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Abstract6

In this paper, we investigate steady states of shallow water moment equations including7

bottom topographies. We derive a new hyperbolic shallow water moment model based on8

linearized moment equations that allows for a simple assessment of the steady states. After9

proving hyperbolicity of the new model, the steady states are fully identified. A well-balanced10

scheme is adopted to the specific structure of the new model and allows to preserve the steady11

states in numerical simulations.12
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1 Introduction15

Applications of shallow flows can be found in many scientific fields, e.g., in hydrodynamics [31] or16

granular flows [16]. An important class of problems considers changing topographies, for example17

related to snow avalanches [15] or sediment transport [17]. The main assumption for the widely18

used Shallow Water Equations (SWE) is that the horizontal velocity profile is constant along the19

vertical axis from the bottom to the surface. However, this assumption quickly brakes down for20

more complex flows that yield velocity variations. This is true in practically all applications of21

shallow flows and especially in presence of friction terms. But even in typical tsunami or dam break22

situations, the assumption of constant velocity profiles is often violated, see [21]. A new model23

that takes into account horizontal velocity changes over the vertical direction was developed in [23]24

based on an expansion of the velocity profile in polynomial basis functions modeling the deviation25

from a constant velocity profile. The resulting Shallow Water Moment Equations (SWME) are26

more accurate the more basis functions are considered. Despite the success for simple test cases,27

the model lacks hyperbolicity, which was studied in detail in [21]. In the same paper, a new28

model called Hyperbolic Shallow Water Moment Equations (HWSME) and a second variant called29

the β-HSWME were derived. The models are essentially based on a linearization of the original30

SWME model around linear velocity profiles, i.e., all contributions of coefficients of higher order31

basis functions are neglected. In [21] the eigenvalues of these models were analyzed and the32

first numerical tests confirmed that the models yield similar accuracy as the SWME models with33

additional guaranteed hyperbolicity.34

While the numerical tests in [23, 21] included standard friction terms for a Newtonian fluid, only35

a flat bottom topography was considered. This is obviously a strong simplification and bottom36

topographies need to be taken into account as has been done for the SWE in a numerical and37

analytical way, see [1, 5, 29, 25] and the references therein. In the context of varying bottom38
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topographies, it is paramount to consider steady states of the models because any numerical39

simulation should be able to exactly preserve steady states when present. Otherwise, numerical40

solutions starting from steady state initial conditions would lead to numerical artifacts or numerical41

instabilities. It is therefore important to first study the steady states of the models and then design42

tailored well-balanced numerical schemes, which means that the schemes preserve those steady43

states by balancing the topography source term and the numerical flux in the correct way so they44

cancel out. Since [4], the study and design of well-balanced numerical methods have been very45

active fields in the last years, see for instance [2, 3, 7, 12, 8, 26, 14, 30]. In the context of path-46

conservative methods introduced in [27], the authors in [10] and more recently in [13] developed47

a strategy to obtain well-balanced high-order numerical methods for systems of balance laws. We48

will follow this strategy and apply it to a newly derived moment model.49

In this paper, we investigate steady states of shallow water moment equations including bottom50

topographies and use this to derive a new first order and second order well-balanced numerical51

scheme for a new shallow water moment model. The analysis of the existing SWME, including52

the hyperbolic versions HSWME and β-HSWME, shows that steady states are difficult to access53

analytically and numerically, despite the simple case where the velocity profile is just a linear54

function of the vertical variable. Knowing about the problematic terms in the existing models,55

we derive a new model that is valid for small deviations from the constant velocity profile. For56

this model, we can neglect only the non-linear contributions of the basis coefficients while keeping57

the linear contributions of all coefficients. The model is thus called Shallow Water Linearized58

Moment Equations (SWLME). It is surprisingly simple, in the sense that it removes some coupling59

terms between the equations, but it keeps the overall structure even in the higher order equations.60

Subsequently, we prove hyperbolicity, analyze the eigenstructure, and show that the model yields61

more realistic propagation speeds than the previous models, while still being hyperbolic. Most62

importantly, the model allows for a concise characterization of its steady states with and without63

topography terms. The characterization of the steady states then allows to derive a potentially64

high-order well-balanced numerical scheme based on the possible steady states of the new model.65

We explicitly construct the first order and second order well-balanced scheme in this paper. The66

numerical schemes are tested extensively with a standard lake-at-rest test case, two subcritical sta-67

tionary solutions, and a transcritical solution. In the end, we also present a test case comparing the68

new SWLME to the existing HSWME and β-HSWME models, to outline the good approximation69

properties of the new model despite its simplicity.70

The rest of the paper is organized as follows: In Section 2 we review the derivation of a vertically71

resolved shallow flow model that is employed to derive all the shallow water moment models72

presented in this paper. In the following sections we derive and analyze the standard Shallow Water73

Equations (SWE) (Section 3), the extended Shallow Water Moment Equations (SWME) (Section74

4), and the new Shallow Water Linearized Moment Equations (SWLME) (Section 5) including75

their hyperbolicity, steady states, and Rankine-Hugoniot conditions including bottom topography.76

In Section 6, we develop a first order and second order well-balanced numerical scheme for the77

special case of the shallow water models used in this paper. Numerical tests in Section 7 show78

the preservation of the steady states and allow for a comparison of the new SWLME model with79

respect to other existing models.80

2 Vertically resolved shallow flow model81

In this paper, we are concerned with free-surface water flows in one horizontal direction. Model-82

ing of free-surface flows starts with the incompressible Navier-Stokes equations, which model the83

evolution of the horizontal velocity u in direction x and the vertical velocity w in direction z.84

∂xu+ ∂zw = 0, (2.1)

∂tu+ ∂xu
2 + ∂zuw = −1

ρ
∂xp+

1

ρ
∂zσxz + g, (2.2)

where ρ is the density and g the gravitation constant. The hydrostatic pressure in relation to the
vertical position z with respect to the surface h + b, where b represents the bottom topography
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and h is the water height, is given by

p = (h+ b− z)ρg (2.3)

and the stress σxz is modeled using the assumption of a Newtonian fluid with dynamic viscosity
µ, i.e.,

σxz = µ∂zu (2.4)

to close the system.85

To allow for a more efficient representation of the horizontal velocity variation along the vertical
axis, a mapping is introduced in [23]. This mapping shifts and scales the vertical variable, which
is defined between the bottom at z = b and the surface at z = h + b according to the following
transformation

ζ =
z − b
h

, (2.5)

where the denominator is precisely the water height h. The variable ζ is thus defined within the86

interval [0, 1]. According to the derivation in [23], the following vertically-resolved system for the87

simulation of shallow flows is derived using the mapping from (2.5)88

∂th+ ∂xhum = 0, (2.6)

∂thu+ ∂x

(
hu2 +

g

2
h2
)

+ ∂ζ

(
huω − 1

ρ
σxz

)
= −gh∂xb, (2.7)

where um is the mean velocity over the vertical ζ-axis and the so-called vertical coupling term ω
is given by

ω =

∫ ζ

0

(∫ 1

0

∂x(hu)
(
ζ̂
)
dζ̂ − ∂x(hu)

(
ζ̃
))

dζ̃. (2.8)

The following boundary conditions in the ζ-direction are used:89

∂ζu|ζ=1 = 0, (2.9)

∂ζu|ζ=0 =
h

λ
u|ζ=0, (2.10)

modeling a stress-free top surface and a slip condition at the bottom with slip length λ, see [23]90

for more details.91

The system (2.6)-(2.7) is called vertically resolved system in [23] as it includes the dependence92

on the vertical variable ζ. This system is at the core of this paper as all the models are derived93

directly from it.94

3 Shallow Water Equations95

Similar to the work in [23], we will start with the simple Shallow Water Equations (SWE), which
assume a constant velocity u(t, x, ζ) = um(t, x) over the whole vertical axis ζ, see Figure 1a. The
dependency on the vertical variable ζ is then resolved by integrating over ζ ∈ [0, 1] and using the
constant velocity u(t, x, ζ) = um(t, x). It was shown in [23] that the vertically resolved system
(2.6)-(2.7) then simplifies to the following set of equations called Shallow Water Equations (SWE)

∂t

(
h

hum

)
+ ∂x

(
hum

hu2m + 1
2gh

2

)
=

(
0

−gh∂xb

)
− ν

λ

(
0
um

)
(3.1)

where um = um(t, x) is the horizontal water velocity, h = h(t, x) is the water height, g is the96

gravitational constant (we later set it to g = 1 in our simulations) the known function b(x) is the97

bottom topography, and ν and λ are the kinematic viscosity and the slip length, respectively.98

In non-conservative matrix form, the model can be written as

∂t

(
h

hum

)
+

(
0 1

−u2m + gh 2um

)
∂x

(
h

hum

)
=

(
0

−gh∂xb

)
− ν

λ

(
0
um

)
. (3.2)
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(a) Constant velocity profile (b) Varying velocity profile

Figure 1: Constant velocity ansatz of SWE model (a) and variable velocity ansatz of SWME model
(b).

