate if
every nonempty subgraph Γ in H[T ] contains a vertex x with degΓ(x) < f(x). In other words, all the vertices
of H[T ] can be ordered as x1, x2, . . . , xn such that each vertex xi has less than f(xi) neighbors on the right

∗wangtao@henu.edu.cn; https://orcid.org/0000-0001-9732-1617

1

ar
X

iv
:2

11
1.

15
22

0v
2 

 [
m

at
h.

C
O

] 
 3

0 
M

ar
 2

02
2



hand side. Such an order is an f-removing order, and the reverse order xn, xn−1, . . . , x1 is an f-coloring
order.

By definition, a vertex x can never be chosen in a strictly f -degenerate transversal if f(x) = 0. Hence,
we can add some vertices into Lv and define the value of f to be zero on these new vertices, so that all the
Lv have the same cardinality. On the other hand, it doesn’t matter what the labels of the vertices are, so
we may assume that Lv = {v} × [s], where s is an integer. A cover H together with a function f is called a
valued-cover.

In Section 3, we strengthen Theorems 1.1 and 1.2 to Theorem 1.3. In order to demonstrate how
Thomassen’s technique in [6] is extended, we first give a proof for Theorem 1.1 in Section 2, and then
give one for Theorem 1.3, even though Theorems 1.1 and 1.2 are special cases of Theorem 1.3. For a function
f , we use Rf to denote the range of f .

Theorem 1.3. Assume that G is a K5-minor-free or K3,3-minor-free graph, and (H, f) is a valued-cover
with Rf ⊆ {0, 1, 2}. Then H contains a strictly f -degenerate transversal.

Assume that G is a plane graph and C is a cycle in it. We will use Int(C) (resp. Ext(C)) to denote the
subgraph induced by V (C) and the vertices inside (resp. outside) of C. The cycle C is a separating cycle
of G if both the interior and the exterior of C have at least one vertex.

2 DP-5-coloring

A plane triangulation is an embedded plane graph such that each of its faces is bounded by a cycle of
length three. A near-triangulation is an embedded plane graph such that each bounded face is bounded
by a triangle and the unbounded face (outer face) is bounded by a cycle. An `-sum of two graphs G′ and
G′′ is the graph G such that G = G′ ∪G′′ and G′ ∩G′′ = K`.

The Wagner graph is a 3-regular graph with 8 vertices and 12 edges, see Fig. 1. Note that the Wagner
graph is non-planar, thus the Wagner graph cannot be a subgraph of a planar graph.

Fig. 1: Wagner graph.

Wagner [10] gave the following characterization of planar graphs in terms of graph minors.

Theorem 2.1 (Wagner [10]). A graph is planar if and only if it does not contain K5 or K3,3 as a minor.

By Wagner’s Theorem, the class of K5-minor-free graphs and the class of K3,3-minor-free graphs are two
superclasses of planar graphs.

A graph G is maximal K5-minor-free if it does not contain K5 as a minor, but G + xy contains a K5-
minor for every pair nonadjacent vertices x and y in G. Wagner [10] also gave the following characterization
of maximal K5-minor-free graphs.

Theorem 2.2 (Wagner [10]). Every maximal K5-minor-free graph can be obtained from the Wagner graph
and plane triangulations by recursively 2-sums or 3-sums.

The following theorem and its proof are very similar to that in [6], but for completeness we give a complete
proof here.

Theorem 2.3. Assume that G is a near-triangulation such that the outer face is bounded by a cycle
O = v1v2 . . . vpv1. Let L be a list assignment of G such that |L(v)| ≥ 3 for each v ∈ V (O) and |L(v)| ≥ 5 for
each v /∈ V (O). If M is a matching assignment for G and R0 is an (L,M )-coloring of G[{v1, v2}], then G

admits an (L,M )-coloring such that its restriction on G[{v1, v2}] is R0.
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Proof. The assertion is proved by induction on |V (G)|. When G has only three vertices, G = O = K3 and
the assertion is obvious. So we can assume that |V (G)| ≥ 4 and the assertion is true for smaller graphs.
Suppose that O has a chord vivj . It follows that vivj lies in two cycles C1 and C2 of O + vivj . Let v1v2 lie
in C1. Applying the induction hypothesis to Int(C1), R0 can be extended to an (L,M )-coloring of Int(C1).
After vi and vj are colored, it can be further extended to an (L,M )-coloring of Int(C2). This yields a desired
(L,M )-coloring of G.

