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Abstract

Let D = (V,A) be a digraphs without isolated vertices. The first Zagreb index
of a digraph D is defined as a summation over all arcs, M1(D) = 1

2

∑
uv∈A

(d+u + d−v ),

where d+u (resp. d−u ) denotes the out-degree (resp. in-degree) of the vertex u. In this
paper, we give the maximal values and maximal digraphs of first Zagreb index over
the set of all orientations of unicyclic graphs with n vertices and matching number
m (2 ≤ m ≤ bn2 c).

Keywords: first Zagreb index; orientations of unicyclic graphs; matching num-
ber.

1 Introduction

The first Zagreb index was first appeared in [1, 2], and it is an important molecular
descriptor which is related with many chemical properties. The first Zagreb index have
been used in the study of molecular complexity, chirality, ZE-isomerism and heterosystems
whilst the Zagreb indices played a potential role in applicability for deriving multilinear
regression models. Zagreb indices are also used by researchers in the studies of QSPR and
QSAR [11]. During the past decades, results closely correlated with the Zagreb indices
have published in [3, 4, 5, 6, 7, 8, 9].

We denote by G = (V,E) a simple connected graph, where V (G) is the vertex set of
G and E(G) is the edge set of G. The first Zagreb index of G is defined as

M1(G) =
∑

uv∈E(G)

(dG(u) + dG(v))

where dG(v) (dv for short) is the degree of vertex v in G.
∗Corresponding author: hydeng@hunnu.edu.cn
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For any v ∈ V (G), let NG(v) = {u|uv ∈ E(G)} be the neighbors of v, and dG(v)
.
=

|NG(v)| the degree of v in G. For E ′ ⊆ E(G), G−E ′ denotes the subgraph of G obtained
by deleting the edges of E ′. Let W ⊆ V (G), we denote by G −W the subgraph of G
obtained by deleting the vertices of W and the edges incident with them. A matching M
of the graph G is a subset of E(G) such that no two edges in M share a common vertex.
A matching M of G is maximum, if |M1| ≤ |M | for any other matching M1 of G. The
matching number of G is the number of edges of a maximum matching in G. If M is a
matching of a graph G and vertex v ∈ V (G) is incident with an edge of M , then v is said
to be M -saturated, and if any v ∈ V (G) is M -saturated, then M is a perfect matching.

A digraph D = (V,A) is an ordered pair (V,A) consisting of a non-empty finite set V
of vertices and a finite set A of ordered pairs of distinct vertices called arcs (in particular,
D has no loops). Let uv ∈ A, we denote by uv an arc from vertex u to vertex v. The
vertex u is the tail of uv, and the vertex v is its head. d+u (resp.d−u ) denotes the out-degree
(resp. in-degree) of a vertex u which is the number of arcs with tail u (resp. with head
u). If u ∈ V and d+u = d−u = 0 ,then u is called an isolated vertex. Dn denotes the set of
all digraphs with n non-isolated vertices. The first Zagreb index of a digraph D defined
as

M1(D) =
1

2

∑
uv∈A

(d+u + d−v )

where d+u (resp. d−u ) denotes the out-degree(resp.in-degree) of the vertex u. If u ∈ V (D)

and d+u = 0 (resp. d−u = 0), then u is called a sink vertex (resp. source vertex). An
oriented graph D is obtained from a graph G by replacing each edge uv of G by an arc
uv or vu, but not both. In this case D is also called an orientation of G. Let O(G) be
the set of all orientations of G. D ∈ O(G),if d+u = 0 or d−u = 0 for any u ∈ V (D), then D
is called a sink-source orientation of G.

In order to better study of vertex-degree-based topological indices. Recently, J. Mon-
salve and J. Rada [12] extended the concept of vertex-degree based topological indices
of graphs to oriented graphs. the authors determined the extremal values of the Randić
index over OT (n), the set of all oriented trees with n vertices. Also, the authors given
the extremal values of the Randić index over O(Pn),O(Cn) and O(Hd), where Pn is the
path with n, Pn is the cycle with n vertices and Hd is the hypercube of dimension d,
respectively. J. Monsalve and J. Rada [14] found extremal values of symmetric VDB
topological indices over OT (n) and O(G), respectively. But the maximum value of AZ
over OT (n) is still an open problem.