The eigenvalues of the left hand side transport matrix are the standard propagation speeds of
the Shallow Water Equations

λ1,2 = um ±
√
gh. (3.3)

For flat bottom ∂xb = 0 and zero friction, the steady state fulfils99

∂x (hum) = 0, (3.4)

∂x

(
hu2m +

1

2
gh2
)

= 0, (3.5)

so that the jump conditions (also called Rankine-Hugoniot conditions) from a given state (h0, h0um,0)100

to a state (h, hum) can be derived by solving the system101

hum = h0um,0, (3.6)

hu2m +
1

2
gh2 = h0u

2
m,0 +

1

2
gh20, (3.7)

for which the solution is (
h

h0

)
= −1

2
+

1

2
·
√

1 + 8Fr2, (3.8)

where Fr is the Froude number for the given state defined by

Fr =
um,0√
gh0

. (3.9)

For a smooth frictionless flow including a bottom topography, the steady state momentum
equation can be modified using the mass equation (3.4) to

∂x

(
1

2
u2m + g(h+ b)

)
= 0. (3.10)

The steady state solution can thus be found using102

hum = const, (3.11)

1

2
u2m + g(h+ b) = const. (3.12)

The SWE are widely used in simulations of water flows. However, the main deficiency is that103

the horizontal velocity u is constant over the height by assumption. The model is thus not able to104

predict more complex flow phenomena.105
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4 Shallow Water Moment Equations106

For the Shallow Water Moment Equations (SWME) derived in [23], the idea is to allow for a
vertical variation of the water velocity profile. This is done by assuming the following ansatz for
the velocity profile, see Figure 1b:

u(t, x, ζ) = um(t, x) +

N∑
j=1

αj(t, x)φj(ζ), (4.1)

where um(t, x) is the mean horizontal velocity also used in the SWE in Section 3, ζ is the scaled
vertical coordinate (2.5), αj are coefficients, and φj are Legendre ansatz functions for j = 1, . . . , N
defined by

φj(ζ) =
1

j!

dj

dζj
(ζ − ζ2)j . (4.2)

Note that the larger N , the more variation is allowed in vertical direction. Furthermore, the ansatz
functions form a group of orthogonal basis functions as [23]∫ 1

0

φmφndζ =
1

2n+ 1
δmn,

with Kronecker delta δm,n.107

The initial values for um and αj for j = 1, . . . , N can be computed from some initial velocity108

profile u(0, x, ζ) = u0(x, ζ) by projecting the initial velocity profile to the basis functions φj .109

u0(x, ζ) = um(0, x) +

N∑
j=1

αj(0, x)φj(ζ) (4.3)

∫ 1

0

u0(x, ζ)φi(ζ) dζ =

∫ 1

0

um(0, x) +

N∑
j=1

αj(0, x)φj(ζ)

φi(ζ) dζ (4.4)

= um(0, x)δi,0 +

N∑
j=1

αj(0, x)
1

2i+ 1
δi,j , (4.5)

which leads to the initial mean and coefficients110

um(0, x) =

∫ 1

0

u0(x, ζ) dζ, (4.6)

αi(0, x) = (2i+ 1))

∫ 1

0

u0(x, ζ)φi(ζ) dζ for i = 1, . . . , N. (4.7)

The model for the evolution of the coefficients for arbitrary N can be derived by inserting the111

ansatz (4.1) into the vertically resolved system (2.6)-(2.7) and integrating over ζ ∈ [0, 1]. According112

to [23] this leads to113

∂th+ ∂xhum= 0, (4.8)

∂thum + ∂x

hu2m + h

N∑
j=1

α2
j

2j + 1
+
g

2
h2

=−ν
λ

um +

N∑
j=1

αj

− gh∂xb, (4.9)

∂thαi + ∂x

2humαi + h

N∑
j,k=1

Aijkαjαk

=um∂xhαi −
N∑

j,k=1

Bijk∂x(hαj)αk (4.10)

−(2i+ 1)
ν

λ

um +

N∑
j=1

(
1 +

λ

h
Cij

)
αj

 ,(4.11)
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for i = 1, . . . , N , the unknown variables (h, u, α1, . . . , αN ) and

Aijk = (2i+ 1)

∫ 1

0

φiφjφk dζ, (4.12)

Bijk = (2i+ 1)

∫ 1

0

∂ζφi

(∫ ζ

0

φj dζ̂

)
φk dζ, (4.13)

Cij =

∫ 1

0

∂ζφi∂ζφj dζ. (4.14)

The model can be written in closed form with the precomputed terms Aijk, Bijk, Cij for large
N . We then write it as

∂tW +
∂F

∂W
∂xW = Q∂xW + P, (4.15)

with variables W = (h, hum, hα1, . . . , hαN )
T ∈ RN+2, the flux Jacobian (also called conservative

matrix) ∂F
∂W given by

∂F

∂W
=



0 1 0 . . . 0

gh− u2m −
N∑
i=1

αi
2i+ 1

2um
2α1

2·1+1 . . . 2αN

2N+1

−2umα1 −
N∑

j,k=1

A1jkαjαk 2α1 2umδ11 + 2

N∑
k=1

A11kαk . . . 2umδ1N + 2

N∑
k=1

A1Nkαk

...
...

...
. . .

...

−2umαN −
N∑

j,k=1

ANjkαjαk 2αN 2umδNN + 2

N∑
k=1

AN1kαk . . . 2umδNN + 2

N∑
k=1

ANNkαk


,

and right-hand side non-conservative matrix Q

Q =



0 0 0 . . . 0
0 0 0 . . . 0

0 0 umδ11 +

N∑
k=1

B11kαk . . . umδ1N +

N∑
k=1

B1Nkαk

...
...

...
. . .

...

0 0 umδN1 +

N∑
k=1

BN1kαk . . . umδNN +

N∑
k=1

BNNkαk


,

with Kronecker delta δij . The friction term P on the right-hand side is defined in [23] as first entry
P0 = 0 and

Pi = − (2i+ 1)
ν

λ

um +

N∑
j=1

(
1 +

λ

h
Cij

)
αj

 , i = 1, . . . , N + 1. (4.16)

The friction term can be given explicitly as

Pi = −ν
λ

(2i+ 1)

um +

N∑
j=1

αj

− ν

h
4 (2i+ 1)

N∑
j=1

ai,jαj , i = 1, . . . , N + 1, (4.17)

where the constants ai,j are computed by

ai,j =

{
0 if i+ j = even,
min(i−1,j)(min(i−1,j)+1)

2 if i+ j = odd.
(4.18)
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Note that the right-hand side friction term can become quite stiff for large N , even though the114

friction coefficients λ, ν can be of order 1. This should be accounted for by appropriate numerical115

methods, e.g. Projective Integration [18, 24]. For most of this work, we will neglect the friction116

terms but consider non-zero topography changes ∂xb.117

All the models covered in this paper use the form (4.15) for different simplifications of the118

conservative and non-conservative matrix.119

We first consider the case N = 1, also called the first order system. This model is described
in [23] and [21]. The velocity profile is then given depending on the mean velocity um and the
coefficient α = α1 as

u(t, x, z) == um(t, x) +

(
1− 2

z − b
h

)
α(t, x). (4.19)

Note that the two values for the velocity at the top (z = b+ h) and at the bottom (z = b) are120

given by121

u(z = b+ h) = um − α, (4.20)

u(z = b) = um + α. (4.21)

It seems reasonable, to require u(z) to have the same sign over the whole velocity profile. Otherwise,
the flow can no longer be approximated by means of a shallow model assumption, as a vortex could
form. Thus we require in this paper

|α(t, x)| ≤ |u(t, x)|. (4.22)

Compare Figure 2.122

(a) no change of sign (b) change of sign

Figure 2: Velocity profile without change of sign (a) and with change of sign (b). We only consider
velocity profiles without change of sign in this paper.