So we can assume that O has no chord. Let v1, u1, u2, . . . , um, vp−1 be the neighbors of vp in a natural
cyclic order around vp. Since all the bounded faces of G are bounded by triangles and O has no chord,
P = v1u1u2 . . . umvp−1 is a path and O′ = P ∪ (O − vp) is a cycle. Let j and ` be two distinct elements in
L(vp) which do not conflict with the color of v1 under the matching Mv1vp . Now define L′(v) = L(v) for every
v /∈ {u1, u2, . . . , um, vp}, for 1 ≤ i ≤ m, define L′(ui) from L(ui) by deleting the neighbors of j, ` ∈ L(vp)

under the matching Mvpui
. It is easy to check that |L′(v)| ≥ 3 for all v ∈ V (O′) and |L′(v)| ≥ 5 for all

V (G)− {vp} − V (O′). Applying the induction hypothesis to O′ and its interior and the new list L′, we have
an (L′,M )-coloring for G − vp. There is at least one color in {j, `} ⊂ L(vp) which do not conflict with the
color of vp−1 under Mvp−1vp , so we can assign it to the vertex vp. This completes the proof.

Theorem 2.4. Assume that G is a maximal K5-minor-free graph. If K is a subgraph of G isomorphic to
K2 or K3, then every DP-5-coloring ϕ of K can be extended to a DP-5-coloring of G.

Proof. Suppose to the contrary that G is a counterexample with |V (G)| as small as possible.
Assume that G is a plane triangulation and K is a separating 3-cycle of G. Note that Int(K) and Ext(K)

are both plane triangulations and maximal K5-minor-free graphs. By minimality, every DP-5-coloring ϕ of
K can be extended to a DP-5-coloring ϕ1 of Int(K) and a DP-5-coloring ϕ2 of Ext(K). Combining ϕ1 and
ϕ2 yields a DP-5-coloring of G, a contradiction.

Assume that G is a plane triangulation and K = [x1x2x3] bounds a 3-face. Note that G has at least four
vertices. We can redraw the plane triangulation such that K is the boundary of the outer face. Note that
G − x3 is a near-triangulation. Since x3 on K is precolored, every uncolored vertex incident with the outer
face of G − x3 has at least four admissible colors other than ϕ(x3). Applying Theorem 2.3 to G − x3, we
obtain a DP-5-coloring of G whose restriction on K is the precoloring ϕ.

Assume that G is a plane triangulation and K = y1y2. We can further assume that y1y2 is incident with
a 3-face [y1y2y3]. Clearly, the precoloring of K can be extended to a DP-5-coloring of G[y1, y2, y3], and we
can reduce the problem to the previous case.

If G is the Wagner graph, then we can greedily extend the precoloring of K to a DP-5-coloring of G since
G is 3-regular.

By Theorem 2.2, we can assume that G is a 2-sum or 3-sum of two maximal K5-minor-free graphs G1 and
G2 with K ⊂ G1. By minimality, the precoloring ϕ of K can be extended to a DP-5-coloring ϕ1 of G1. By
minimality once again, we can extended the restriction of ϕ1 on G1 ∩G2 to G2. This yields a DP-5-coloring
of G whose restriction on K is the precoloring ϕ.

Now, we can easily prove Theorem 1.1.

Theorem 1.1. All K5-minor-free graphs are DP-5-colorable.

Proof. Since every K5-minor-free graph is a spanning subgraph of a maximal K5-minor-free graph, it suffices
to prove the result for maximal K5-minor-free graphs. We can first color two adjacent vertices in G, and
extend the coloring to the whole graph according to Theorem 2.4.

Wagner [10] also gave a characterization of maximal K3,3-minor-free graphs by 2-sums.

Theorem 2.5 (Wagner [10]). Every maximal K3,3-minor-free graph can be obtained from the complete
graph K5 and plane triangulations by recursively 2-sums.
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Since the proof of the following result is similar to that in Theorem 2.4, we leave it as an exercise to the
readers.

Theorem 2.6. Assume that G is a maximal K3,3-minor-free graph. If K is a subgraph of G isomorphic to
K2, then every DP-5-coloring of K can be extended to a DP-5-coloring of G.

Theorem 1.2. All K3,3-minor-free graphs are DP-5-colorable.

Proof. Since each K3,3-minor-free graph is a spanning subgraph of a maximal K3,3-minor-free graph, it
suffices to show the result for maximal K3,3-minor-free graphs. We can first color two adjacent vertices in G,
and further extend the precoloring to the whole graph according to Theorem 2.6.

3 Strictly f-degnerate transversal

In this section, we extend the results on DP-5-coloring to particular strictly f -degenerate transversal. The
following two lemmas were presented by Nakprasit and Nakprasit [5, Lemma 2.3] with a different term.

For a vertex subset K of V (G), or a subgraph K of G, we use HK to denote the cover restricted on K,
i.e., HK := H[

⋃
v∈K Lv].