In this paper, we present the maximal first Zagreb index for orientations of unicyclic
graphs with n vertices and matching number m (2 ≤ m ≤ bn

2
c), and we state the results

as follows:
Let n and m be integers and 2 ≤ m ≤ bn

2
c, U(n,m) the class of unicyclic graphs on n
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vertices with matching number m, and Un,m the graph formed by attaching n − 2m + 1

pendent vertices and m − 2 paths of length 2 to a (common) vertex of a triangle. Let
U

(1)
n,m, U

(2)
n,m, U

(3)
n,m, U

(4)
n,m be four orientations of Un,m (see Figure 1). Obviously, Un,m ∈

U(n,m). Let Cn be the the cycle with n vertices. U∗4,2 = {U (1)
4,2 , U

(2)
4,2 , U

(3)
4,2 , U

(4)
4,2 , U

(5)
4,2 , U

(6)
4,2},

where U (5)
4,2 and U (6)

4,2 are the sink-sourse orientations of C4. U∗6,3 = {U (1)
6,3 , U

(2)
6,3 , U

(3)
6,3 , U

(4)
6,3 , U

(5)
6,3 ,

U
(6)
6,3}, where U

(5)
6,3 and U (6)

6,3 are the sink-sourse orientations of the graph formed by attach-
ing two pendant vertices to two adjacent vertices of C4. U∗n,m = {U (1)

n,m, U
(2)
n,m, U

(3)
n,m, U

(4)
n,m},

where (n,m) 6= (4, 2), (6, 3).

Figure 1: Four orientations of Un,m :U (1)
n,m,U (2)

n,m,U (3)
n,m,U (4)

n,m .

Theorem 1. Let G ∈ U(n,m) with 2 ≤ m ≤ bn
2
c, D ∈ O(G). Then

M1(D) ≤ 1

2

[
n2 + (−2m+ 3)n+m2 +m− 2

]
with equality if and only if D ∈ U∗n,m.

Specially, if n = 2m, we have

Theorem 2. Let G ∈ U(2m,m) with m ≥ 2, D ∈ O(G). Then

M1(D) ≤ 1

2
[m2 + 7m− 2]

with equality if and only if G ∈ U∗2m,m.

Hence, we solve the problem on the maximum values of the first Zagreb index for
orientations of unicyclic graphs with n vertices and matching number m (2 ≤ m ≤ bn

2
c).

2 Some useful lemmas

In this section, we give three useful lemmas.

Lemma 3. [13] Let G be a graph. Then G is a bipartite graph if and only if G has a
sink-source orientation. Moreover, If G is a connected bipartite graph, then there exist
exactly two sink- source orientations of G.
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Now, we can show a important result.

Lemma 4. Let G be a graph, D ∈ O(G). Then

M1(D) ≤ M1(G)

2

equality occurs if and only if D is a sink-source orientation of G.

Proof. Let G = (V,E) and D = (V,A). For each u ∈ V , du = d+u + d−u . So du ≥ d+u and
dv ≥ d−v , where u, v ∈ V . Then d+u + d−v ≤ du + dv. Hence

M1(D) =
1

2

∑
uv∈A

(d+u + d−v ) ≤ 1

2

∑
uv∈E(G)

(du + dv) =
M1(G)

2
.

If D is a sink-source orientation of G, then for each u ∈ V , one has either d+u = 0 or
d−u = 0. Moreover, if uv ∈ A, then d+u 6= 0 and d−u = 0, so du = d+u . It is Similar to dv.
Hence

M1(D) =
1

2

∑
uv∈A

(d+u + d−v ) =
1

2

∑
uv∈E(G)

(du + dv) =
M1(G)

2
.

Conversely, du ≥ d+u and dv ≥ d−v , then du + dv ≥ d+u + d−v with equality if and only if
du = d+u and dv = d−v , so M1(D) = M1(G)

2
if and only if du = d+u and dv = d−v , where all

uv ∈ A. This clearly implies that either d+w = 0 or d−w = 0 for any w ∈ V .

Lemma 5. Let G be the graph with n non-islated vertices and D ∈ O(G). Then

M1(D) =
1

2

∑
u∈V (D)

[
(d+u )2 + (d−u )2

]
Proof. As the fact that M1(D) = 1

2

∑
uv∈A

[(d+u ) + (d−v )] and d+u (resp. d−u ) occur d+u (resp.

d−u ) times in the sum, for each u ∈ V (D).
So, M1(D) = 1

2

∑
u∈V (D) [(d+u )2 + (d−u )2].

3 Proof of Theorem 2

In this section, we first give a proof of Theorem 2, then we will prove Theorem 1 in next
section by using Theorem 2.