Choosing this linear velocity change with the vertical variable, the first order shallow water
moment model reads [23]

∂t

 h
hum
hα1

+ ∂x

 hum
hu2m + 1

2gh
2 + 1

3hα
2
1

2humα1

 = Q∂x

 h
hum
hα1

−
 0
gh∂xb

0

− ν

λ
P, (4.23)

with

Q =

0 0 0
0 0 0
0 0 um

 , P =

 0
um + α1

3
(
um + α1 + 4λhα1

)
 and Jacobian

∂F

∂V
=

 0 1 0

−u2m −
α2

1

3 + gh 2um
2α1

3
−2umα1 2α1 2um

 ,

leading to the system matrix

A =
∂F

∂V
−Q =

 0 1 0

−u2m −
α2

1

3 + gh 2um
2α1

3
−2umα1 2α1 um

 . (4.24)
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The first order system has the distinct real eigenvalues

λ1,2 = um ±
√
gh+ α2

1 and λ3 = um. (4.25)

For positive water height h > 0, the first order shallow water moment model is hyperbolic.123

124

So far, there has been no analysis of the first order system except for the eigenvalues in [21, 23].125

In this paper, we investigate the steady state of the model.126

For flat bottom ∂xb = 0 and zero friction, the steady state fulfills127

∂x (hum) = 0, (4.26)

∂x

(
hu2m +

1

2
gh2 +

1

3
hα2

)
= 0, (4.27)

∂x (2humα) = um∂x (hα) , (4.28)

From the first and last equation, we obtain after some modification128

hum = const, (4.29)

um = 0 or
α

h
= const. (4.30)

Using those relations in the remaining second equation, we can derive the Rankine-Hugoniot con-
ditions from a given state (h0, h0um,0, h0α0) to a state (h, hum, hα) and obtain (after some modi-
fications)

(h− h0)

[
−
u2m,0
gh0

+
1

2

((
h

h0

)2

+

(
h

h0

))
+

1

3

α2
0

gh0

((
h

h0

)3

+

(
h

h0

)2

+

(
h

h0

))]
= 0. (4.31)

We now use the following dimensionless flow numbers:129

Fr =
um,0√
gh0

, (4.32)

Mα =
α0

um,0
, (4.33)

and write y = h
h0

to arrive at the two solutions

h = h0 ∨ −Fr2 +
1

2

(
y2 + y

)
+

1

3
Mα2Fr2

(
y3 + y2 + y

)
= 0. (4.34)

That means that the jump conditions for the SWME with N = 1 lead to a third order polynomial130

with two parameters which are the flow numbers Fr and Mα, a consistent extension from the131

standard case of the Shallow Water Equations. The new parameter Mα measures how far away132

the flow is from the standard shallow water model. For Mα = 0, the shallow water equations are133

recovered with a constant velocity profile, whereas for |Mα| = 1, the flow velocity is changing the134

most along the z-axis. For values |Mα| > 1, the assumption (4.22) is no longer fulfilled and the135

model assumption of a shallow flow is not valid any more.136

Note that the third order polynomial in (4.34) always has at least one real zero.137

138

For a smooth frictionless flow including a bottom topography, the steady state momentum
equation can be modified using the mass equation to

∂x

(
1

2
u2m + g(h+ b) +

1

2
α2

)
= 0. (4.35)

The non-trivial steady state solution can thus be found using139

hum = const, (4.36)

1

2
u2m + g(h+ b) +

1

2
α2 = const, (4.37)

α

h
= const. (4.38)
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In Section 6, we will use this form of the non-trivial steady state solution to preserve steady140

states within the numerical scheme.141

Unfortunately, it is not possible to extend the study of steady states of the SWME form N = 1
to N > 1. The first problem is that the SWME loose hyperbolicity for N > 1 as analyzed in detail
in [21]. Hyperbolicity is a mathematical requirement for first order partial differential equations to
be robust against small perturbations of the initial data, a key property of the real-world physical
processes [32]. The model is only hyperbolic for certain states depending on the values of the
coefficients αi. As one example, consider the case N = 2. This so-called second order moment
model is given by

∂t


h

hum
hα1

hα2

+ ∂x


hum

hu2m + g h
2

2 + 1
3hα

2
1 + 1

5hα
2
2

2humα1 + 4
5hα1α2

2humα2 + 2
3hα

2
1 + 2

7hα
2
2

 = Q∂x


h

hum
hα1

hα2

−


0
gh∂xb

0
0

− ν

λ
P (4.39)

with

Q =


0 0 0 0
0 0 0 0
0 0 um − α2

5
α1

5
0 0 α1 um + α2

7

 and P =


0

um + α1 + α2

3
(
um + α1 + α2 + 4λhα1

)
5
(
um + α1 + α2 + 12λhα2

)
 .

Where the two coefficients are now α1, α2.142

This leads to the Jacobian

∂F

∂V
=


0 1 0 0

−α
2
1

3 − u
2
m + gh− α2

2

5 2um
2α1

3
2α2

5

−2α1um − 4
5α1α2 2α1 2um + 4α2

5
4α1

5

− 2
3α

2
1 − 2α2um − 2

7α
2
2 2α2

4α1

3 2um + 4α2

7


and the full system matrix reads

A =
∂F

∂V
−Q =


0 1 0 0

−α
2
1

3 − u
2
m + gh− α2

2

5 2um
2α1

3
2α2

5

−2α1um − 4
5α1α2 2α1 um + α2

3α1

5

− 2
3α

2
1 − 2umα2 − 2

7α
2
2 2α2 −α1

3 um + 3α2

7

 . (4.40)

However, the system is not hyperbolic and the non-hyperbolic regions are clearly shown in143

Figure 3. In particular, the eigenvalues depend on α1 and α2. It was shown in [21] that the144

non-hyperbolic regions can be reached in standard simulations which makes the SWME models145

with N > 1 prone to stability problems.146

There are several hyperbolic regularization of the SWME with arbitrary N that restore hyper-147

bolicity and yield more stable solutions while achieving similar accuracy as the original model. For148

more details, see [21]. However, it is very difficult to investigate the steady states for these models149

as the number of non-conservative terms is large. At the same time, those models do not depend150

on the higher order coefficients αi any more, which leads to a drastic simplification.151
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Figure 3: Non-hyperbolic region of N = 2 model in blue, from [21].

5 Shallow Water Linearized Moment Equations152

In the previous section we have seen that the general SWME lacks hyperbolicity and a proper anal-153

ysis of steady states is difficult due to the non-conservative terms. Note that even the hyperbolic154

HSWME model and the related β-HSWME model in [21] pose the same problems for computing155

the steady states.156

In this paper, we propose a new hyperbolic model for the simulation of shallow flows, which157

is called Shallow Water Linearized Moment Equations (SWLME). Its derivation is based on the158

insights from the SWME N = 1 model. We saw that the steady states are easy to obtain as long159

as there are not that many non-conservative terms in the model and as long as the higher-order160

equations for the variables hαi are not too complicated.161

The difficult expressions in the higher-order equations are obtained by the non-linear terms
∂x
(
hu2

)
and ∂ζ (huω) in the vertically-resolved system (2.6)-(2.7), which require the computation

of the following terms after insertion of the ansatz (4.1)∫ 1

0

φiu
2 dζ and

∫ 1

0

φi∂ζ (uω) dζ.

Following an exact derivation, the first term evaluates to162 ∫ 1

0

φiu
2 dζ =

∫ 1

0

φi

um +

N∑
j=1

αjφj

2

dζ (5.1)

= u2m

∫ 1

0

φi dζ +

N∑
j=1

2umαj

∫ 1

0

φiφj dζ +

N∑
j,k=1

2αjαk

∫ 1

0

φiφjφk dζ (5.2)

= 0 +
2

2i+ 1
umαi +

1

2i+ 1

N∑
j,k

Aijkαjαk. (5.3)

Assuming small deviations from a constant profile, i.e., αi = O (ε) allows for neglecting the last
term containing the coefficient coupling αjαk = O

(
ε2
)
. This results in∫ 1

0

φiu
2 dζ ≈ 2

2i+ 1
umαi.

The second term exactly evaluates to163 ∫ 1

0

φi∂ζ (uω) dζ = − 1

2i+ 1
um∂x(hαi) +

N∑
j,k

Bijkαj∂x(hαk). (5.4)

10



Again assuming small coefficients αi = O (ε) that only change moderately, the last term containing
the coefficient coupling αj∂x(hαk) is neglected. This results in∫ 1

0

φi∂ζ (uω) ≈ − 1

2i+ 1
um∂x(hαi).