Lemma 3.1. Assume that G is a graph and K is a subgraph of G. Let (H, f) be a valued cover, and T be
a transversal of HK such that H[T ] has no edges and f(x) = 1 for each x ∈ T . If T can be extended to a
strictly f -degenerate transversal T ′ of H, then there exists an f -removing order of T ′ such that the vertices
in T are on the rightest of the order.

Proof. Let S′ be an f -removing order of T ′. Since f(x) = 1 for each x ∈ T , every vertex in T has no
neighbor on the right of the order S′, so we can move all the vertices in T to the rightest of the order. In
other words, we can delete all the vertices in T from the order S′ and put the vertices in T on the right side
of all the other vertices of S′. Observe that the resulting order satisfies the desired condition.

Lemma 3.2. Assume that G = G1 ∪G2, V (G1 ∩G2) = K and G1 is an induced subgraph of G. Let (H, f)

be a valued cover of G, and Hi be the restriction of H on Gi for i ∈ {1, 2}. If R is a strictly f -degenerate
transversal of H1, and R ∩HK can be extended to a strictly f∗-degenerate transversal R∗ of H∗, where H∗

is obtained from H2 by deleting all the edges in HK , and f∗ is obtained from f by defining f∗(x) = 1 for
each x ∈ R ∩HK , then R ∪R∗ must be a strictly f -degenerate transversal of H.

Proof. It suffices to give an f -removing order of H[R ∪ R∗]. By Lemma 3.1, there exists an f∗-removing
order of R∗ such that the vertices in R∩HK are on the rightest of the order. Then we list all the vertices of
R∗ \ (R∩HK) according to the f∗-removing order and then list the vertices of R according to an f -removing
order. It is easy to check that the resulting order is an f -removing order for H[R ∪R∗].

We first extend Theorem 2.3 to the following result. Note that Theorem 3.1 was first proved in [5,
Theorem 1.6], but the following proof is a little bit different from that one.

Theorem 3.1. Assume that G is a near-triangulation such that the outer face is bounded by a cycle
O = v1v2 . . . vpv1. Let (H, f) be a valued cover of G with Rf ⊆ {0, 1, 2} such that

f(v, 1) + · · ·+ f(v, s) ≥ 3 for every v ∈ V (O) (1)

and
f(v, 1) + · · ·+ f(v, s) ≥ 5 for every v /∈ V (O). (2)

If R0 is a strictly f -degenerate transversal of H[Lv1∪Lv2 ], then R0 can be extended to a strictly f -degenerate
transversal of H.
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Proof. We prove the assertion by induction on |V (G)|. When G has exactly three vertices, G = O = K3

and the assertion is obvious. Then |V (G)| ≥ 4 and the assertion is true for smaller graphs. Suppose that O
has a chord uw. It follows that uw lies in two cycles C1 and C2 of O+uw with v1v2 in C1. Let G1 := Int(C1)

and G2 := Int(C2). Applying the induction hypothesis to G1, R0 can be extended to a strictly f -degenerate
transversal R of H1, and then R ∩H[Lu ∪Lw] can be extended to a strictly f∗-degenerate transversal R∗ of
H∗ as in Lemma 3.2. Therefore, R∗ ∪R is a desired strictly f -degenerate transversal of H.

The other case is that O has no chord. Let v1, u1, u2, . . . , um, vp−1 be the neighbors of vp in a natural
cyclic order around vp, and let U = {u1, u2, . . . , um}. Since all the bounded faces of G are bounded by
triangles and O has no chord, we have P = v1u1u2 . . . umvp−1 is a path and O′ = P ∪ (O − vp) is a cycle.
For each x ∈ {vp} × [s], let

f ′(x) =


max{0, f(x)− 1}, if x is adjacent to R0 ∩ Lv1 under Mv1vp ;

f(x), otherwise.

Since R0 ∩ Lv1 has at most one neighbor in Lvp , we have f ′(vp, 1) + · · ·+ f ′(vp, s) ≥ 2. Let

X ′ = {x ∈ {vp} × [s] : f ′(x) > 0 }.

Case 1. |X′| ≥ 2.
Let X∗ be a subset of X ′ with |X∗| = 2. A new function f† on H − Lvp is defined as

f†(x) =


max{0, f(x)− 1}, if x ∈ U × [s] and x is connected to a vertex in X∗;

f(x), otherwise.

It follows that, for each u ∈ O′, we have ∑
z∈Lu

f†(z) ≥ 3.

By induction hypothesis and Lemma 3.1, (H − Lvp , f
†) contains a strictly f†-degenerate transversal R†

with an f†-removing order S† such that the vertices in R0 are on the rightest of the order. Let (vp, cp) be
a vertex in X∗ which is not adjacent to R† ∩ Lvp−1 . Therefore, we insert (vp, cp) into S† such that it is the
reciprocal third element to obtain an f -removing order of a strictly f -degenerate transversal of H.