We first determine the maximum values of the first Zagreb index for orientations of
trees with 2m vertices and matching number m (m ≥ 1).

Let n and m be integers and 1 ≤ m ≤ bn
2
c. T (n,m) denotes the class of trees on

n vertices with matching number m. We denote by Tn,m a tree formed by attaching a
pendent vertex to each of m− 1 pendent vertices of the graph K1,n−m, where a pendent
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vertex is a vertex of degree one (see Figure 2). Obviously, Tn,1 = K1,n−1 and Tn,m ∈
T (n,m). Let T be a tree with u, v ∈ V (T ). We denote by PT (u, v) the unique path from
u to v in T . Firstly, we give a lemma which is related to PT (u, v).

Figure 2: The graph Tn,m .

Lemma 6. [15] Let T be a tree with at least four vertices and a perfect matching M . If
PT (u, v) as a diametrical path in T , then the unique neighbor of u has degree two.

We first consider trees with a perfect matching.

Lemma 7. Let T ∈ T (2m,m) with m ≥ 1. Then

M1(T ) ≤ m2 + 5m− 4

with equality if and only T ∼= T2m,m.

Proof. We will prove by induction on m.
Obviously, T = T2,1 for m = 1, and T = T4,2 for m = 2. So the result holds for

m = 1, 2.
If m ≥ 3. Suppose that the result holds for trees in T (2(m − 1), (m − 1)). Let

T ∈ T (2m,m) and M a perfect matching of T . Note that the diameter of T is at least
four. We can denote by PT (u, v) = uxyz · ·· a diametrical path in T . Then z 6= v. Let
NT (y) = {x1, x2, · · ·, xs+1} with x1 = x and xs+1 = z.

Suppose that yz ∈M . By Lemma 6, dxi
= 2 and dui

= 1, where ui is the neighbor of

xi different from y for 1 ≤ i ≤ s, and u1 = u. So 2(2m−1) ≥
s∑

i=1

(dxi
+dui

)+dy +dz +dv ≥

3s+ (s+ 1) + 2 + 1 > 4s+ 2, hence s < m− 1. Suppose that yz /∈M . Then M contains
zw for some neighbor w of z different from y, andM contains one of yxi for 2 ≤ i ≤ s, say
yxs. Since PT (u, v) is a diametrical path, xs is a pendent vertex. By Lemma 6, dxj

= 2

and duj
= 1, where uj is the neighbor of xj different from y for 1 ≤ j ≤ s−1, and u1 = u.

So 2(2m−1) ≥
s−1∑
j=1

(dxj
+duj

) +dxs +dz +dy +dw ≥ 3(s−1) + 1 + (s+ 1) + 2 + 1 = 4s+ 2,

hence s ≤ m− 1. Consequently, s ≤ m− 1.
Let T ′ = T − {u, x} ∈ T (2(m− 1),m− 1) and it is easily checked that M − {ux} is a

perfect matching of T ′.
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By the induction hypothesis, it is obvious that M1(T
′) ≤ (m − 1)2 + 5(m − 1) − 4.

Hence

M1(T ) 6M1(T
′) + dx + du + dy + dx +

s∑
i=2

[(dy + dxi
)− (dy − 1 + dxi

)]

+ [(dy + dz)− (dy − 1 + dz)]

6M1(T
′) + 3 + (s+ 3) + s

6 (m− 1)2 + 5(m− 1)− 4 + 6 + 2(m− 1)

= m2 + 5m− 4,

equality occurs if and only if M1(T
′) = (m − 1)2 + 5(m − 1) − 4 and s = m − 1 or

equivalently, T − {u, x} ∼= T2(m−1),m−1, yz /∈M and dy = m, i.e. T ∼= T2m,m.

We can extend the result for the first Zagreb index of trees to the oriented trees.

Lemma 8. Let T ∈ T (2m,m) with m ≥ 1, D ∈ O(T ). Then

M1(D) ≤ 1

2
(m2 + 5m− 4)

with equality if and only D is a sink-source orientation of T2m,m.

Proof. Let D ∈ O(T ), where T ∈ T (2m,m). Since T is a bipartite graph, T has sink-
source orientation, by Lemma 3.

From Lemma 4, M1(D) ≤ 1
2
M1(T ), equality occurs if ond only if D is a sink-source

orientation of T .
Hence, by Lemma 7,

max{M1(D)|D ∈ O(T ), T ∈ T (2m,m)} = max{1

2
M1(T )|T ∈ T (2m,m)} =

1

2
M1(T2m,m)

Consequently,M1(D) ≤ 1
2
(m2+5m−4), equality occurs if and only ifD is a sink-source

orientation of T2m,m.