This leads to two changes in the equation system:164

1. The left-hand side transport term does no longer include the non-linear couplings between165

different αi.166

2. The right-hand side non-conservative term does no longer contain coupling terms between167

different αi.168

Due to the linearization, the new model is called Shallow Water Linearized Moment Equations169

(SWLME).170

Remark 1. The linearization procedure outlined for the SWLME is related to the hyperbolic171

regularization procedure that leads to the so-called Hyperbolic Moment Equations (HME) for172

rarefied gases in [6], which are linearized around the equilibrium point in conservative variables.173

Another similar linearization was performed in the derivation of the so-called Simplified Hyperbolic174

Moment Equations (SHME) for rarefied gases in [22], which neglects the non-linearity in the ansatz175

to derive a hyperbolic but much simpler moment model.176

To see the effect of the changes in practice, consider the simple case N = 2 that will later be
extended for larger N . The model reads

∂t


h

hum
hα1

hα2

+ ∂x


hu

hu2m + g h
2

2 + 1
3hα

2
1 + 1

5hα
2
2

2humα1

2humα2

 = Q∂x


h
hu
hα1

hα2

− ν

λ
P

with

Q =


0 0 0 0
0 0 0 0
0 0 um 0
0 0 0 um

 and P =


0

um + α1 + α2

3(um + α1 + α2 + 4λhα1)
5(um + α1 + α2 + 12λhα2)

 .

The changed entries are given in red, illustrating the derivation above. While the model looks
simpler than the SWME model (4.39), in comparison with the HSWME from [21], the differences
are smaller as the HSWME model also neglects the high-order linear terms. Most importantly,
the momentum equation, which is the second equation of the model, is exactly recovered by the
SWLME and the system matrix A still depends on the second coefficient α2, which is both not the
case for the HSWME model. The system matrix is given by

A =


0 1 0 0

−α
2
1

3 − u
2
m + gh− α2

2

5 2um
2α1

3
2α2

5
−2umα1 2α1 um 0
−2umα2 2α2 0 um

 . (5.5)

Albeit being a simpler model, the model captures most of the original model, including the conser-177

vation of mass and momentum and the dependence of the momentum terms hu on the higher order178

equations. The second column of the system matrix is not changed at all, leading to the correct179

momentum influence on the higher order equations. Only the coupling between the higher-order180

equations, induced by the non-linear parts (e.g. hα1α2 and hα2
2 and the additional non-conservative181

terms) is reduced. However, there is still a non-linear velocity and momentum coupling between182

all higher-order equations.183
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This procedure can be generalized to an explicit system for arbitrary N following the same
strategy. The model equations read:

∂t


h

hum
hα1

...
hαN

+ ∂x


hum

hu2m + g h
2

2 + 1
3hα

2
1 + . . .+ 1

2N+1hα
2
N

2humα1

...
2humαN

 = Q∂x


h

hum
hα1

...
hαN

+ P. (5.6)

The non-conservative term is simplified to

Q = diag (0, 0, um, . . . , um) .

The system matrix of the new SWLME then reads

AN =


0 1 0

... 0

gh− u2m −
α2

1

3 − . . .−
α2

N

2N+1 2um
2α1

3 . . . 2αN

2N+1

−2umα1 2α1 um
...

...
. . .

−2umαN 2αN um

 ∈ R(N+2)×(N+2). (5.7)

For the model with general N > 2, the same observations as for the N = 2 model hold, including184

the conservation of mass and momentum as well as the exact second column of the system matrix.185

The coupling between the higher-order equations is reduced, but still present.186

An analysis of the system matrix reveals the following theorem.187

Theorem 1. The SWLME system matrix AN ∈ R(N+2)×(N+2) (5.7) has the following character-
istic polynomial

χAN
(λ) = (um − λ)

[
(λ− um)2 − gh−

N∑
i=1

3α2
i

2i+ 1

]
and the eigenvalues are given by

λ1,2 = um ±

√√√√gh+

N∑
i=1

3α2
i

2i+ 1
and λi+2 = u, for i = 1, . . . , N. (5.8)

The system is thus hyperbolic.188

Proof. The proof closely follows the proof of the characteristic polynomial of the HSWME system189

matrix in [21]. However, we can compute the characteristic polynomial and all eigenvalues explicitly190

here.191

We write λ̃ = λ− um, so that we can compute the characteristic polynomial using192

χAN
(λ) = det (AN − λI)

= det
(
AN −

(
λ̃+ um

)
I
)
.

When writing AN , the following notation is used for conciseness:

d0 = gh+
∑N
i=1

α2
i

2i+1 ,

di = −2uαi, for i = 1, . . . , N
ci = 2αi, for i = 1, . . . , N
bi = 2αi

2i+1 , for i = 1, . . . , N.
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Computing the determinant
∣∣∣AN − (λ̃+ um

)
I
∣∣∣ by developing with respect to the first row193

yields194

∣∣∣AN − (λ̃+ um

)
I
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

−λ̃− um 1

d0 um − λ̃ b1 . . . bN
d1 c1 −λ̃
...

...
. . .

dN cN −λ̃

∣∣∣∣∣∣∣∣∣∣∣∣
=

(
−λ̃− um

)
·

∣∣∣∣∣∣∣∣∣∣
um − λ̃ b1 . . . bN
c1 −λ̃
...

. . .

cN −λ̃

∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
=CN+1∈R(N+1)×(N+1)

−1 ·

∣∣∣∣∣∣∣∣∣
d0 b1 . . . bN
d1 −λ̃
...

. . .

dN −λ̃

∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
=DN+1∈R(N+1)×(N+1)

The determinants of CN+1, DN+1 are computed by developing with respect to the last row as

|CN+1| =

∣∣∣∣∣∣∣∣∣∣
um − λ̃ b1 . . . bN
c1 −λ̃
...

. . .

cN −λ̃

∣∣∣∣∣∣∣∣∣∣
= (−1)N+2cN

∣∣∣∣∣∣∣∣∣
b1 . . . bN−1 bN
−λ̃

. . .

−λ̃

∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
=BN∈RN×N

+(−1)2N+2
(
−λ̃
)
|CN |

and

|DN+1| =

∣∣∣∣∣∣∣∣∣
d0 b1 . . . bN
d1 −λ̃
...

. . .

dN −λ̃

∣∣∣∣∣∣∣∣∣ = (−1)N+2dN

∣∣∣∣∣∣∣∣∣
b1 . . . bN−1 bN
−λ̃

. . .

−λ̃

∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
=BN∈RN×N

+(−1)2N+2
(
−λ̃
)
|DN | .

The determinant of BN is easily computed as

|BN | = (−1)N+1bN

(
−λ̃
)N−1

.

With the help of this, we get

|CN+1| = −cNbN
(
−λ̃
)N−1

+
(
−λ̃
)
|CN | = . . . =

(
−λ̃
)N−1(

−
N∑
i=1

cibi

)
+
(
−λ̃
)N (

um − λ̃
)

︸ ︷︷ ︸
=|C1|

and analogously

|DN+1| = −dNbN
(
−λ̃
)N−1

+
(
−λ̃
)
|DN | = . . . =

(
−λ̃
)N−1(

−
N∑
i=1

dibi

)
+
(
−λ̃
)N

d0︸︷︷︸
=|D1|

.

Note that −
∑N
i=1 cibi = −

∑N
i=1

4α2
i

2i+1 , −
∑N
i=1 dibi =

∑N
i=1

4α2
i

2i+1um, d0 = gh+
∑N
i=1

α2
i

2i+1 .195
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Next, insertion of these terms into the characteristic polynomial of the system matrix AN yields196 ∣∣∣AN − (λ̃+ um

)
I
∣∣∣ =

(
−λ̃− um

)
· |CN+1| − 1 · |DN+1|

=
(
−λ̃− um

)
·

[(
−λ̃
)N−1(

−
N∑
i=1

cibi

)
+
(
−λ̃
)N (

um − λ̃
)]

−1 ·

[(
−λ̃
)N−1(

−
N∑
i=1

dibi

)
+
(
−λ̃
)N

d0

]

=
(
−λ̃
)N [

λ̃2 − gh−
N∑
i=1

3α2
i

2i+ 1

]

= (um − λ)
N

[
(λ− um)2 − gh−

N∑
i=1

3α2
i

2i+ 1

]
,

which proves the first part of the theorem.197

Setting the characteristic polynomial to zero results in the following propagation speeds of the
system:

λ1,2 = um ±

√√√√gh+

N∑
i=1

3α2
i

2i+ 1
, and λi+2 = um, for i = 1, . . . , N.