Case 2. |X′| = 1.
Without loss of generality, assume that X ′ = {(vp, 1)}. Since f ′(vp, 1) + · · · + f ′(vp, s) ≥ 2 and Rf ⊆

{0, 1, 2}, we have f ′(vp, 1) = 2. Define a function f† on H − Lvp by

f†(x) =


0, if x ∈ U × [s] and x is adjacent to (vp, 1) in H;

f(x), otherwise.

Note that the range of f is a subset of {0, 1, 2}, for each u ∈ O′,∑
z∈Lu

f†(z) ≥ 3.

By induction hypothesis, (H − Lvp , f
†) admits a strictly f†-degenerate transversal R† with an f†-removing

order S† such that the vertices in R0 are on the rightest of the order. Let S be a sequence obtained
from S† by inserting (vp, 1) into S† such that (vp, 1) is the immediate predecessor of (vp−1, cp−1), where
(vp−1, cp−1) ∈ Lvp−1

∩R†. Recall that f†(vp, 1) = 2, it is not hard to check that S is an f -removing order of
a strictly f -degenerate transversal of H.
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Instead of proving Theorem 1.3, we prove the following stronger theorem for K5-minor-free graphs, and
leave the corresponding result for K3,3-minor-free graphs to the readers.

Theorem 3.2. Assume that G is a K5-minor-free graph, and (H, f) is a valued-cover with Rf ⊆ {0, 1, 2}.
If K is a subgraph isomorphic to K2 or K3, and f(v, 1) + · · · + f(v, s) ≥ 5 for each v ∈ V (G), then every
strictly f -degenerate transversal of HK can be extended to a strictly f -degenerate transversal of H.

Proof. Suppose to the contrary that (G,H, f,R0) is a counterexample with |V (G)| as small as possible,
where R0 is a strictly f -degenerate transversal of HK . Similar to the previous results, we only need to
consider the case that G is a maximal K5-minor-free graph.

Assume that G is a plane triangulation and K is a separating triangle of G. Note that Ext(K) and Int(K)

are both plane triangulations and maximal K5-minor-free graphs. By minimality and Lemma 3.2, R0 can be
extended to a strictly f -degenerate transversal of H.

Assume that G is a plane triangulation and K = [x1x2x3] bounds a 3-face. We can redraw the plane
triangulation such that K bounds the outer face. Let (x3, c3) be in R0, define a function f ′ on H − Lx3

by

f ′(x) =


0, if x ∈ {u} × [s] with u /∈ {x1, x2} and x is connected to (x3, c3) in H;

f(x), otherwise.

Note that the graph G−x3 is a near-triangulation. Since the range of f is a subset of {0, 1, 2}, we have that,
for each w on the outer face of G− x3, ∑

x∈{w}×[s]

f ′(x) ≥ 3.

By Theorem 3.1, R0 \ {(x3, c3)} can be extended to a strictly f ′-degenerate transversal of H \ Lx3 with an
f ′-removing order S′ such that the two vertices in R0 \ {(x3, c3)} are on the rightest of the order. According
to an f -removing order of R0, we can insert (x3, c3) into S′ such that the three vertices in R0 are the three
rightest elements in the order to obtain an f -removing order of a strictly f -degenerate transversal of H.

Assume that G is a plane triangulation and K = x1x2. We may assume that x1x2 is incident with a
3-face [x1x2x3]. Clearly, R0 can be extended to a strictly f -degenerate transversal of H[x1,x2,x3], and we can
reduce the problem to the previous case.

If G is the Wagner graph, then we can greedily extend R0 to a strictly f -degenerate transversal of H
since G is 3-regular.

By Theorem 2.2, assume that G is a 2-sum or 3-sum of two maximal K5-minor-free graphs G1 and G2

with K ⊂ G1. By minimality and Lemma 3.2, R0 can be extended to a strictly f -degenerate transversal of
H.

In Theorems 3.1 and 3.2, there is a restriction on f , i.e., the range of f is a subset of {0, 1, 2}. If the
restriction can be dropped, the results can imply two theorems due to Thomassen. Thomassen proved that
every planar graph can be partitioned into a 3-degenerate graph and an independent set [8], and every planar
graph can be partitioned into a 2-degenerate graph and a forest [7]. So the second author and some others
made the following conjecture in [4].

Conjecture. Assume that G is a planar graph and (H, f) is a positive-valued cover. If s ≥ 2 and f(v, 1) +

· · ·+ f(v, s) ≥ 5 for each v ∈ V (G), then H admits a strictly f -degenerate transversal.
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