We give the maximum values of the first Zagreb index for orientations of two graph,
which will be used in the following.

Lemma 9. Let D ∈ O(U4,2). Then

M1(D) ≤ 8

with equality if and only if D ∈ {U (1)
4,2 , U

(2)
4,2 , U

(3)
4,2 , U

(4)
4,2}.
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Figure 3: Di,i = 1, 2, · · ·, 16.

Proof. Let D ∈ O(U4,2). Since each uv ∈ E(U4,2), uv has two orientations and |E(U4,2)| =
4, we have |O(U4,2)| = 24 = 16. Note that O(U4,2) = {D1, D2, · · ·, D16} (see Figure 3).

Clearly, we have

M1(D1) = M1(D2) = M1(D15) = M1(D16) = 5

M1(D3) = M1(D6) = M1(D11) = M1(D14) = 6

M1(D7) = M1(D8) = M1(D9) = M1(D10) = 7

M1(D4) = M1(D5) = M1(D12) = M1(D13) = 8

Consequently, M1(D) ≤ 8, equality occurs if and only if D ∈ {D4, D5, D12, D13}
= {U (1)

4,2 , U
(2)
4,2 , U

(3)
4,2 , U

(4)
4,2}.

Lemma 10. Let G1 be the graph formed by attaching a pendent vertex to each vertex of
a triangle. Let D ∈ O(G1). Then

M1(D) ≤ 13

with equality if and only if D ∈ {D12, D21, D23, D24, D28, D32, D33, D37, D41, D42, D44, D53}
(see Figure 4).

Proof. Note that O(G1) = {Di|i = 1, 2, · · ·, 64} (see Figure 4).
Let ui be a pendent vertex and vi the unique neighbor of ui in G1, where i = 1, 2, 3.
Obviously, all digraphs in Figure 4 have {d+ui

= 1, d−ui
= 0} or {d+ui

= 0, d−ui
= 1}, where

i = 1, 2, 3. By Lemma 5,

M1(Dj) =
1

2

3∑
i=1

[
(d+Dj

(ui))
2 + (d−Dj

(ui))
2
]

+
1

2

3∑
i=1

[
(d+Dj

(vi))
2 + (d−Dj

vi)
2
]

=
1

2
[3 +

3∑
i=1

[
(d+Dj

(vi))
2 + (d−Dj

(vi))
2
]
],

7



Figure 4: Di, i = 1, 2, · · ·, 64 in Lemma 10 .

where j = 1, 2, · · ·, 64. All digraphs in Figure 4 can be divided into three case:
Case 1.{d+vi = 2, d−vi = 1} or {d+vi = 1, d−vi = 2}, where i = 1, 2, 3. This clearly implies

that M1(D2) = M1(D3) = M1(D4) = M1(D8) = M1(D7) = M1(D6)

= M1(D13) = M1(D14) = M1(D15) = M1(D18) = M1(D25) = M1(D26)

= M1(D29) = M1(D30) = M1(D35) = M1(D36) = M1(D39) = M1(D40)

= M1(D47) = M1(D50) = M1(D51) = M1(D52) = M1(D57) = M1(D58)

= M1(D59) = M1(D61) = M1(D62) = M1(D63) = 9

Case 2. There is a vi which satisfy {d+vi = 3, d−vi = 0} or {d+vi = 0, d−vi = 3}, says
v1. {d+vi = 2, d−vi = 1} or {d+vi = 1, d−vi = 2}, where i = 2, 3. This clearly implies that
M1(D1) = M1(D5) = M1(D9) = M1(D10) = M1(D11) = M1(D16)

= M1(D17) = M1(D19) = M1(D20) = M1(D22) = M1(D27) = M1(D31)

= M1(D34) = M1(D38) = M1(D43) = M1(D45) = M1(D46) = M1(D48)

= M1(D49) = M1(D54) = M1(D55) = M1(D56) = M1(D60) = M1(D64) = 11

Case 3. There are two vi satisfy {d+vi = 3, d−vi = 0} or {d+vi = 0, d−vi = 3}, say v1 and v2.
{d+v3 = 1, d−v3 = 2} or {d+v3 = 2, d−v3 = 1}. This clearly implies that M1(D12) = M1(D21) =

M1(D23) = M1(D24) = M1(D28) = M1(D32)

= M1(D33) = M1(D37) = M1(D41) = M1(D42) = M1(D44) = M1(D53) = 13

Consequantly, M1(D) ≤ 13, equality occurs if and only if D ∈ {D12, D21, D23, D24,

D28, D32, D33, D37, D41, D42, D44, D53}.
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We are now ready to give a proof of Theorem 2.
Proof of Theorem 2.