The propagation speeds prove that the system is hyperbolic for positive water height.198

From the form of the eigenvalues, the new model for N ≥ 2 can be seen as a consistent extension199

of the hyperbolic N = 1 model from Section 4, compare also the eigenvalues in equation (4.25).200

We remark that such an analysis is not possible for the original SWME model for arbitrary N
as the eigenvalues have a very complicated structure and cannot be given in analytical form. For
the new hyperbolic model, the eigenvalues λ1,2 still depend on all flow variables. However, the
analysis can be carried out analytically. For the hyperbolic HSWME and βHSWME models in
[21], the eigenvalues depend solely on α1, which is a drastic simplification. For those models, the
eigenvector analysis is still very involved and theoretical results are only possible for small values
of (Mα)1 � 1. In this case, the model has the same wave properties as the SWLME system. From
a straightforward computation, the eigenvectors vi for i = 1, . . . , N + 2 of the SWLME system can
be derived as

v1,2 =



1
2αn

1

2αn

um +

√√√√gh±
N∑
i=1

3α2
i

2i+ 1


α1

αN

...
αN

αN


(5.9)

vi+2 =



6αn+1−1

(2(n+ 1− i) + 1)− 3gh+
∑N
i=1

3α2
i

2i+1
6αn+1−1u

(2(n+ 1− i) + 1)− 3gh+
∑N
i=1

3α2
i

2i+1

δn+3−i,3
...

δn+3−i,N


, for i = 1, . . . , N, (5.10)

for Kronecker delta δi,j .201

It can be checked that the first two eigenvalues λ1,2 are genuinely non-linear, while all other202

eigenvalues λi+2 for i = 1, . . . , N are linearly degenerate. Note that the analysis of eigenvalues and203
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eigenvectors is not possible for the SWME system, due to the lack of hyperbolicity. The lineariza-204

tion within the N higher moment equations during the derivation procedure consistently leads to205

the resulting N linearly degenerate eigenvalues. However, the first two eigenvalues, correspond-206

ing to the unchanged conservation of mass and momentum, remain genuinely non-linear. The207

full characterization of the eigenstructure of the SWLME allows for the use of efficient numerical208

methods, for example using the relation between Riemann solvers and PVM methods [9].209

Rankine-Hugoniot conditions can be derived analogously to the SWME case with N = 1 as210

follows. For flat bottom ∂xb = 0 and zero friction, the steady state fulfills211

∂x (hum) = 0 (5.11)

∂x

(
hu2m +

1

2
gh2 +

1

3
hα2

1 + . . .+
1

2N + 1
hα2

N

)
= 0 (5.12)

∂x (2humα1) = um∂x (hα1) (5.13)

... (5.14)

∂x (2humαN ) = um∂x (hαN ) (5.15)

First looking at all equations except the second, we obtain after some modification212

hum = const, (5.16)

um = 0 or
αi
h

= const, for i = 1, . . . , N. (5.17)

Using those relations in the remaining second equation, we can derive the Rankine-Hugoniot con-
ditions from a given state (h0, h0um,0, h0α1,0, . . . , h0αN,0) to a state (h, hum, hα1, . . . , hαN ) and
obtain (after some modifications)

(h− h0)

[
−
u2m,0
gh0

+
1

2

((
h

h0

)2

+

(
h

h0

))
+

N∑
i=1

1

2i+ 1

α2
i,0

gh0

((
h

h0

)3

+

(
h

h0

)2

+

(
h

h0

))]
= 0.

(5.18)
We extend the previous dimensionless flow numbers by using one number for each variable:213

Fr =
um,0√
gh0

, (5.19)

(Mα)i =
αi,0
um,0

, for i = 1, . . . , N, (5.20)

writing y = h
h0

, we arrive at the two solutions

h = h0 ∨ − Fr2 +
1

2

(
y2 + y

)
+

N∑
i=1

1

2i+ 1
(Mα)

2
i Fr

2
(
y3 + y2 + y

)
= 0. (5.21)

From the previous equation, we see a new dimensionless number Mα2 :=
∑N
i=1

1
2i+1 (Mα)

2
i ap-214

pearing. The new number Mα measures the total deviation from equilibrium. This leads to a215

consistent extension of the SWME N = 1 test case above. We see that the Rankine-Hugoniot216

conditions allow for similar solutions as before, this time with Fr and Mα as dimensionless flow217

numbers. We note that the equations always have at least one solution for non-zero Fr and Mα.218

Analogously, we extend the conditions for smooth and frictionless steady states including a
bottom topography. We will later use this to derive a well-balancing scheme. We can derive

∂x

(
1

2
u2m + g(h+ b) +

3

2

N∑
i=1

1

2i+ 1
α2
i

)
= 0. (5.22)
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The non-trivial steady state solution can thus be found using219

hum = const, (5.23)

1

2
u2m + g(h+ b) +

3

2

N∑
i=1

1

2i+ 1
α2
i = const, (5.24)

αi
h

= const, for i = 1, . . . , N. (5.25)

This expression can be used in the following numerical methods section to obtain a proper well-220

balancing scheme for the new model. First, we will rewrite the model in the proper form with a221

conservative and non-conservative part to use it in the numerical schemes thereafter.222

The system (5.6) with topography but without friction terms is therefore written in the form

Ut + ∂xF (U) +B(U)∂xU = S(U)∂xb. (5.26)

By straightforward calculation, we obtain

U =


h

hum
hα1

...
hαN

 , F (U) =


hum

hu2m + g h
2

2 + 1
3hα

2
1 + . . .+ 1

2N+1hα
2
N

2humα1

...
2humαN

 , (5.27)

B(U) = diag(0, 0,−um, ...,−um). (5.28)

We can also write this system in the form

∂tW +A(W )∂xW = 0, (5.29)

with

W =



h
hum
hα1

...
hαN
b


, A(W ) =

(
A(W ) −S(W )

0 0

)
,

where A(W ) has the form (5.7) and S(W ) =


0
−gh

0
...
0

.223

For comparison we note that also the existing HSWME and β-HSWME models from [21] can224

be written in the same form, see the appendix A.225

6 Numerical methods226

In this section, we recall the general high-order well-balanced method from [13] and construct227

the first order as well as the second order scheme for applications of the SWLME derived in the228

previous section. At the end of the section we will outline the specific spatial discretization scheme229

used for the numerical tests in the next section.230
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6.1 A general high-order well-balanced procedure231

The previously derived shallow water models can all be written as non-conservative systems of the
form

∂tU + ∂xF (U) +B(U)∂xU = S(U)∂xb. (6.1)

It is well known that these systems are equivalent to

∂tW +A(W )∂xW = 0, (6.2)

where

W =

(
U
b

)
, A(W ) =

(
∂F
∂U (U) +B(U) −S(U)

0 0

)
.

The goal of this section is to develop a family of numerical methods that are well-balanced for the
frictionless SWLME introduced before, i.e., that preserve the stationary solutions verifying (5.23),
(5.24) and (5.25). In this section we will follow [13] adding the non-conservative products. The
interested reader is referred to this reference for details and proofs.
We consider semi-discrete finite-volume methods of the form

dWi

dt
= − 1

∆x

(
D−
i+ 1

2

+D+
i− 1

2

+

∫ x
i+1

2

x
i− 1

2

A(Pi(x))
∂

∂x
Pi(x)dx

)
, (6.3)

where232

• Wi(t) ∼=
∫ x

i− 1
2

x
i+1

2

W (t, x) dx is the respective cell average value,233

• Pi(x) is a high-order well-balanced operator in the sense defined in [13].234

• D±
i+ 1

2

= D±
(
W−
i+ 1

2

,W+
i+ 1

2

)
, is the respective fluctuation with reconstructed states

W−
i+ 1

2

= Pi(xi+ 1
2
), W+

i+ 1
2

= Pi+1(xi+ 1
2
),

and D(Wl,Wr) verifies:

D−(Wl,Wr) + D+(Wl,Wr) =

∫ 1

0

A(Ψ)
∂Ψ

∂s
ds, (6.4)

where Ψ is a family of paths joining Wl with Wr.235

In order to design the high-order well-balanced operator we follow the strategy introduced in236

[10]. The following steps need to be performed in order to compute Pi at the cell [xi− 1
2
, xi+ 1

2
] for237

a given family of cell values {Wi}:238

1. Obtaining the steady solution W ∗i (x) such that:

1

∆x

∫ x
i− 1

2

x
i− 1

2

W ∗i (x)dx = Wi, (6.5)

if possible. In other cases consider W ∗i ≡Wn
i .239

2. Computing the fluctuations {Vj}j∈Si
within the stencil Si:

Vj = Wj −
1

∆r

∫ x
j+1

2

x
j− 1

2

W ∗i (x)dx, j ∈ Si. (6.6)

3. Applying the reconstruction operator with the necessary order to the fluctuations {Vj}j∈Si :

Qi(x) = Qi(x; {Vj}j∈Si).
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4. Defining the well-balanced operator:

Pi(x) = W ∗i (x) +Qi(x).