Proof. We will prove by induction on m.
If m = 2, then either G = C4 or G = U4,2, and by Lemma 4, D ∈ O(C4), M1(D) ≤

1
2
M1(C4) = 8 = 1

2
(22+7×2−2), equality occurs if and only ifD is a sink-source orientation

of C4, i.e., U
(5)
4,2 or U (6)

4,2 . By Lemma 9, D ∈ O(U4,2),M1(D) ≤ 8 = 1
2
[22+7×2−2], equality

occurs if and only if D ∈ {U (1)
4,2 , U

(2)
4,2 , U

(3)
4,2 , U

(4)
4,2}. Consequently, G ∈ U(4, 2), D ∈ O(G),

M1(D) ≤ 8, equality occurs if and only if D ∈ {U (1)
4,2 , U

(2)
4,2 , U

(3)
4,2 , U

(4)
4,2 , U

(5)
4,2 , U

(6)
4,2} = U∗4,2.

The result holds.
If m ≥ 3. Suppose that the result holds for all orientations of unicyclic graphs in

U(2(m− 1),m− 1).
Let G ∈ U(2m,m) with a perfect matching M . If G = C2m, then D ∈ O(C2m), by

Lemma 4 and 1
2
(m2 + 7m − 2) − 4m = 1

2
(m2 − m − 2) = 1

2
[(m − 1

2
)2 − 9

4
] ≥ 2 > 0,

M1(D) ≤ 1
2
M1(C2m) = 4m < 1

2
[m2 + 7m− 2]. The result holds.

Suppose that G 6= C2m, we consider the following two cases.
Case 1. Suppose that G has a pendent vertex u whose unique neighbor v has degree

two. Let w ∈ NG(v) and w 6= u. Obviously, dw ≥ 2. Let NG(w) = {v1, v2, · · ·, vs+1},
where s ≥ 1 and v1 = v. Then M contains one of wvi, i = 2, 3, · · ·, s+ 1, say wv2. Since
the s − 1 vertices v3, · · ·, vs+1 are M -saturated and at most two of them belong to the
unicyclic component of G− {w}, we have m ≥ 2 + (s− 2) = s. Then G′ = G− {u, v} ∈
U(2(m − 1),m − 1) and M − {uv} is a perfect matching of G′. Let D′ ∈ O(G′) and
A(D′)

⋂
A(D) = A(D′), where D ∈ O(G).

By the induction hypothesis, it is obvious that M1(D
′) ≤ 1

2
[(m− 1)2 + 7(m− 1)− 2].

If uv ∈ A(D), then 1
2
[d+D(u)+d−D(v)] ≤ 1

2
[dG(u)+dG(v)]. If vu ∈ A(D), then 1

2
[d−D(u)+

d+D(v)] ≤ 1
2
[dG(u) + dG(v)]. Hence, max{1

2
[d+D(u) + d−D(v)], 1

2
[d−D(u) + d+D(v)]} ≤ 1

2
[dG(u) +

dG(v)] . Similarly to vw ∈ A and wv ∈ A, and we have max{1
2
[d+D(v) + d−D(w)], 1

2
[d−D(v) +

d+D(w)]} ≤ 1
2
[dG(v) + dG(w)].

If vw ∈ A(D), then d−D(w) = d−D′(w)+1,d+D(w) = d+D′(w). Since A(D′)∩A(D) = A(D′),
without lost of generality suppose that d+D(vi) = d+D′(vi), where i = 2, 3, · · ·, d−D(w).
d−D(vj) = d−D′(vj), where j = d−D(w) + 1, · · ·, dG(w). Consequently d+D(vi) + d−D(w) =

d+D′(vi) + d−D′(w) + 1, where i = 2, 3, · · ·, d−D(w). d−D(vj) + d+D(w) = d−D′(vj) + d+D′(w), where
j = d−D(w) + 1, · · ·, dG(w). Similarly to wv ∈ A(D). Thus

9



M1(D) 6M1(D
′) + max{1

2
[d+D(u) + d−D(v)],

1

2
[d−D(u) + d+D(v)]}+ max{1

2
[d+D(w) + d−D(v)],

1

2
[d−D(w) + d+D(v)]}+

1

2
max{

d+D(w)∑
i=2

[d−D(vi) + d+D(w)− (d−D′(vi) + d+D′(w))]

+

dG(w)∑
j=d+D(w)+1

[d+D(vj) + d−D(w)− (d+D′(vj) + d−D′(w))],

d−D(w)∑
i=2

[d+D(vi) + d−D(w)

− (d+D′(vi) + d−D′(w))] +

dG(w)∑
j=d−D(w)+1

[d−D(vj) + d+D(w)− (d−D′(vj) + d+D′(w))]}

6M1(D
′) +

1

2
[dG(u) + dG(v)] +

1

2
[dG(w) + dG(v)] +

1

2
max{d+D(w)− 1, d−D(w)− 1}

6M1(D
′) +

1

2
[dG(u) + dG(v)] +

1

2
[dG(w) + dG(v)] +

1

2
(dG(w)− 1)

6M1(D
′) + s+ 3

6
1

2

[
(m− 1)2 + 7(m− 1)− 2

]
+m+ 3

=
1

2

[
m2 + 7m− 2

]
,

equality occurs if and only if M1(D
′) = 1

2
[(m− 1)2 + 7(m− 1)− 2] ,

max{1
2
[d+D(u)+d−D(v)], 1

2
[d−D(u)+d+D(v)]} = 1

2
[dG(u)+dG(v)], max{1

2
[d+D(w)+d−D(v)], 1

2
[d−D(w)+

d+D(v)]} = 1
2
[dG(w) + dG(v)], 1

2
max{[d+D(w)− 1], [d−D(w)− 1]} = 1

2
[dG(w)− 1] and s = m,

or equivalently, D′ ∈ U∗2(m−1),(m−1) and {d
+
D(w) = m + 1, d−D(v) = dG(v), d+D(u) = dG(u)}

or {d−D(w) = m+ 1, d+D(v) = dG(v), d−D(u) = dG(u)}, i.e. D ∈ U∗2m,m. The result holds.
Case 2. Suppose that G has a pendent vertex u and dv 6= 2 for v ∈ NG(u). C =

v1v2...vtv1 denotes the unique cycle of G. Since M is a perfect matching of G, G− V (C)

consists of isolated vertices.
Subcase 2.1. If each vertex of C is adjacent to a pendent vertex in G. Then D ∈ O(G).

Whenm ≥ 4, by Lemma 4 and 1
2
[m2+7m−2]−5m = 1

2
[m2−3m−2] = 1

2
[(m− 3

2
)2− 17

8
] > 0,

we have M1(D) ≤ 1
2
M1(G) = 5m < 1

2
[m2 + 7m − 2]. When m = 3, by Lemma 10,

M1(D) ≤ 13 < 14 = 1
2
(32 + 7× 3− 2). The result holds.

Subcase 2.2. Suppose that there is at least one vertex of degree two on C. Obviously,
dv1 = 2 or 3. Without lost of generality suppose that dv2 = 3 and dv3 = 2. Let u2 ∈ NG(v2)

and du2 = 1. Since v2u2 ∈M and v3 is M -saturated, we have v3v4 ∈M and thus dv4 = 2.
Let T ′ = G−{v2, u2}. Then T ′ ∈ T (2(m−1),m−1) andM−{u2v2} is a perfect matching
of T ′.

By Lemma 8, T ′ ∈ T (2(m−1),m−1), D′ ∈ O(T ′) and A(D′)
⋂
A(D) = A(D′), where

D ∈ O(G). Then M1(D
′) ≤ 1

2
[(m− 1)2 + 5(m− 1)− 4]. Thus

10



M1(D) ≤ M1(D
′) + max{1

2
[d+D(v2) + d−D(u2)],

1
2
[d−D(v2) + d+D(u2)]} + max{1

2
[d+D(v2) +

d−D(v1)],
1
2
[d−D(v2)+d

+
D(v1)]}+max{12 [d+D(v2)+d

−
D(v3)],

1
2
[d−D(v2)+d

+
D(v3)]}+ 1

2
max{d+D(v1)−

1, d−D(v1)−1}+ 1
2
max{d+D(v3)−1, d−D(v3)−1} ≤M1(D

′)+ 1
2
[dG(v2)+dG(u2)]+

1
2
[dG(v2)+

dG(v1)] + 1
2
[dG(v2) + dG(v3)] + 1

2
(dG(v1)− 1) + 1

2
(dG(v3)− 1) ≤ 1

2
[(m− 1)2 + 5(m− 1)−

4 + 8 + 10] = 1
2
[m2 + 3m+ 10].