Pi is well-balanced for every steady solution provided that the reconstruction operator Qi is
exact for the null function. Moreover, it is conservative, i.e.,

1

∆x

∫ x
i+1

2

x
i− 1

2

Pi(x)dr = Wi, for all i,

provided that Qi is conservative, and it is high-order accurate provided that the steady solutions240

are smooth (see [13] for details).241

6.2 First order well-balanced scheme242

We apply the steps of the previous subsection to the system (5.29) in a first order setup before243

considering the second order scheme in the next section. As the bottom topography b is known,244

we will focus on the other variables of the system.245

The cell averages of the initial condition will be computed using the mid-point rule, that is

W 0
i = W0(xi), for all i,

where W0(x) is the initial condition.246

In the case of the SWLME system, the steady state solutions verify:247

hum = C1 ≡ const,

1

2
u2m + g(h+ b) +

3

2

N∑
i=1

1

2i+ 1
α2
i = C2 ≡ const,

α1

h
= C3 ≡ const,

α2

h
= C4 ≡ const,

...
αN
h

= CN+2 ≡ const.

Using the mid-point rule in (6.5) the first step is to obtain, if possible, the stationary solution W ∗i
such that:

W ∗i (xi) = Wi. (6.7)

With this information the constants C1, C2, C3,...,CN+2 can be computed as

C1 = hium,i,

C2 = 1
2u

2
m,i + g(hi + b(xi)) + 3

2

∑N
j=1

1
2j+1α

2
j,i,

C3 =
α1,i

hi
,

C4 =
α2,i

hi
,

...
CN+2 =

αN,i

hi
.

(6.8)

Using the relations (6.8), the stationary solution can be evaluated in a point x = a. The evaluation
of the steady state solution requires finding roots of the function

f(h) = Dh4 + 2h3g + 2h2(gb(a)− C2) + C2
1 , (6.9)

where the parameter D is given by

D = C2
3 +

3

5
C2

4 + · · ·+ 3

2N + 1
C2
N+2.
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The derivative of the function f is given by

f ′(h) = 4Dh3 + 6h2g + 4h(gb(a)− C2).

The positive root hc of f ′(h) is

hc =
−3g +

√
9g2 − 16D(b(a)g − C2)

4D
, (6.10)

and we can see that it is a minimum of the function f . An example of a function f is plotted in248

Figure 4.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

15

10

5

0

5

10

f(h)
hc
h0

h

f(h)

Figure 4: An example of the root finding function f(h) (6.9) with some constants Ci. The minimum
hc and the initial value of the Newton algorithm h0 are shown.

249

Remark 1. In case of D = 0, the minimum simplifies to

hc = −2(b(a)g − C2)

3g
.

Remark 2. In order to find the roots of f(h) the Newton-Raphson method is employed with initial
value h0 that is the positive root of

f ′′(h) = 12Dh2 + 12hg + 4(gb(a)− C2),

given by

h0 =
−3g +

√
9g2 − 12D(b(a)g − C2)

6D
.

It is easy to see that 0 ≤ h0 ≤ hc, compare also Figure 4.250

We can conclude then the following: If f(hc) < 0 there exist two possible states for W ∗i (xi± 1
2
),251

one subcritical and one supercritical. The following criterion will be used to choose one state:252

1. If Wi is subcritical or supercritical, then we will choose the solution in the same regime253

(subcritical or supercritical) as Wi for W ∗i (xi± 1
2
).254

2. If Wi is transcritical, then the solution that has the same behaviour (subcritical or supercrit-255

ical) as Wi−1 will be selected for W ∗i (xi− 1
2
) and the solution whose behaviour is the same as256

Wi+1 will be selected for W ∗i (xi+ 1
2
).257
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Following the procedure described in [13], the reconstruction operator reduces to Pi(x) = W ∗i (x)
and the first order numerical scheme reduces to:

Wn+1
i = Wn

i −
∆t

∆r
(D−

i+ 1
2

+D+
i− 1

2

), (6.11)

for W+
i− 1

2

= Pi(xi− 1
2
) and W−

i+ 1
2

= Pi(xi+ 1
2
), where we have used that P(x) = W ∗i (x) is a steady258

solution.259

In the case we could not find such a stationary solution verifying (6.7) the standard trivial recon-260

struction is considered.261

6.3 Second order well-balanced scheme262

Now we consider the second order scheme for which a second order spatial reconstruction using263

the minmod limiter will be employed, see [13].264

The cell averages of the initial condition are again computed using the mid-point rule:

W 0
i = W0(xi), for all i,

where W0(x) is the initial condition.265

1. Obtaining the steady solution: In the same fashion as for the first order scheme, if possible,
the steady state W ∗i needs to be found such that

W ∗i (xi) = Wi. (6.12)

After computing the constants C1, C2, C3,...,CN+2 as in (6.8), the stationary solution can be266

evaluated in a point x = a. In order to do this, the roots of the function f in (6.9) needs to267

be computed. As defined in (6.10), f has a minimum in hc. Again if f(hc) < 0 there exist268

two possible values for W ∗i (i ± 1, i ± 1
2 ) and we use the same criterion as for the first order269

scheme in order to choose one.270

2. Computing the fluctuations: After the evaluation of the stationary solution in a point r = a
the fluctuations {Vi−1, Vi, Vi+1} in (6.6) are computed using the mid-point rule

Vi−1 = Wi−1 −W ∗i (xi−1),
Vi = Wi −W ∗i (xi) = 0,
Vi+1 = Wi+1 −W ∗i (xi+1).

3. Applying the reconstruction operator: After the fluctuations are computed the minmod
reconstruction is used to obtain the reconstruction operator (see [34])

Qi(x) = Vi +minmod

(
Vi − Vi−1

∆x
,
Vi+1 − Vi−1

2∆x
,
Vi+1 − Vi

∆x

)
(x− xi),

where

minmod(a, b, c) =


min{a, b, c} if a, b, c > 0,

max{a, b, c} if a, b, c < 0,

0 otherwise.

4. Defining the well-balanced operator: The well-balanced reconstruction operator is given by

Pi(x) = W ∗i (x) +Qi(x).

The well-balanced property can be lost if a quadrature formula is used directly in the right part271

of (6.3), as the quadrature formula is in general not exact. Therefore, the semi-discrete scheme is272
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first rewritten as proposed in [13] taking into account the non-conservative part273

dWi

dt
= − 1

∆x

(
D−
i+ 1

2

+D+
i− 1

2

+

∫ x
i+1

2

x
i− 1

2

(
A(Pi(x))

∂

∂x
Pi(x)−A(W ∗i (x))

∂

∂x
W ∗i (x)

)
dx

+

∫ x
i+1

2

x
i− 1

2

A(W ∗i (x))
∂

∂x
W ∗i (x)dx

)
.

Once this equivalent form is obtained, we use that W ∗i is a stationary solution in the second integral
and then employ the mid-point rule for the first integral without losing the well-balanced property
what leads to

dWi

dt
= − 1

∆x

(
D−
i+ 1

2

+D+
i− 1

2

+A(Pi(xi))minmod
(
Vi − Vi−1

∆x
,
Vi+1 − Vi−1

2∆x
,
Vi+1 − Vi

∆x

))
, (6.13)

for W+
i− 1

2

= Pi(xi− 1
2
) and W−

i+ 1
2

= Pi(xi+ 1
2
). The discretization in time is performed with a274

Runge-Kutta TVD method of order 2, see [19].275

Remark 3. The extension to higher-order is straightforward: Although not implemented in the
present paper, a third order well-balanced scheme will be based on the two point Gaussian quadrature
formula for computing the averages. In the first step, we need to find the constants Cj, j =
1, ..., N + 2 such that

1

2
W ∗i (xa, C1, ..., CN+2) +

1

2
W ∗i (xb, C1, ..., CN+2) = Wi,

where xa and xb are the two quadrature points and W ∗i (x,C1, ..., CN+2) represents the stationary276

solution given by the constants Cj evaluated in x. Then we follow the steps considering a third order277

reconstruction operator (e.g. CWENO reconstruction) and using again the two point Gaussian278

quadrature.279

6.4 Spatial discretization280

In order to completely define the scheme, what remains is to define the form of the fluctuations
D±
i+ 1

2

and the non-conservative terms in (6.3), for which we use a path-consistent scheme based on

segments in the conservative variables as family of paths joining two states:

Ψ(s;Wl,Wr) =

(
ΨU (s;Wl,Wr)
Ψb(s;Wl,Wr)

)
=

(
Ul + s(Ur − Ul)
bl + s(br − bl)

)
, s ∈ [0, 1],

and a PVM-like method [9] corresponding to a choice in (6.4) of281

D±
i+ 1

2

=
1

2

(
F (Ur)− F (Ul) +Bi+ 1

2
(Ur − Ul)− Si+ 1

2
(br − bl) (6.14)

± Qi+ 1
2
(Ur − Ul −A−1i+ 1

2

Si+ 1
2
(br − bl))

)
,

where

Ai+ 1
2

=

(
Ai+ 1

2
−Si+ 1

2

0 0

)
is a generalized Roe matrix [33] so that Ai+ 1

2
= Ji+ 1

2
+Bi+ 1

2
and Si+ 1

2
have to verify

Ai+ 1
2

=

∫ 1

0

A(Ul + s(Ur − Ul)) ds, (6.15)

Ji+ 1
2
(Ur − Ul) = F (Ur)− F (Ul), (6.16)
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Bi+ 1
2

=

∫ 1

0

B(Ul + s(Ur − Ul)) ds, (6.17)

Si+ 1
2

=

∫ 1

0

S(Ul + s(Ur − Ul)) ds, (6.18)

and the polynomial viscosity matrix is Qi+ 1
2

= P (Ai+ 1
2
), for polynomial P . The source term

evaluates to

Si+ 1
2

=


0

−g hl+hr

2
0
...
0

 .

In the case of the model SWLME, it can be shown that the system (6.16) leads to an evaluation
of the Jacobian

Ji+ 1
2

=
∂F

∂U
(hR, um,R, α1,R, ..., αN,R), (6.19)

at the intermediate values

hR =
hl + hr

2
, um,R =

√
hlum,l +

√
hrum,r√

hl +
√
hr

,

and

αj,R =

√
hlhrαj,r +

√
hrhlαj,l√

hlhr +
√
hrhl

, j = {1, ..., N}.

Remark 4. We point out that (6.19) is a generalization of the mean values that are obtained with282

the Roe matrix for the usual Shallow Water equations.283

From (6.17) we obtain that Bi+ 1
2

is an evaluation of the non-conservative terms

Bi+ 1
2

= diag(0, 0,−um,b, ...,−um,b), (6.20)

at values

um,b =

h2
rur+h

2
l ul+hlhr

[
(ul−ur)log

(
hr
hl

)
−(ur+ul)

]
(hr−hl)2

if hr 6= hl,
ur+ul

2 if hr = hl.

Setting Ai+ 1
2

= Ji+ 1
2

+Bi+ 1
2

and Si+ 1
2
, it can be shown that Ai+ 1

2
is a Roe matrix in the sense of284

[33].285

286

For the polynomial viscosity matrix Qi+ 1
2

an HLL-like method that correspond to choosing a

polynomial approximation of the matrix Q as P (x) = a0 + a1x in (6.14) is used, see [12] for more
details. The coefficients are given as

a0 =
Sr|Sl| − Sl|Sr|

Sr − Sl
, a1 =

|Sr| − |Sl|
Sr − Sl

,

where Sr and Sl are the maximum and the minimum eigenvalue of Ai+ 1
2
, respectively.287

Remark 5. The eigenvalues of Ai+ 1
2

are computed numerically. However, it is possible to use the288

Cardano’s formula to obtain exact eigenvalues.289

7 Numerical tests290

In this section several tests with increasing complexity are considered to validate the results ob-291

tained starting from steady state initial conditions with the well-balanced first and second order292

schemes for the SWLME. Subsequently, we use a transient dam-break problem to compare the293

SWLME with the results obtained for the HSWME and the βHSWME, see [21]. For implementa-294

tion details used in all examples of this section we refer to the implementation [20].295
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7.1 Well-balanced property296

The first four test cases are intended to show that the scheme is effectively well-balanced. A 1000-297

point uniform mesh, free boundary conditions and a CFL number of 0.5 are used. In all cases we298

exemplarily use N = 8 moments and g = 9.812.299

Test 1: Lake at rest300

For the lake at rest, a zero velocity profile corresponding to water at rest with the following bottom
topography is used in the spatial domain [−1, 1]

b0(x) =

{
2− x2 if − 0.5 < x < 0.5,
1.75 otherwise,

(7.1)

and therefore

W0(x) = (h0(x), um,0(x)h0(x), α1,0(x)h0(x), ..., αN,0(x)h0(x)) = (3− b0(x), 0, 0, ..., 0). (7.2)

The initial condition is shown in Figure 5. In Table 1 we observe that the well-balanced and301

also the non well-balanced schemes of first and second order capture well the lake at rest. This302

is due to the fact that straight lines are used as the paths in the numerical scheme. This is a303

parameterization of the stationary solutions [4, 28]. For the first order test case, even the standard304

non well-balanced scheme gives the right solution305

Scheme (1000 cells) ||∆h||1 (1st) ||∆u||1 (1st) ||∆h||1 (2nd) ||∆u||1 (2nd)
Well-balanced 0.00 8.16e-16 0.00 8.16e-16

Non well-balanced 0.00 7.12e-16 4.51e-15 1.75e-14

Table 1: Well-balanced vs non well-balanced schemes: L1 errors ||∆ · ||1 at time t = 0.5 for the
SWLME model with initial conditions (7.1) and (7.2).
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Figure 5: Initial condition for the lake at rest (7.1) and (7.2).

Test 2: Subcritical stationary solution306

We consider a subcritical stationary solution as initial condition in the spatial domain [0, 3], similar
to [11]. The bottom topography is chosen as

b0(x) =

{
0.25(1 + cos(5π(x+ 0.5))) if 1.3 < x < 1.7,
0 otherwise.

(7.3)
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As W0(x) we take the subcritical stationary solution such that C1 = 3.5, C2 = 17.56957396120237307

and Ci = 0 for i ∈ {3, ..., N + 2}. The initial condition is shown in Figure 6. In Table 2 we observe308

that our well-balanced schemes of first and second order capture well the subcritical stationary309

solution while the non well-balanced schemes do not. The non well-balanced scheme shows a clear310

error whereas the well-balanced scheme is exact up to almost machine prevision.311

Scheme (1000 cells) ||∆h||1 (1st) ||∆u||1 (1st) ||∆h||1 (2nd) ||∆u||1 (2nd)
Well-balanced 9.16e-16 1.79e-15 1.42e-15 3.24e-15

Non well-balanced 2.48e-6 5.08e-6 3.21e-5 8.40e-5

Table 2: Well-balanced vs non well-balanced schemes: L1 errors ||∆ · ||1 at time t = 0.5 for the
SWLME model with initial condition (7.3).
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Figure 6: Initial condition for the subcritical stationary solution (7.3).

Test 3: Transcritical stationary solution312

Next, we consider a transcritical stationary solution using an initial condition in [0, 3] similar to
[11]. The bottom topography is chosen as

b0(x) =

{
0.25(1 + cos(5π(x+ 0.5))) if 1.3 < x < 1.7,
0 otherwise.

(7.4)

As W0(x) we take the transcritical stationary solution

W0(x) =

{
W∗(x) if x < 1.5
W ∗(x) if x > 1.5

(7.5)

where W∗ and W ∗ are the subcritical and supercritical stationary solutions such that C1 = 2.5,313

C2 = 21, 15525 and Ci = 0 for i ∈ {3, ..., N + 2}. The initial condition is shown in Figure 7.314

In Table 3 we observe that our well-balanced schemes of first and second order capture well the315

transcritical stationary solution while the non well-balanced schemes do not. Again, the non well-316

balanced schemes result in a large error while the well-balanced schemes achieve a very accurate317

steady state solution.318
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Scheme (1000 cells) ||∆h||1 (1st) ||∆u||1 (1st) ||∆h||1 (2nd) ||∆u||1 (2nd)
Well-balanced 3.53e-14 2.95e-13 3.53e-14 2.98e-13

Non well-balanced 1.46e-5 1.22e-4 3.07e-4 1.12e-3

Table 3: Well-balanced vs non well-balanced schemes: L1 errors ||∆ · ||1 at time t = 0.5 for the
SWLME model with initial condition (7.4) and (7.5).
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Figure 7: Initial condition for the subcritical stationary solution (7.4) and (7.5).