Since 1
2
[m2 +7m−2]− 1

2
[m2 +3m+10] = 1

2
[4m−12] ≥ 0, M1(D) ≤ 1

2
[m2 +3m+10] ≤

1
2
[m2 + 7m − 2] with equality if and only if D ∈ {U (5)

6,3 , U
(6)
6,3}. Consequently, the result

holds.

4 Proof of Theorem 1

In this section we give a proof of Theorem 1. For this we need the following results:

Lemma 11. [10] Let G ∈ U(n,m) with G 6= Cn, where n > 2m. Then there is a
maximum matching M of G and a pendent vertex u such that is not M-saturated.

Lemma 12. Let n and m be integers with 2 ≤ m ≤ bn
2
c and n > 2m. Then

1

2

[
n2 + (−2m+ 3)n+m2 +m− 2

]
> 2n

Proof. Let

f(n,m) =
1

2

[
n2 + (−2m+ 3)n+m2 +m− 2

]
− 2n

then
∂f

∂m
=

1

2
(2m+ 1− 2n) < 0

When n is even, bn
2
c = n

2
. Since n > 2m i.e., m < n

2
, 2 ≤ m < n

2
. Hence f(n,m) ≥

f(n, n−2
2

). Let h(n) = f(n, n−2
2

) = 1
8
n2 + 1

4
n− 1. Since h′(n) = n

4
+ 1

4
> 0, h(n) ≥ h(5) =

27
8
> 0. Consequently, f(n,m) ≥ f(n, n

2
−1) > 0, i.e. 1

2
[n2 + (−2m+ 3)n+m2 +m− 2] >

2n.
When n is odd, bn

2
c = n−1

2
. Since f(n, n−1

2
) = 1

2

[
n2 + (4− n)n+ 1

4
(n− 1)2 + n−1

2
− 2
]
−

2n = −9
8
+ n2

8
and n ≥ 2m ≥ 4, f(n, n−1

2
) ≥ 2− 8

9
> 0. Consequently, the results holds.

We are now ready to give a proof of Theorem 1.
Proof of Theorem 1.

Proof. We will prove by induction on n.
If n = 2m, by Theorem 1, the result holds.
If n > 2m. Suppose that the result holds for orientations of all unicyclic graphs on

less than n vertices.
Let G ∈ U(n,m). If G = Cn, then D ∈ O(Cn), by Lemma 4 and Lemma 12,

M1(D) ≤ M1(Cn)
2

= 2n < 1
2

[n2 + (−2m+ 3)n+m2 +m− 2]. The result holds.

11



If G 6= Cn. By Lemma 11, G has a maximum matching M and a pendent vertex u
such that u is not M -saturated. Then G′ = G− {u} ∈ U(n− 1,m). Let D′ ∈ O(G′) and
A(D′) ∩ A(D) = A(D′).

By the induction hypothesis, it is obvious that

M1(D
′) ≤ 1

2

[
(n− 1)2 + (−2m+ 3)(n− 1) +m2 +m− 2

]
.

Let v ∈ NG(u) and NG(v) = {u1, u2, · · ·, us+1}, where s ≥ 1 and u1 = u. Since M
contains at most one of the edges vui for i = 2, 3, · · ·, s+ 1 and there are n−m edges of
G outside M , it is obvious that s ≤ n−m.

If uv ∈ A(D), then 1
2
[d+D(u)+d−D(v)] ≤ 1

2
[dG(u)+dG(v)]. If vu ∈ A(D), then 1

2
[d−D(u)+

d+D(v)] ≤ 1
2
[dG(u) + dG(v)]. Hence, max{1

2
[d+D(u) + d−D(v)], 1

2
[d−D(u) + d+D(v)]} ≤ 1

2
[dG(u) +

dG(v)].
If uv ∈ A(D), then d−D(v) = d−D′(v) + 1, d+D(v) = d+D′(v). Since A(D′)∩A(D) = A(D′),

without lost of generality suppose that d+D(ui) = d+D′(ui), where i = 2, · · ·, d−D(v); d−D(uj) =

d−D′(uj), where j = d−D(v) + 1, · · ·, dG(v), we have d+D(ui) + d−D(v) = d+D′(ui) + d−D′(v) + 1,
where i = 2, · · ·, d−D(v); d−D(uj)+d+D(v) = d−D′(uj)+d+D′(v), where j = d−D(v)+1, · · ·, dG(v).

Similarly to vu ∈ A(D). Thus

M1(D) 6M1(D
′) + max{1

2
[d+D(u) + d−D(v)],

1

2
[d−D(u) + d+D(v)]}+ max{1

2

d+D(v)∑
i=2

[d−D(ui)

+ d+D(v)− (d−D′(ui) + d+D′(v))] +
1

2

dG(v)∑
j=d+D(v)+1

[d+D(uj) + d−D(v)− (d+D′(uj) + d−D′(v))],

1

2

d−D(v)∑
i=2

[d+D(ui) + d−D(v)− (d+D′(ui) + d−D′(v))] +
1

2

dG(v)∑
j=d−D(v)+1

[d−D(uj) + d+D(v)

− (d−D′(uj) + d+D′(v))]}

6M1(D
′) +

1

2
[dG(u) + dG(v)] +

1

2
max{d+D(v)− 1, d−D(v)− 1}

6M1(D
′) +

1

2
[dG(u) + dG(v)] +

1

2
(dG(v)− 1)

6M1(D
′) + s+ 1

6
1

2

[
(n− 1)2 + (−2m+ 3)(n− 1) +m2 +m− 2

]
+ n−m+ 1

=
1

2

[
n2 + (−2m+ 3)n+m2 +m− 2

]
with equality if and only if M1(D

′) = 1
2

[(n− 1)2 + (−2m+ 3)(n− 1) +m2 +m− 2],
max{1

2
[d+D(u) + d−D(v)], 1

2
[d−D(u) + d+D(v)]} = 1

2
[dG(u) + dG(v)], 1

2
max{[d+D(v)− 1], [d−D(v)−

12



1]} = 1
2
[dG(v)−1] and s = n−m, or equivalently,D′ ∈ U∗n−1,m and {d+D(u) = dG(u), d−D(v) =

dG(v)} or {d+D(v) = dG(v), d−D(u) = dG(u)}, i.e. D ∈ U∗n,m. The result holds.

Acknowledgment. This work is supported by the Hunan Provincial Natural Science
Foundation of China (2020JJ4423), the Department of Education of Hunan Province
(19A318) and the National Natural Science Foundation of China (11971164).

References
[1] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-

electronenergy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.

[2] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecularor-
bitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.

[3] A. Ali, I. Gutman, E. Milovanović, I. Milovanović, Sum of powers of the degrees of
graphs: Extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80
(2018) 5-84.

[4] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices,
MATCH Commun. Math. Comput. Chem. 78 (2017) 17-100.

[5] K. C. Das, Sharp bounds for the sum of the squares of degrees of a graph, Kragujevac
J. Math. 25 (2003) 31-49.

[6] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discr. Math.
285 (2004) 57-66.

[7] K. C. Das, On comparing Zagreb indices of graphs, MATCH Commun. Math. Com-
put. Chem. 63 (2010) 433-440.

[8] K. C. Das, I. Gutman, B. Zhou, New upper bounds on Zagreb indices, J. Math.
Chem. 46 (2009) 514-521.

[9] B. Zhou, Remarks on Zagreb indices, MATCH Commun. Math. Comput. Chem. 57
(2007) 591-596.

[10] A. Yu, F. Tian, On the spectral radius of unicyclic graphs, MATCH Commun. Math.
Comput. Chem. 51 (2004) 97-109.

[11] S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years
after, Croat. Chem. Acta. 76 (2) (2003) 113-124.

[12] J. Monsalve, J. Rada, Vertex-degree based topological indices of digraphs, Discrete
Appl. Math. 295 (2021) 13-24.

[13] J. Monsalve, J. Rada, Oriented bipartite graphs with minimal trace norm, Linear
Multilinear A. 67 (6) (2019) 1121-1131.

13



[14] J. Monsalve, J. Rada, Sharp upper and lower bounds of VDB topological indices of
digraphs, Symmetry, 13 (2021) 1903-1904.

[15] W. Luo, B. Zhou, On the irregularity of trees and unicyclic graphs with given match-
ing number, Util. Math. 83 (2010) 141-148.

14


	1 Introduction
	2 Some useful lemmas 
	3 Proof of Theorem 2
	4 Proof of Theorem 1