Test 4: Subcritical stationary solution with non zero moments319

Lastly, we consider the following initial condition in [0, 3] that is a subcritical stationary solution
with non-vanishing coefficients αi. The bottom topography is chosen as

b0(x) =

{
0.25(1 + cos(5π(x+ 0.5))) if 1.3 < x < 1.7
0 otherwise

(7.6)

As W0(x) we use the subcritical stationary solution such that C1 = 3.5, C2 = 21, 15525 and320

Ci = 0.25 for i ∈ {3, ..., N + 2}. The initial condition is shown in Figure 8. In Table 4 we observe321

that our well-balanced schemes of first and second order capture well the subcritical stationary322

solution while the non well-balanced schemes do not. Even in this test case with non-zero higher-323

order coefficients αi the well-balanced scheme is much more accurate than the standard non well-324

balanced version.

Scheme ||∆h||1, 1st ||∆u||1 (1st) ||∆αi||1 (1st) ||∆h||1 (2nd) ||∆u||1 (2nd) ||∆αi||1 (2nd)
wb 4.00e-15 9.71e-15 4.45e-15 2.56e-15 7.66e-15 5.04e-15

Non wb 3.11e-6 6.65e-6 6.98e-7 3.98e-5 1.04e-4 2.52e-5

Table 4: Well-balanced (WB) vs non well-balanced schemes: L1 errors ||∆ · ||1 at time t = 0.5 for
the SWLME model with initial condition (7.6).

325

7.2 Comparison between the SWLME, HSWME and βHSWME326

In the following two tests, the results for the new SWLME model are compared with other hyper-327

bolic models, HSWME and βHSWME, for which a Roe matrix was derived and explicitly given in328

the appendix A. These tests will be done in the spatial domain [−0.4, 0.4] with g = 1 and N = 8.329

We consider a flat bottom topography (bx = 0) and neglect friction terms. In this test case, the330

well-balanced property is of no interest, we therefore only compare the standard first and second331

order schemes.332
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Figure 8: Initial condition for the subcritical stationary solution (7.6).

Test 5: transient model comparison with standard dam-break test333

We are going to consider the following dam-break initial condition taken from [21] without friction
terms

W0(x) = (h0(x), um,0(x)h0(x), α1,0(x)h0(x), ..., αN,0(x)h0(x)), (7.7)

where um,0(x) = 0.25, α1,0(x) = −0.25, αN,0(x) = 0.25, αi,0(x) = 0, i ∈ {2, ..., N − 1}, and

h0(x) =

{
5 if x < 0,
1 if x > 0.

(7.8)

Figure 9 shows the numerical results obtained with the first and second order scheme for the334

SWLME, and the first order schemes for the HSWME and the βHSWME. The results for the335

second order schemes applied to the latter two models are quantitatively the same as the first336

order results and thus omitted here. We can conclude that the results obtained are quite similar337

for all models in the variables h, u and α1. As expected, the second order scheme captures the338

rarefaction waves better. We point out that the speed of the shock that travels from the left to the339

right is slightly higher in the case of the SWLME than in the other two models because in (5.8) we340

observe that all the αi are taken into account for the maximum and minimum eigenvalues while341

in the HSWME and βHSWME only α1 is contributing.342
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(a) Water height h.
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(b) Velocity u.
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(c) First coefficient α1.
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Figure 9: Results obtained with the different models for the standard dam-break initial condition
(7.7) and (7.8) for variables h, u, α1, α8 at t=0.1.

Test 6: transient model comparison with square root velocity profile343

For the last test, we consider the following dam-break initial condition:

W0(x) = (h0(x), um,0(x)h0(x), α1,0(x)h0(x), ..., αN,0(x)h0(x)), (7.9)

where we use a square root initial velocity profile (4.1) u(0, x, ζ) = um(0, x)+
∑N
j=1 αj(0, x)φj(ζ) =√

ζ, such that the initial variables can be computed according to (4.6) and (4.7) as um,0(x) = 1
and

α1,0(x) = − 3
5 , α2,0(x) = − 1

7 , α3,0(x) = − 1
15 , α4,0(x) = − 3

77 ,
α5,0(x) = − 1

39 , α6,0(x) = − 1
55 , α7,0(x) = − 3

221 , α8,0(x) = − 1
95 .

(7.10)

The initial water height is chosen as

h0(x) =

{
5 if x < 0,
1 if x > 0.

(7.11)

In Figure 10 we show the numerical results obtained with the first and second order scheme for344

the SWLME, and the first order schemes for the HSWME and the βHSWME. We can conclude345
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that the results obtained are quite similar for all of them in the variables h, u and α1. This is not346

the case for the variable α8 where we can see that both the HSWME and the βHSWME result347

in strong oscillations. In comparison, the new SWLME is more stable than the other two models.348

Again the second order scheme captures the rarefaction waves better. Note that the emerging349

instability is not the result of an unstable high-order scheme, as the solutions for HSWME and350

βHSWME are even unstable with the first order scheme, while the SWLME yields stable results351

for both schemes. We point out that in this test the difference between the speed of the shock is352

even higher in the SWLME than in the other test because this time all the αi have a non-zero353

initial value.
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(b) Velocity u.
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Figure 10: Results obtained with the different models for the dam-break with square root velocity
profile initial condition (7.9) and (7.11) for variables h, u, α1, α8 at t=0.1.

354

8 Conclusion355

In this paper, we analytically and numerically investigate steady states of Shallow Water Moment356

Equations (SWME). After showing that the steady states for the SWME with N = 1 are extensions357

of the standard Shallow Water Equations (SWE), we pointed out that the case for arbitrary N358

poses difficulties due to the loss of hyperbolicity and the structure of the model. The analysis359

was generalized with the help of a newly derived model called Shallow Water Linearized Moment360
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Equations (SWLME), based on a linearization during the derivation. The concise derivation of the361

SWLME allowed to prove hyperbolicity and to fully characterize its eigenstructure analytically.362

This information was used to define a first order and a second order well-balanced numerical363

scheme preserving the steady states of the model numerically up to machine precision. Numerical364

results for lake-at-rest, subcritical, and transcritical initial conditions showed the success of the365

numerical scheme. Additionally, we compared the new SWLME model to other existing shallow366

water moment models, obtaining very similar solutions for the standard dam-break test. The367

solution for a more complex velocity profile seems more stable with the new SWLME model while368

existing models show emerging instabilities.369

The current work is a major step towards a better understanding of shallow water moment370

models and opens up many possibilities for future work and applications. Next steps could be a371

detailed stability analysis of the models including the right hand side friction terms, which were372

neglected in this paper, or the design of proper implicit numerical scheme for potentially stiff373

friction terms. An extension towards well-balanced schemes of higher-order is possible following374

the construction of the second order scheme in this paper.375
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A HSWME and β-HSWME models385

The HSWME and β-HSWME models are derived and explicitly given in [21]. For our numerical
schemes, we can write these two models in the form (6.1) where the conservative flux is given by

FHSWME(U) = F βHSWME(U) =



hum
hu2m + g h

2

2 + 1
3hα

2
1

2humα1
2
3hα

2
1

0
...
0


,

the non-conservative matrix is given by

BHSWME(U) =



0 0
0 0

−um 3
5α1

−α1 um
4
7α1

2
5α1

. . .
. . .

. . .
. . . N+1

2N+1α1
N−1
2N−1α1 um


,
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BβHSWME(U) =



0 0
0 0

−um 3
5α1

−α1 um
4
7α1

2
5α1

. . .
. . .

. . .
. . . N+1

2N+1α1

βN + N−1
2N−1α1 um


,

with βN = N2−N
2N2+N−1α1 the parameter of the β-HSWME model. The source term S is the same as386

for the SWLME model.387

The respective terms for the generalized Roe scheme from (6.15), (6.16), (6.17) and (6.18) can
be obtained by:

JHSWME
i+ 1

2
= JβHSWME

i+ 1
2

=
∂F

∂U
(hR, um,R, α1,R, ..., αN,R),

using (6.19), and

BHSWME
i+ 1

2
= BHSWME(um,b, α1,b), BβHSWME

i+ 1
2

= BβHSWME(um,b, α1,b),

where the Roe averages are given by

um,b =

h2
rum,r+h

2
l um,l+hlhr

[
(um,l−um,r)log

(
hr
hl

)
−(um,r+um,l)

]
(hr−hl)2

if hr 6= hl,
um,r+um,l

2 if hr = hl,

and

α1,b =

h2
rα1,r+h

2
lα1,l+hlhr

[
(α1,l−α1,r)log

(
hr
hl

)
−(α1,r+α1,l)

]
(hr−hl)2

if hr 6= hl,
α1,r+α1,l

2 if hr = hl.
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